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Abstract: Acquired immunodeficiency syndrome (AIDS) is an enormous global health threat stem-
ming from human immunodeficiency virus (HIV-1) infection. Up to now, the tremendous advances
in combination antiretroviral therapy (cART) have shifted HIV-1 infection from a fatal illness into a
manageable chronic disorder. However, the presence of latent reservoirs, the multifaceted nature of
HIV-1, drug resistance, severe off-target effects, poor adherence, and high cost restrict the efficacy of
current cART targeting the distinct stages of the virus life cycle. Therefore, there is an unmet need for
the discovery of new therapeutics that not only bypass the limitations of the current therapy but also
protect the body’s health at the same time. The main goal for complete HIV-1 eradication is purging
latently infected cells from patients’ bodies. A potential strategy called “lock-in and apoptosis” targets
the budding phase of the life cycle of the virus and leads to susceptibility to apoptosis of HIV-1
infected cells for the elimination of HIV-1 reservoirs and, ultimately, for complete eradication. The
current work intends to present the main advantages and disadvantages of United States Food and
Drug Administration (FDA)-approved anti-HIV-1 drugs as well as plausible strategies for the design
and development of more anti-HIV-1 compounds with better potency, favorable pharmacokinetic
profiles, and improved safety issues.

Keywords: HIV-1; AIDS; FDA; combination antiretroviral therapy; latent reservoirs; apoptosis; drug
resistance; anti-HIV-1 drug design and discovery

1. Introduction

Human immunodeficiency virus (HIV), an enveloped virus with a diploid, positive-
sense, and single-stranded RNA, belongs to the Lentivirus genus within the Orthoretrovirinae
subfamily of the Retroviridae family. HIV-1 and HIV-2 are the two main types of HIV and
HIV-1 is responsible for the majority of infections across the globe [1–4]. Acquired immun-
odeficiency syndrome (AIDS), stemming mainly from HIV-1, is one of the most serious
hurdles throughout the world. The last updated World Health Organization (WHO) report
indicated that globally about 39.0 million people acquired HIV-1 and 630,000 people died
from HIV-1-dependent problems at the end of 2022 [5]. Furthermore, HIV-1/AIDS provokes
opportunistic infections including tuberculosis, cryptococcal infection, histoplasmosis, and
severe bacterial infections; hepatitis B, and C co-infections [6–8]; and comorbidities such as
cardiovascular, kidney, and liver disorders and cancer [9]. In the near future, COVID-19
and monkeypox virus infections could be possible challenges for clinicians and people with
HIV-1 [10,11].

The typical flu symptoms may appear at 2–6 weeks after acute HIV-1 infection, then
it can remain silent for years without any symptoms and testing is the only solution to
diagnose HIV-1. The “eclipse period” or “window period” is known as the time between
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exposure and confirmed identification of infection. It is hard to predict this period due
to obscurity of the exact time of the exposure, although recent HIV-1 testing technologies
applied in clinic are able to identify some parameters, including viral DNA, capsid (CA)
protein, HIV-1 antibodies, and antibody/antigen in combination [12–14].

HIV-1 is capable of converting its RNA into DNA through reverse transcriptase or
RNA-dependent DNA polymerase enzyme and subsequently, integrating its viral DNA into
the host cell DNA through integrase enzyme. HIV-1 incorporates nine genes: structural (gag,
pol, and env), regulatory (tat, rev), and accessory (vif, vpr, vpu, nef ) genes. The group-specific
antigen (gag) gene encodes for Gag polyprotein precursor (Pr55Gag: Gag), whereas the Gag-
Pol polyprotein precursor is expressed via ribosomal frameshifting between the gag and pol
genes. Finally, the env gene encodes for the viral envelope glycoproteins (Figure 1) [15]. All
these proteins orchestrate the viral cell cycle of HIV-1 leading to redundancy in infected
host cells, mainly CD4+ T cell lymphocytes [15–21].
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The stages of the HIV-1 cell cycle are: (i) Attachment, fusion and entry: The attachment
and fusion between the HIV-1 envelope and the cell surface of CD4+ cells occur through
viral glycoproteins 120 and 41 (gp120 and gp41), the subunits of Env glycoprotein, and the
host chemokine receptors (CCR5 or CXCR4) located on the surface of CD4+ cell, respectively.
Then, HIV-1 enters into the CD4+ cell. (ii) Reverse transcription of viral RNA: The viral
RNA is transcribed to viral DNA by reverse transcriptase enzyme, located within the CA,
which occludes exposure of the viral genome to host proteins. This process is known
to start in the cytoplasm. Recent studies [22] have reported that cDNA synthesis ends
inside the nucleus. (iii) Integration: The HIV-1 DNA is integrated into the cellular DNA
by integrase enzyme for its further replication, transcription, and translation into viral
proteins. (iv) Assembly, budding, release, and maturation: (1) Gag proteins move to the
plasma membrane, form hexameric subunits, and assemble into immature lattice; (2) RNA
dimers are recruited to the assembly region and Env trimers are included in the budding
particles; (3) membrane sequestration and release of virus particles from the cell surface is
driven by the endosomal sorting complexes required for transport (ESCRT) and the Gag-p6
domain; (4) subsequent viral protease-mediated cleavage of Gag and Gag-Pol polyprotein
occurs to constitute mature structural and viral proteins, self-assembly and generation of
mature CA protein, and the final formation of mature particles, which are able to infect
other immune cells (Figure 2) [23–28].
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After the discovery of the first anti-HIV-1 drug zidovudine in 1987, numerous agents
acting as inhibitors of reverse transcriptase, integrase, entry (attachment, fusion, post-
attachment), protease, and CA or pharmacokinetic enhancers have rendered the impact of
HIV-1/AIDS from a devastating fatal disorder to a manageable chronic infection [29–32].
The combined use of these agents, entitled combination antiretroviral therapy (cART, ART,
formerly highly active antiretroviral therapy (HAART), cocktail therapy), marked a water-
shed moment to ameliorate the prognosis of the illness [33–35]. The three-drug regimen
with a dual nucleoside analogue reverse transcriptase inhibitor (NRTIs) backbone and a
core drug from integrase strand transfer inhibitors (INSTIs), boosted protease inhibitors,
attachment inhibitor, fusion inhibitor, or non-nucleoside reverse transcriptase inhibitor
(NNRTI) has become the mainstay for the initial HIV-1 treatment [36–39]. Moreover, the
once-daily fixed-dose three-drug combination in a single tablet regimen is one of the mile-
stones for HIV-1/AIDS treatment, facilitating a reduced pill burden and dosing frequency
and improved adherence [40,41].

The major obstacles of the current therapy are persistent latent reservoirs, adherence
challenges, drug resistance, limited treatment options for multi-class resistance, drug–drug
interactions, limited availability of drug in poor countries, and a high cost of the lifetime
treatment regimen. There are also concerns about adverse effects such as cardiovascular
events, insulin resistance and type II diabetes, renal dysfunction, hepatotoxicity, lipodys-
trophy, gastrointestinal toxicities (nausea, vomiting, and diarrhea), rash, chronic pain, and
central nervous system (CNS) toxicities [42–46]. The other factors influencing HIV-1 treat-
ment in particular include continued viral transmission among people who cannot reach
testing or treatment due to barriers such as stigma, discrimination, lack of confidentiality,
or gender-based disadvantages [13,47,48]. Mother-to-child transmission during pregnancy
and breastfeeding is also another point that caution is required for the implementation
of cART to enhance safety of mothers with HIV-1 infection and their exposed fetuses
and children [49].
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The current treatment is lifelong, which paves the way for HIV-1 drug resistance and
poor medication compliance. Therefore, to develop new inhibitors with novel mechanisms
of action is crucial. This review focuses on the evaluation of pearls and pitfalls and updates
in the use of approved anti-HIV-1 drugs and bona fide approaches for HIV-1 eradication.

2. United States Food and Drug Administration (FDA)-Approved Drugs for HIV-1 Treatment
2.1. Reverse Transcriptase Inhibitors

Reverse transcriptase enzyme has two distinct activities: as a DNA polymerase, which
catalyzes the synthesis of a double-stranded proviral DNA from a single-stranded viral
RNA, and as an endonuclease, which exerts RNase H activity by hydrolyzing the RNA
strand in an RNA/DNA hybrid. The HIV-1 reverse transcriptase enzyme incorporates
66 kDa (p66) and 51 kDa (p51) subunits. The p66 subunit takes after the closed right hand
with palm, fingers, thumb, and connection subdomains and contains the polymerase and
the RNase H active sites [50–53].

The non-nucleoside reverse transcriptase inhibitor (NNRTI) site is linked with the palm
subdomain to a great extent and is far from the polymerase active site; thus, it serves as a
non-competitive inhibitor, in contrast to nucleoside reverse transcriptase inhibitors (NRTIs),
which compete at the active site. Therefore, non-nucleoside reverse transcriptase inhibitors
(NNRTIs) constitute compounds possessing diverse chemical structures, whereas NRTIs
are pyrimidine/purine (nucleoside) or nucleotide analogues. The first-generation NNRTIs
nevirapine (Viramune®) (Figure 3) and delavirdine (Rescriptor®) (Figure 3) are prone to be
affected by single point mutations. Delavirdine was discontinued due to severe adverse
effects and nevirapine, a derivative of dipyridodiazepinone, is not recommended anymore
due to side effects such as hepatotoxicity and rash, though it is a potent and easy-to-take
antiretroviral drug [54]. On the other hand, efavirenz (Sustiva®) (Figure 3) is stronger
against drug resistance mutations, but side effects such as neuropsychiatric disorders and
poor liver function were manifested. Efavirenz was one of the first options appropriate for
once-daily use [55,56]. Etravirine (Intelence®) (Figure 3), rilpivirine (Edurant®) (Figure 3),
diarylpyrimidine derivatives, and doravirine (Pifeltro®) (Figure 3) are second-generation
inhibitors. Etravirine is an alternative option for HIV-1-infected people with first-generation
NNRTI resistance, but its bitter taste and twice-daily dosing impede its clinical use [57].
Rilpivirine was demonstrated to be potent with less off-target effects in HIV-1-infected
patients compared to efavirenz [58].

Rilpivirine-containing regimens are expedient in various terms, such as a single-tablet
formulation with tenofovir and emtricitabine (NRTIs). Rilpivirine is a component of co-
formulations (Complera®, Odefsey®) with emtricitabine (Figure 3) along with tenofovir
diproxil fumarate (Figure 3) or tenovofir alafenamide (Figure 3) [59,60]. Since the bioavail-
ability of rilpivirine is boosted under acidic conditions, it must not be administered with
proton pump inhibitors concomitantly. Cytochrome p450 family 3 subfamily A (CYP3A)
enzyme inducers such as anticonvulsants (carbamazepine, phenobarbital, and phenytoin)
and antimycobacterial agents (rifampicin) may cause lower anti-HIV-1 activity [58]. Do-
ravirine, a pyridone derivative, exhibited a broad spectrum of antiviral activity towards
clinically relevant mutant viruses. It was also found to be beneficial with improved pharma-
cokinetic parameters for alternative use in patients, with the advantages of less propensity
for resistance and toxicity. Doravirine is on the market as a fixed-dose combination tablet
with lamivudine and tenofovir disoproxil fumarate (Delstrigo®). This combination requires
attention for patients with HIV-1–hepatitis B co-infection [61–64].

HIV-1 NRTIs mimic and compete with natural deoxynucleotide triphosphates (such
as dTTP, dCTP, dGTP, and dATP) for incorporation at the polymerase active site. Most
approved NRTIs with a missing hydroxy group at the 3′ position are incorporated into
proviral DNA as chain terminators by reverse transcriptase since they are substrates for
reverse transcriptase, which converts them to the corresponding 5′-triphosphates. Nucleo-
side analogues of NRTIs are phosphorylated to achieve their active di- or tri-phosphate
anabolites by host enzymes within a cell. However, tenofovir disoproxil fumarate (Figure 2),
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a nucleotide analogue, is found in a monophosphate form and two additional phosphory-
lation steps are required to run into its active form. Since the common structure of NRTIs is
a trigger for the development of resistance to NRTIs, they are used in combination with
other NRTIs and NNRTIs rather than as a single agent nowadays [30,65–68].
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NRTIs are the key backbones of combination regimens according to the recent guide-
lines. Zidovudine (Retrovir®) (Figure 3), the first approved anti-HIV-1 drug, and stavudine
(Zerit®) (Figure 3) are thymidine analogues. The exploration of zidovudine as an anti-HIV
agent is also the first example of drug repositioning in the history of medicinal chem-



Int. J. Mol. Sci. 2024, 25, 3659 6 of 30

istry, as it was initially developed as an anticancer agent [69]. The use of stavudine is not
recommended by the WHO, as it increases the lipoatrophy risk, along with other side
effects. Lamivudine (Epivir®) (Figure 3), zalcitabine (Hivid®) (Figure 3), and emtricitabine
(Emtriva®) (Figure 3) are cytosine analogues. Renal dysfunction is a challenging point for
the use of lamivudine and the dosage must be adjusted for patients with renal impairment.
Lamivudine was licensed for the treatment of HIV-1 and hepatitis B virus infections in 1995
and 1998, respectively. Lamivudine, a key component in HIV-1 treatment, is highly recom-
mended in almost all first-line and a majority of second-line combination regimens thanks
to its remarkable efficacy and safety profile. The combinations of tenofovir disoproxil
fumarate with lamivudine (Cimduo®) or emtricitabine (Truvada®) are also recommended
as a first-line treatment for patients co-infected with HIV-1 and hepatitis B virus [70].

Emtricitabine received FDA approval in 2003 for use in anti-HIV-1 treatment. Emtric-
itabine, the most commonly prescribed anti-HIV-1 drug, is a fluorinated derivative of
lamivudine, and they share the same sugar configuration [71]. Zalcitabine is not recom-
mended for use in many countries due to high mitochondrial toxicity. Didanosine (Videx®)
(Figure 3) and abacavir (Ziagen®) (Figure 3) are adenosine and guanosine analogues, re-
spectively. Didanosine is not prescribed, as it has toxicity, efficacy, formulation, and drug
interaction issues. Abacavir has a higher risk of cardiovascular diseases. Therefore, aba-
cavir is also available in coformulated tablets that contain other antiretrovirals such as
lamivudine (Kivexa®, Epzicom®), lamivudine plus dolutegravir (INSTI) (Triumeq®), and
lamivudine plus zidovudine (Trizivir®) [72]. Given that tenofovir displays poor cellular
absorption and oral bioavailability owing to the negative charges on the phosphonate
moiety, the fumarate salts of tenofovir disoproxil (Viread®) and tenofovir alafenamide
(Figure 3) are prepared as tenofovir prodrugs. Tenofovir alafenamide (Vemlidy®), which
was developed to deal with the renal and bone toxicity of tenofovir disoproxil fumarate,
has superior potential and safety properties over other NRTIs. Moreover, HIV-1 treatment
guidelines mainly recommend its combination with emtricitabine. On the other hand, teno-
fovir disoproxil fumarate/emtricitabine is the recommended oral pre-exposure prophylaxis
regimen for all populations at risk [65,73–76].

2.2. Protease Inhibitors

Protease enzymes drive the catalysis of the hydrolysis of polypeptide bonds. The
HIV-1 protease is a homodimeric aspartyl protease, which can cleave HIV-1 precursor
protein or polyprotein involving structural proteins (Gag proteins: matrix (MA), CA,
nucleocapsid (NC), p6, and enzyme products) and viral enzymes (Pol proteins: protease,
reverse transcriptase, RNase H, and integrase). The Gag and Gag-Pol viral polyprotein
are associated with efficient viral assembly, genome packaging, formation of immature
viral particles, budding, release from the cell, and maturation in order to infect new host
cells. The timing of the release of HIV-1 protease from the Gag-Pol polyprotein is crucial
for accomplished maturation process and, consequently, HIV-1 infectivity [77–81].

The active site of protease is a catalytic Asp-Ser-Gly triad that enables the nucleophilic
attack of water onto the scissile amide bond of natural substrate for successful cleavage.
The protease inhibitors, non-cleavable transition state isosteres, can compete with the
natural substrate by a functional group acting as a scissile amide bond mimetic [82,83].
The protease inhibitors were initially developed based on a “structure-informed” strategy
aiming at HIV-1 protease inhibition and successive inhibition of HIV-1 replication [84]. The
first protease inhibitors, including saquinavir (Invirase®) (Figure 4), ritonavir (Norvir®)
(Figure 4), indinavir (Crixivan®) (Figure 4), nelfinavir (Viracept®) (Figure 4), amprenavir
(Agenerase®) (Figure 4), and fosamprenavir (Lexiva®) (Figure 4), shared some similar
structural properties and binding patterns, resulting in possible cross-resistance and com-
mon severe side effects. Some pharmacokinetic challenges were also encountered with
the first HIV-1 protease inhibitors, such as poor oral bioavailability, extensive binding to
plasma proteins, and rapid elimination [85]. The second generation of protease inhibitors,
including lopinavir (Kaletra®), atazanavir (Reyataz®), tipranavir (Aptivus®), and darunavir
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(Prezista®), are currently recommended for use as second-line regimens for patients with
HIV-1 who have received no benefit from the first-line therapy with integrase and reverse
transcriptase inhibitors. They are available in a fixed-dose regimen in combination with
emtricitabine and tenofovir [86].
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Lopinavir (Figure 4) in combination with ritonavir was approved by the FDA in 2004
for the treatment of HIV infections. Ritonavir promotes the increased bioavailability of
lopinavir as a pharmacoenhancer. Atazanavir (Figure 4), a hydroxyethyl hydrazine aza-
peptide inhibitor, is a well-tolerated effective treatment for HIV-1 patients with an extended
half-life and fewer side effects and resistance features [83]. Atazanavir is also reported
to alleviate competitive bilirubin binding and the relative possible risk of cardiovascular
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disorders [87]. Tipranavir (Figure 4) is a sulfonamide-based dihydropyrone revealing a
different binding profile than the other HIV-1 protease inhibitors, making it stronger for the
development of resistance. Tipranavir was found to be effective for both naïve and highly
experienced antiretroviral treatment patients, but its therapeutic effect is limited due to
some harsh unwanted effects, including intracranial hemorrhage and hepatotoxicity [88,89].
Darunavir (Figure 4) is a small molecule that is capable of impeding the dimerization of
HIV protease and its catalytic activity. Darunavir is effective for the treatment of both naïve
and experienced HIV-1-infected patients. Darunavir has a high genetic barrier to resistance
development and favorable safety profile [90,91].

2.3. Entry Inhibitors

For the entry process, all enveloped viruses perform a multistep fusion machinery in
which their lipid bilayers and the host cell membrane reunite. The HIV-1 Env glycoprotein
(gp160) is cleaved to form a gp120-gp41 heterodimer. The three surface gp120 subunits that
are non-covalently bound to three transmembrane gp41 subunits constitute a functional
trimeric envelope spike on the virion surface, which is essential for host cell recognition
and membrane fusion. In the attachment process, gp120 attaches to the primary receptor
CD4 antigen on the host cell. This attachment results in structural changes in gp120 and
it interacts with a co-receptor (CCR5 or CXCR4). Co-receptor binding triggers the fusion
mediated by gp41. During the fusion, the gp41 forms a stable six-helix bundle involving
N-terminal heptad repeat (NHR) coiled coils and three C-terminal heptad repeat (CHR)
helices packing into the hydrophobic NHR grooves as antiparallel [92–97].

The HIV-1 entry inhibitors were developed based on three categories: gp120-CD4
binding inhibitors, gp120-co-receptor binding inhibitors, and fusion inhibitors. Enfuvirtide
(Fuzeon®), the first approved peptide HIV-1 inhibitor, acts as an HIV-1 fusion inhibitor
binding to a region of the gp41 of HIV-1. Enfuvirtide was found to be effective in clinical
trials against resistant HIV-1 strains. The disadvantages of the treatment with enfuvirtide
are its short half-life, which needs long-term application, uncomfortable subcutaneous
administration that causes injection-site reactions, and high prices [98,99].

Maraviroc (Selzentry®) (Figure 5) is the first-in-class and only FDA-approved drug
as an inhibitor of CCR5 for the treatment of R5-tropic HIV-1 infected patients. It was
discovered as the end product of a high-throughput screening and medicinal chemistry
program. Maraviroc was found to be effective at disrupting gp120-CCR5 binding and
subsequently, membrane fusion events necessary for HIV-1 entry into cells. Maraviroc
showed potent anti-HIV-1 activity, a low level of resistance, favorable pharmacological
properties, and mild-to-moderate hepatic and renal disorders [100–103].
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Ibalizumab (Trogarzo®) is the first humanized IgG4 monoclonal antibody and CD4-
mediated post-attachment inhibitor for the treatment of HIV-1 infection. Ibalizumab shows
its effects by binding to the D2 immunoglobulin domain of cell-surface glycoprotein CD4.
Ibalizumab, in combination with other antiretroviral(s), was approved by the FDA in 2018
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for the treatment of adults with multidrug-resistant HIV-1 infection. Ibalizumab is a valu-
able option with a high potency and a favorable pharmacokinetic profile, notwithstanding
the necessity of additional studies and long-term post-marketing data [104–108].

Fostemsavir (Rukobia®) (Figure 5) was approved by the FDA in 2020 for the treat-
ment of multidrug-resistant HIV-1 infection of heavily treatment-experienced adults whose
previous HIV-1 therapy was unsuccessful owing to resistance, intolerance, or safety con-
siderations. Fostemsavir, a phosphonooxymethyl prodrug of temsavir, is converted to its
active metabolite by alkaline phosphatase. Temsavir prevents attachment and subsequent
entry into the host cell via binding to gp120, holding gp120 in the conformational state, and
hampering the initial interaction with surface receptors on CD4+ cells. Fostemsavir showed
good efficacy and a safety profile in patients with multidrug-resistant HIV-1 infection.
Moreover, it revealed no in vitro cross-resistance with other classes of entry inhibitors
such as ibalizumab, maraviroc, or enfuvirtide. Fostemsavir can also be used for HIV-1
CCR5/CXCR4 tropism. Possible drug–drug interactions can occur during coadministration
with strong CYP3A inducers [109–113].

2.4. HIV-1 Integrase Inhibitors

The HIV-1 intasome is a massive nucleoprotein complex containing the integrase
protein and the ends of the viral DNA obtained by reverse transcription. The integration
process is crucial for viral replication and HIV-1 integrase strand-transfer inhibitors (INSTIs)
target the intasomes to halt the integration and subsequent replication processes by binding
to the catalytic site of integrase. This catalytic site of integrase is engaged with covalent
bonds with the phosphodiester backbone of DNA through divalent cations, metals such as
Mg2+, required for integrase catalytic reactions. The INSTIs demonstrate a familiar mode
of action, whereas they generally possess distinct pharmacokinetic profiles, resulting in
different dose frequency, combinations, and drug–drug interactions. INSTIs are current
recommended components of frontline and drug-switch cART formulations [114–117].

Raltegravir (Isentress®) (Figure 6) and elvitegravir (Vitekta®) (Figure 6) are first-
generation INSTIs. Raltegravir is the first approved INSTI blocking the formation of the
covalent bonds. Patients with HIV-1 have experienced a well-tolerated, safe, and potent
antiretroviral treatment with raltegravir-based regimens. One of the advantages of ral-
tegravir is glucuronidation metabolism instead of hepatic metabolism, leading to fewer
observed drug–drug interactions [118,119]. Elvitegravir was then designed and obtained
bearing a coplanar monoketo acid motif in 4-quinolone-3-carbocyclic acid as a bioisostere
of a diketo acid motif, of which raltegravir also contains a structural similar moiety, with a
pyrimidinone carboxamide [120]. A fixed-dose combination of elvitegravir with cobicistat,
emtricitabine, and tenofovir disoproxil fumarate (Stribild®) and tenofovir alafenamide
instead of tenofovir disoproxil fumarate (Genyova®) was approved for the treatment of
HIV-1 infection. Dolutegravir (Tivicay®) (Figure 6), cabotegravir (Vocabria®) (Figure 6),
and bictegravir (Figure 6) are second-generation INSTIs. Based on the reports of current
guidelines, the combinations of bictegravir, dolutegravir, or raltegravir plus two NRTIs
are recommended as initial therapies [74]. Dolutegravir and cabotegravir are bicyclic car-
bamoyl pyridone analogs using a two-metal chelation model of the integrase catalytic active
site [121]. Dolutegravir exhibited a significant activity against HIV-1 isolates with a higher
barrier to resistance development compared to raltegravir and elvitegravir. Dolutegravir
has several advantages, including favorable pharmacokinetic properties such as a long half-
life and once-daily dosing without the need of a pharmacokinetic enhancer or commitment
to meal time. The fixed-dose combination of dolutegravir with lamivudine in a single-tablet
regimen (Dovato®) is confirmed to be effective and well-tolerated for adolescents and
adults with HIV-1 infection [122–124]. Dolutegravir is also highly recommended by the
WHO in the initial therapy combined with NRTI or NNRTI and for use in pregnant women
and women with child-bearing potential in second-line treatment. Dolutegravir plus either
tenofovir disoproxil fumarate/emtricitabine or tenofovir alafenamide/emtricitabine is
recommended as a safe option during pregnancy [74,114,125].
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The oral tablet form of dolutegravir is available on the market and other long-acting
injectables, implants, nasal, and vaginal formulations were found to be beneficial for
HIV-1 treatment in preclinical studies [126]. Cabotegravir received approval from the
FDA for HIV-1 pre-exposure prophylaxis as the first long-acting injectable medication. It
was announced that it is safe and effective for people carrying important HIV-1 infection
risk [127–130]. Bictegravir, structurally derived from dolutegravir, especially inhibited
HIV-1 integrase with an IC50 value of 7.5 nM compared to dolutegravir and elvitegravir
with IC50 values of 7.4 nM and 8.4 nM, respectively [131,132]. The advantage of bictegravir
over cabotegravir and dolutegravir is its integration into fixed-dose combinations for higher
potency and less drug resistance [133].

2.5. CA Inhibitor

Lenacapavir (GSK-6207) (Sunlenca®) (Figure 7), developed by Gilead Sciences Inc.,
was approved by the FDA (2022) for clinical use in combination with other antiretrovi-
ral(s) in heavily treatment-experienced patients with multidrug-resistant HIV-1 infection.
Lenacapavir (GSK-6207), an indazole derivative, is a long-acting first-in-class approved CA
inhibitor. Based on its high lipid solubility and permeability, lenacapavir can be admin-
istered orally with an up-to-weekly dosing interval or bi-annual subcutaneous injectable
solution. As a CA inhibitor, lenacapavir selectively binds to the hexamer subunits of the
HIV-1 CA protein, which is generated by the cleavage of the Gag by viral protease. Upon
targeting the CA protein, lenacapavir enables the inhibition of HIV-1 assembly, appropriate
viral CA generation, and nuclear import of viral DNA [134–139].

Lenacapavir showed a potent in vitro anti-HIV-1 activity against HIV-1-infected MT-4
cells with a mean half-maximum effective concentration (EC50) of 105 pmol/L. Lenaca-
pavir manifested a well-tolerated and safe profile with injection site reactions the most
frequent off-target event in clinical trials. In a phase 1b study, substantial antiviral ac-
tivity was observed with lenacapavir. In the phase 3 CAPELLA trial (NCT04150068),
lenacapavir was found to reduce HIV-1 viral load in patients with multidrug-resistant in-
fection. A phase 2 study sponsored by Gilead Sciences, Inc. is also ongoing in virologically
suppressed people with HIV-1 for investigating the safety and efficacy of lenacapavir in
combination with islatravir (an investigational drug and a first potential drug of a new
class entitled nucleoside reverse transcriptase translocation inhibitors (NRTTIs)) (Figure 7)
(NCT05052996) [140–145].
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No cross-resistance is reported for lenacapavir with approved antiretroviral drugs.
The concomitant use of lenacapavir with strong inhibitors of CYP3A and P-glycoprotein is
contraindicated due to the possible low plasma levels of lenacapavir, consequent antiviral
activity loss, and the emergence of viral resistance [141,143,145].

2.6. Pharmacokinetic Enhancers

In particular, HIV-1 protease inhibitors are prone to metabolize rapidly by CYP3A
enzyme predominantly, which can lead to low systemic exposure. Ritonavir, a strong
approved HIV protease inhibitor, was found to boost the pharmacokinetics of CYP3A
substrate antiviral drugs, including elvitegravir and maraviroc. After the discovery of
the CYP3A-inhibitory potency of ritonavir, the strategy of enhancing the pharmacokinetic
profile of antiretroviral agents was followed due to the drawbacks of ritonavir use, such as
lipodystrophy, hyperlipidemia, insulin resistance, and other undesired drug interactions.
Therefore, researchers optimized the chemical structure of ritonavir starting with the re-
moval of the key hydroxyl group and following intensive structure–activity relationship
studies and obtained cobicistat (Figure 8), which is more soluble than ritonavir, making
coformulation easier. Cobicistat revealed no activity against primary HIV-1 isolates and
HIV-1 protease, whereas cobicistat selectively inhibited CYP3A enzyme with minimal cyto-
toxicity. Cobicistat (Tybost®) received its approval from the FDA in 2014 for the treatment
of HIV-1 infection. Cobicistat is a pharmacoenhancer of the HIV-1 protease inhibitors
atazanavir and darunavir in adults with HIV-1 infection. A fixed-dose combination of
cobicistat with darunavir, emtricitabine, and tenofovir alafenamide (Symtuza®) is the first
protease-inhibitor-based single-tablet regimen approved by the FDA. Cobicistat is also
available in two drugs in one pill combinations with darunavir (Prezcobix®) and atazanavir
(Evotaz®). The serum creatinine levels may be augmented with cobicistat use, so caution is
required with patients showing kidney problems [90,91,146–149].
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2.7. Standard Two-Drug, Three-Drug, and Four-Drug Regimens and Fixed-Dose Combinations
as cART Options

Functional antagonism, boosted drug toxicity, and synergistic/additive effects are ma-
jor possible consequences of combination therapy. Combination therapy has the potential
to cause adverse effects due to drug–drug interactions, whereas the decrease in individual
drug doses in synergistic drug combinations leads to reduced drug toxicities. Targeting
multiple pathways responsible for the disease using different classes of potential drugs
contributes to an increase in desired activity [41].

The administration of fixed-dose combination therapies and single-tablet regimens for
HIV-1 treatment have enabled dramatic improvements such as attenuation of the pill bur-
den, prevention of drug resistance, and improved patient compliance. The combination of
lamivudine and zidovudine (Combivir®) is the first fixed-dose FDA-approved combination
therapy containing two NRTIs (in 1997) for HIV-1 infected people followed by emtric-
itabine and tenofovir disoproxil fumarate and by abacavir sulfate and lamivudine [150,151].
On the other hand, the combination of dolutegravir and rilpivirine (Juluca®) is the first
(in 2017) FDA-approved fixed-dose two-drug single-tablet regimen from two different
classes of cART (INSTIs and NNRTIs, respectively) for the treatment of adults with HIV-1
infection [152,153].

The introduction of protease inhibitors to combination therapy made a huge impact
on the management of HIV-1 infection. The current guidelines recommend three-drug
combinations with a dual-NRTI backbone and a core drug from the boosted protease
inhibitors such as darunavir/ritonavir, integrase inhibitors, or NNRTIs for the initial HIV-1
treatment. Bictegravir, dolutegravir, elvitegravir, and raltegravir (from the INSTIs) and
rilpivirine and efavirenz (from the NNRTIs) are usually in the frame for the initial three-
drug regimen. Tenofovir disoproxil fumarate plus emtricitabine (in fixed-dose combination)
and abacavir plus lamivudine (in fixed-dose combination) are the most preferred NRTIs
as a backbone [36,38]. The triple-drug regimen of bictegravir, emtricitabine, and tenofovir
alafenamide (Biktarvy®) received approval from the FDA in 2018 for the treatment of
HIV-1 infected adults. Weight gain, which could result in a high risk of diabetes and
cardiovascular disorders, was observed as a disadvantage of this treatment regimen. As
HIV-1 and tuberculosis co-infection was frequently encountered, this regimen was found
to be safe to be administered along with isoniazid and rifapentine, in contrast to rifampicin,
as it induced CYP3A and P-glycoprotein significantly, which could lead to drug–drug
interactions [133,154,155].

However, the three-drug regimen is also questioned due to the toxic effects and cross-
resistance stemming from the NRTI class. Therefore, dual-therapy regimens stand out as a
plausible alternative as a first-line therapy in treatment-naive patients, who cannot tolerate
three-drug combination therapy, mainly due to toxicity issues of tenofovir disoproxil
fumarate and abacavir. On the other hand, four-drug regimens were considered to obtain
benefits from the superior features of INSTIs and HIV-1 protease inhibitors, including swift
viral suppression and a higher genetic barrier to resistance, respectively. However, no
significant differences in safety or efficacy as well as toxicity or adherence were observed
with a four-drug regimen compared to a three-drug regimen [36,38,39,151,156–159].

Long-acting formulations such as implants, rings, and nanoformulations are also fu-
ture hallmarks of anti-HIV-1 drug development. The co-packaged cabotegravir (extended-
release injectable suspension) and rilpivirine (extended-release injectable suspension)
(Cabenuva®) is the first FDA-approved injectable complete regimen for adults with HIV-1
infection [160,161].

3. The Other Anti-Gag Compounds

The HIV-1 Gag coordinates all major steps of the assembly of viral particles and it is
the only viral protein required to initiate and complete the budding and release of virus-like
particles (VLPs) from the plasma membrane [162,163]. The recent discovery and approval
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of lenacapavir pointed out that targeting Gag leads to the inhibition of HIV-1 assembly,
budding, release, and maturation steps and consequent infection of other immune cells.

3.1. MA Inhibitors

The HIV-1 Gag incorporates MA, CA, NC, and p6 domains, in addition to two spacer
peptides, SP1 and SP2, which are located at the CA/NC and the NC/p6 junctions, re-
spectively (Figure 9). The Gag–Gag (multimerization), Gag–membrane, and Gag–RNA
interactions are crucial for assembly, mediated by the CA, MA, and NC domains, respec-
tively. The minority of Gag molecules leads to the assembly of a large number of Gag
molecules recruiting a single viral RNA dimer to the plasma membrane. The MA domain
anchors Gag into the plasma membrane through electrostatic and hydrophobic interactions,
but binding is mediated predominantly by dynamic electrostatic interactions. The MA
domain is myristoylated on its N terminus and forms ionic interactions with acidic polar
heads of phosphatidylinositol-(4,5)-bisphosphate (PI(4,5)P2) (Figure 10) through its highly
basic region (conserved stretch of lysine and arginine residues). The MA domain is also
capable of binding RNA just like NC domain. The specificity of MA binding to PI(4,5)P2
might be attributed to MA-RNA binding because this binding prevents Gag from interact-
ing with other lipid interfaces until it reaches the plasma membrane. It was also reported
that MA presented a hexamer-of-trimers arrangement for Env incorporation by interacting
with the cytoplasmic tail of the Env gp41 protein and some residual mutations hinder this
trimeric formation and subsequent Env incorporation for successful virus particle assembly
(a stable immature Gag lattice) [162–174].
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The NC domain, comprising two zinc-finger motifs, contributes to Gag multimer-
ization, binds signal Ψ (ΨRNA) specifically, and packages genomic viral RNA. The p6
domain deploys the cellular endosomal sorting complex required for ESCRT machinery, a
key component for the release of the budding viral particle from the cell surface [175–178].

Our research group developed a new surface plasmon resonance (SPR)-based tech-
nique in 2010 to detect the binding affinity between Gag/MA binding and various phospho-
inositide derivatives containing a different number of phosphates and their regioisomers
with or without an acyl chain. We identified that both the divalent phosphate groups
and the acyl chains of PI(4,5)P2 [164] were essential for strong binding to MA [179]. Then,
we carried out SPR analysis of the MA binding of highly phosphorylated inositol phos-
phates and confirmed that inositol hexakisphosphate (IP6) (Figure 10) bound to MA 10-fold
strongly than IP3 (Kd = 272 µM) (Figure 10) with a dissociation constants (Kd) value of
25.7 µM and comparable to PI(4,5)P2 derivative (1) (Kd = 16.9 µM) (Figure 10), pointing out
the importance of the presence of more phosphate groups in the inositol ring. Strikingly, the
dissociation constant of IP6 was found to be concordant with the PI(4,5)P2 derivative due to
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the absence of the diacylglycerol moiety in its chemical structure. This outcome encouraged
us to design new phosphoinositides carrying a diacylglycerol moiety in the IP6 framework.
Among the new phosphoinositides, compound 2 (later DL-Heptanoylphosphatidyl Inositol
Pentakisphosphate, DL-HIPPO) revealed a remarkable affinity (Kd = 0.25 µM), which was
70-fold and 100-fold stronger than compound 1 and IP6, respectively [180]. In a contin-
uation of our work, the potent isomer L-HIPPO (Figure 10) was separated initially and
Kd for MA binding of L-HIPPO was found to be 0.18 ± 0.08 µM [181]. Then, we recorded
the diffraction patterns of MA-IP6 microcrystals beyond 3.5 Å resolution using X-ray free-
electron laser (XFEL) study [182]. We elucidated three high-resolution crystal structures of
the MA domain in complex with IP6 molecules, a part of L-HIPPO (PDB IDs: 7E1I, 7E1J,
and 7E1K) [183], by both synchrotron cryo X-ray crystallography and ambient-temperature
serial femtosecond X-ray crystallography (SFX) at an XFEL. We determined the important
residues in IP6 binding and confirmed that the binding site of MA-IP6 is distinct from
the PI(4,5)P2-binding site and IP6 was found to be important in the oligomerization of
MA [183]. Afterwards, we carried out computational studies for new rationally designed
L-HIPPO derivatives via Maestro software (Schrödinger Release 2016-2) in the MA do-
main (PDB IDs: 7E1I, 7E1J, and 7E1K) and revealed that benzene-inserted compounds
presented a more favorable binding profile than L-HIPPO. Therefore, we applied the same
docking procedure to a large library of aromatic groups carrying L-HIPPO derivatives
and identified 3,4-dihydroxyphenyl and 3-methoxy-4-hydroxyphenyl carrying compounds
as the most potent L-HIPPO derivatives for MA binding with optimum pharmacokinetic
properties [184].
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In other studies, Zentner et al. 2013 [185] developed compound 7 (Figure 11) using
a virtual screening method. They further reported that this compound showed potential
anti-HIV-1 activity with IC50 values of 7.5–15.6 µM. It was also determined that compound 7
directly interacted with HIV-1 MA, competing with PI(4,5)P2 for MA binding and blocking
the generation of new viruses.
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Alfadhli et al. 2013 [186] targeted MA-RNA binding, since RNA binding might protect
MA from interacting with other cellular membranes before Gag delivery to the cell surface.
They determined four compounds, including three thiadiazolanes (TD 1–3) (Figure 11), that
compete with RNA for MA binding. Although thiadiazolanes were found to halt HIV-1
replication, they suffered from toxicity.

3.2. Maturation Inhibitors

The viral protease cleaves Gag and Gag-Pol polyprotein into their mature subunits
over the course of the maturation process, leading to dramatic structural rearrangements
within the particle. In the final maturation step, the cleavage of six-helix bundle structure
by protease sorts out CA from the CA-SP1 cleavage site, disrupts the immature lattice, and
frees CA. Then, CA monomers build up the hexameric and pentameric complex of the
mature core, which is crucial for maturation and infection. The CA monomers incorporate
the N-terminal (CA-NTD) and the C-terminal (CA-CTD) domains, which are separated
by a short flexible linker. IP6 interacts with the six-helix bundle structure and stabilizes
the immature Gag lattice. IP6 is also very crucial for the assembly of CA into the mature
fullerene-like cone lattice [187–192].

Developing maturation inhibitors, which target the cleavage of the SP1 peptide from the
CA-SP1 maturation intermediate, has been a bona fide approach to HIV eradication [193].

Fujioka et al. 1994 [194] isolated betulinic acid (Figure 12) and platanic acid (Figure 12)
from Syzigium claviflorum and reported that both of them exhibited HIV-1 replication in-
hibitory activity against H9 lymphocyte cells. They also reported that dihydrobetulinic
acid inhibited HIV replication in same cells with EC50 and IC50 values of 0.9 µM and 13 µM,
respectively. Then, the same research group prepared betulinic acid and dihydrobetulinic
acid derivatives and reported that 3-O-(3′,3′-dimethylsuccinyl)betulinic acid (later called
DBS, YK-FH312, PA-457, Bevirimat) (Figure 12) exhibited the most potent anti-HIV activity
in acutely infected H9 lymphocytes [195]. Kanamoto et al. 2001 [196] demonstrated the
virus-induced cytopathic effects of bevirimat in HIV-1IIIB-infected MT-4 cells with an
EC50 value of 0.011 µg/mL and a CC50 value of 14.03 µg/mL. Further mechanistic effects
suggested that the formation of viral proteins continued, though the virion could not be
released, pointing out that bevirimat affected viral maturation. On the other hand, Li et al.
2003 [197] showed that bevirimat inhibited the replication of wild-type and drug-resistant
HIV-1 isolates along with the inhibition of conversion of CA precursor to mature CA. Sub-
sequent research studies also confirmed that bevirimat prevented the cleavage of SP1 from
the C-terminus of CA, leading to defective core condensation and inhibition of matura-
tion [198–202]. Although phase I and II studies of bevirimat indicated that bevirimat posed
a well-tolerated profile and alleviated the viral load in a dose-dependent manner without
drug resistance mutations [203], a later study evaluating the baseline susceptibility to bevir-
imat found that diminished bevirimat sensitivity was correlated with naturally occurring
polymorphisms at 6–8 positions in Gag SP1 [204]. Another bevirimat derivative was pre-
pared and evaluated for anti-HIV effects. Compound 16 (Figure 12) was found to be more
effective with a higher hydrosolubility compared to bevirimat. They also characterized a
direct interaction of compound 16 and the CA-SP1-NC domain [205]. Dang et al. 2013 [206]
synthesized new bevirimat analogues to cope with the resistance issues of bevirimat and
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evaluated bevirimat resistant HIV-1 variants. Compound 6 (Figure 12) was defined as the
most potential analogue against wild-type virus and the bevirimat-resistant NL4-3/V370A
variant with IC50 values of 0.01 µM and 0.16 µM, respectively. Another bevirimat analogue,
GSK3532795 (BMS-955176) (Figure 12), was developed as a potent CA/SP1 cleavage in-
hibitor, revealing a wide range of antiviral effects including V370A- and ∆V370-containing
polymorphic viruses with a low serum binding [207–209]. In a phase IIa trial, GSK3532795
was generally found to be safe and well-tolerated and demonstrated a >1 log10 reduction
in viral RNA [210]. Gastrointestinal intolerability and treatment-development resistance
were detected with GSK3532795 associated with an NRTI backbone in a randomized phase
IIb trial [211]. Chroback et al. 2019 [212] synthesized and investigated phosphate and phos-
phonate analogues of bevirimat for anti-HIV-1 activity. According to the results, compound
14a (Figure 12) demonstrated similar and more selective anti-HIV-1 activity compared
with bevirimat (IC50 = 0.03 ± 0.009 µM; Selectivity Index (SI) = 967) with an IC50 value of
0.02 ± 0.01 µM and SI value of 3450). They confirmed by computational studies that the
phosphonate group contributed to strong interactions of compound 14a in CTD of CA-SP1.
Dicker et al. 2022 [213] developed GSK3640254 (GSK’254) (Figure 12) through a medicinal
chemistry approach. They showed that GSK’254 displayed remarkable anti-HIV-1 effects
towards a panel of HIV-1 clinical isolates, with a mean EC50 value of 9 nM. In phase I
studies, GSK’254 was confirmed to possess a favorable clinical potential alone or in com-
bination with tenofovir alafenamide/emtricitabine or dolutegravir. In a phase IIa clinical
study, GSK’254 blocked cleavage of p25 in a range of polymorphic HIV-1 Gag VLPs. Phase
IIb trials are currently ongoing for GSK’254 (NCT04493216 and NCT04900038).

N’-(3-chloro-4-methylphenyl)-N-{2-[({5-[(dimethylamino)-methyl]-2-furyl}-methyl)
-sulfanyl]ethyl}urea) (CAP-1) (Figure 13) decreased infectivity in latent infected U1 cultures
and MAGI cells. Moreover, it was reported that CAP-1 inhibited no early-phase events,
while it inhibited late-phase viral events [214]. In the continuation of the research to de-
termine the mechanism of CAP-1 inhibition, a combination of X-ray crystallography and
NMR spectroscopy were performed, which indicated the displacement of Phe32 in CAP-1
binding and put emphasis on the significant role of a Phe32 conformational change during
normal CA assembly [215].

During the journey to exploration and optimization of new benzodiazepines and
benzimidazoles, researchers reached for compounds with potent antiviral activity against
wild-type and drug-resistant HIV-1 and both series of inhibitors were able to bind to the
N-terminal domain of CA. Then, authors reported the binding of a novel CA-assembly in-
hibitor targeting an authentic inhibitory site on CA-NTD. The use of compound 1 (Figure 13)
as a tool enabled ternary co-crystallizations with CA-NTD [216–220].

In another study, a CA assembly inhibitor (CAI), a 12-mer peptide (sequence: IT
FEDLLDYYGP-amide), was found to be embedded in a conserved hydrophobic groove and
changed the CA dimer interface (CAI binding site), indicating a new target for anti-HIV-1
drug discovery. This peptide was identified as the first known immature HIV-1 assem-
bly inhibitor [221]. The authors later expanded the study and designated i, i + 7 stapled
peptides and identified NYAD-36 (sequence: Ac-ISF-R8-ELLDYY-S5-ESGS-amide), NYAD-
66 (sequence: Ac-ISF-R8-ELLDYY-S5-ED-amide), and NYAD−67 (sequence: Ac-ISF-R8-
EWLQAY-S5-EDE-amide) as three potent inhibitors that could bind to CA robustly and
collapse the formation of mature-like particles [222].

Another new small-molecule inhibitor that targeted virion maturation was introduced
from an HIV-1 antiviral screen. PF-46396 (Figure 13), a lead molecule, exhibited potential
anti-HIV-1 activity. This compound inhibited the processing of CA-SP1, giving rise to
the aggregation of CA/SP1 precursor proteins and maturation inhibition [223]. The same
research group then reported PF-3450074 (PF74) (Figure 13) to be effective against all strains
of HIV-1 tested with median EC50 values of 0.207 µM (range 0.113 to 0.362 µM). A co-crystal
structure of PF-74 revealed a new binding site on HIV-1 CA. Moreover, PF-74 in vitro
enhanced the rate of HIV-1 CA multimerization [224]. Dostálková et al. 2020 [225] reported
a series of modifications of PF74 derivatives. They obtained compound D10 (Figure 13)
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with a modified indole moiety to benzimidazole moiety exerting in vitro stabilization
activity in higher levels compared to the original PF74 molecule. Researchers continue
further modifications to decrease the D10 cytotoxicity.
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Yant et al. 2019 [226] reported GS-CA1 (Figure 13) as a novel small-molecule CA
inhibitor that showed remarkable and selective anti-HIV effects with an EC50 value of
240 ± 40 pM and CC50 > 50 µM against MT-4 cells acutely infected with HIV-1IIIB. Further
mechanistic studies indicated that GS-CA1 directly interacted with CA and affected the CA-
mediated nuclear import of viral DNA. Moreover, GS-CA1 presented favorable metabolic
stability and low solubility to function sustained drug release in mice.
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4. Strategies for Eradication of HIV-1

The remaining latent reservoirs are host cells containing transcriptionally silent but
potentially inducible replication-competent proviruses. The latent reservoirs possess a
half-life of approximately 44 months, indicating their durability and making anti-HIV-1
treatment incurable. During the asymptomatic phase of infection, a small portion of latent
reservoirs reside in resting CD4+ T cells (<107 cells). During cART, the major HIV cellular
reservoirs are memory CD4+ T cells, whose longevity is very long, and memory CD4+ T cells
harbor nearly the entire replication-competent HIV reservoir (>95%) in comparison with
other CD4+ T-cell subsets. The HIV-1 reservoirs are mainly observed in the gastrointestinal
mucosa, CNS, lymph nodes, and genital tract, where viral replication becomes autonomous
and undetectable [227–236].

Gene editing technologies including clustered regularly interspaced short palindromic
repeat (CRISPR)-associated nuclease 9 (Cas9) [237], immunological approaches such as
active immunization with vaccines and passive immunization with broadly neutralizing
antibodies for controlling HIV-1 pandemic globally [238], and chimeric antigen receptor cell
technology for prolonged remission of the reactivated latent viral reservoirs [239] are recent
advancements in HIV treatment. There are also different strategies targeting HIV-1 latently
infected cells. These strategies are “shock and kill”, “block and lock”, and “lock-in and
apoptosis”. Among them, “shock and kill” is the most advanced one because some agents
have entered clinical tests, though the results were not good. Accordingly, a promising new
strategy signifies that premature protease activation leads to pyroptotic killing of infected
cells for the eradication of the latent reservoir due to toxicity of HIV-1 protease [81].
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4.1. “Shock and Kill (Kick and Kill)” and “Block and Lock”

There are no definitive markers to identify latent reservoirs and there is a need to
search for new and better markers that can help in the effort to identify cells with latent
HIV-1 proviruses, leading to the elimination of the HIV-1 reservoir. Clonal expansion,
known as latently infected cell proliferation, also needs to be addressed, as it is considered
one of the main reasons for HIV-1 persistence during cART. Although several approaches
such as latency reversal, latency enhancement, immunotherapy with broadly neutralizing
antibodies and HIV-1-specific chimeric antigen receptor-T cells, and gene editing technolo-
gies that disrupt the provirus have been proposed to eliminate HIV latency, these studies
have encountered several high risks and limitations, so there is no broad consensus on the
methodology yet [240–243].

The “shock and kill” (Figure 14) therapy targets the removal of latent proviral reser-
voirs with the activation of transcription of dormant provirus using pharmaceutical agents
(shock) and elimination of the latently infected cells with cART, intrinsic cell death mech-
anisms, immune responses such as activation of CD8+ T cells, and/or HIV-1-cytolysis
(kill). Latency-reversing agents (LRAs), mainly functioning as either protein kinase C
(PKC) activators, histone deacetylase inhibitors (HDACis), toll-like receptor (TLR) agonists,
or PI3K/Akt agonists, have been introduced for this purpose, but none of them have
achieved ultimate success. LRAs also have several limitations, such as non-specificity
(off-target effects may be present) and the inability to reach all latent reservoirs. On the
other hand, the block and lock strategy (Figure 14), which inhibits HIV transcription by
targeting both cellular and viral factors with latency-promoting agents (LPAs), aims to
achieve durable HIV transcription inhibition. Additionally, the “block and lock” strategy
can target both replication-competent and -incompetent viruses, making it noteworthy
because replication-deficient viruses can produce viral transcripts and toxic proteins. The
“block and lock” strategy could be promising for a functional HIV-1 remission or therapy
enabling long-lasting HIV-1 suppression, even independent from cART use. Although a
few agents such as Tat or Rev inhibitors were found to suppress the provirus expression,
no clinical data have been reported so far [244–249].
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4.2. A New Approach: “Lock-In and Apoptosis” and Compound L-HIPPO

The early clinical trials about the aforementioned strategies failed to reach a scalable
solution for curing HIV-1. Our research group came up with a novel strategy called “lock-
in and apoptosis” (Figure 14), referring to L-HIPPO (L-heptanoylphosphatidyl inositol
pentakisphosphate) (Figures 10 and 14), which was synthesized by our research group as
a potential Gag MA-targeting anti-HIV-1 compound. The “killing process” is a problem
in “shock and kill”, and this strategy may overcome this problem. Based on this strategy,
L-HIPPO was able to circumvent the budding of proviruses and facilitate locking the virus
into the HIV-1-infected host cell, leading to the elimination of secretion of new viral particles,
a build-up of viral products, and ultimately, to HIV-1-specific host-cell apoptosis [181].

As mentioned above, the apoptosis induction of L-HIPPO with a carrier (L-HIPPO-
α-CDE complex) was determined using fluorescence-activated cell sorting (FACS) and
microscopic analysis. The results indicated that HeLa cells and Jurkat T cells transfected
with pNL4-3/Gag Venus underwent apoptosis in the presence of L-HIPPO-α-CDE com-
plex without showing toxicity [181]. Conceptually, “lock-in and apoptosis” is a new and
interesting strategy, but it is in an early stage. For further research, we need to perform
animal experiments using a model with the reservoir to confirm its effectiveness for HIV
eradication.

4.3. Apoptosis and HIV Latency

Apoptosis, programmed cell death, has already become an emerging concept in HIV-1
latency elimination. HIV-1 protease is also well-known to cleave host proteins in addition
to HIV-1 polyprotein at a post-integration step. HIV-1 protease can induce apoptosis
by affecting more than one cell death pathway, such as cleaving anti-apoptotic factor
Bcl-2, pro-caspase 8, and breast carcinoma-associated protein 3 (BCA3) (Figure 15). The
cleavage of caspase 8 leads to the production of a casp8p41 fragment, which can induce
apoptosis in a caspase 9- and Bak/Bax-dependent manner, leading to cytochrome c release
from mitochondria and activation of caspases 3 and 7. It is noteworthy that the HIV-1
protease cleavage site of pro-caspase-8 is different than the typical cleavage site of protease,
highlighting that there is a low possibility of correlated mutation [250–254].
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Cummins et al. 2021 [255] conducted a trial of once-weekly oral ixazomib (Figure 15),
an FDA-approved proteasome inhibitor, in ART-suppressed, HIV-1 carrying adults. They
showed the safety of ixazomib for 24 weeks in HIV-1-infected persons. Latency reversal
and decline in HIV-1 reservoir size were observed ex vivo and in vivo.

5. Conclusions and Future Perspectives

The HIV-1/AIDS pandemic continues to grow at an alarming rate worldwide. The
state-of-the-art progress in cART has made a dramatic change in the life quality and survival
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of people living with HIV-1. However, the presence of latent reservoirs, the development of
drug resistance, nonadherence, and serious side effects have posed the greatest challenges
in HIV-1 treatment. It is imperative that HIV-1-carrying patients should administer lifelong
multidrug therapy. All the available anti-HIV-1 drugs only decrease the HIV-1 activity
in infected cells without definite elimination. If therapy is interrupted, latent reservoirs
can reignite new rounds of infection, destroy the immune system of the patient, and
cause eventual death. In particular, deciphering the precise mechanisms of HIV-1 latency
will allow us to develop new anti-HIV-1 compounds with durable efficacy, tolerability,
and safety.

A new approach proposed by our research group, “lock-in and apoptosis”, pertains to
L-HIPPO, a potential anti-HIV-1 compound that is able to block the budding of offspring
viruses after the “kick” process and facilitates the virus to be stuck in an HIV-1-infected host
cell, which subsequently undergoes apoptosis along with the virus, leading to definite HIV
elimination from the body. Intense research efforts and several modern modalities have
been devoted to finding more effective anti-HIV drugs with well-matched pharmacokinetic
profile, metabolic stability, improved adherence, and a high barrier to resistance, along
with eliminating the latent reservoirs, the insurmountable problem over the years. Up to
now, there is no antiretroviral agent that targets the budding phase driven by Gag. At this
point, L-HIPPO might be a game-changer filling gaps and accelerating HIV-1 cure.

Abner et al. 2019 [245] once proposed that the additional use of ixazomib could
rekindle the hope to be the first true dual-functioning agent, and in our continuing research,
ixazomib might contribute to the apoptotic effects of L-HIPPO and rapid elimination of
latent reservoirs.

This review aims to interrogate the positive and negative features of the available
approved drugs and alternative curative treatment strategies oriented with a purpose of
developing novel potent anti-HIV-1 drug candidates with superior properties.
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