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Abstract: The multidrug and toxic compound extrusion (MATE) proteins are coding by a secondary
transporter gene family, and have been identified to participate in the modulation of organic acid
exudation for aluminum (Al) resistance. The soybean variety Glycine max “Tamba” (TBS) exhibits high
Al tolerance. The expression patterns of MATE genes in response to Al stress in TBS and their specific
functions in the context of Al stress remain elusive. In this study, 124 MATE genes were identified
from the soybean genome. The RNA-Seq results revealed significant upregulation of GmMATE13 and
GmMATE75 in TBS upon exposure to high-dose AI3* treatment and both genes demonstrated sequence
homology to citrate transporters of other plants. Subcellular localization showed that both proteins
were located in the cell membrane. Transgenic complementation experiments of Arabidopsis mutants,
atmate, with GmMATE13 or GmMATE75 genes enhanced the Al tolerance of the plant due to citrate
secretion. Taken together, this study identified GmMATE13 and GmMATE?75 as citrate transporter
genes in TBS, which could improve citrate secretion and enhance Al tolerance. Our findings provide
genetic resources for the development of plant varieties that are resistant to Al toxicity.

Keywords: aluminum tolerance; citrate transporter; expression analysis; gene family; Tamba black
soybean

1. Introduction

More than 50% of arable land consists of acidic soil worldwide. The severity of acidity
is increasing due to multiple factors, including over agriculture, fertilizer utilization, and
acid rain caused by air pollution [1]. In acidic soils, the presence of soluble aluminum (Al)
leads to the formation of toxic AI>* from aluminosilicate clays. This toxicity inhibits plant
root elongation and growth, impairing water and nutrient uptake, ultimately resulting
in low yield and poor growth of the plant [2]. Different plant species employ various
mechanisms to reduce AI** toxicity and enhance survival under high AI** conditions.
Two major mechanisms, namely internal tolerance and exclusion have been extensively
studied [3]. The internal tolerance mechanism involves detoxifying AI** in the cytosol by
forming nontoxic organic acid (OA)-Al complexes and sequestering AI** in vacuoles [4].
The exclusion mechanism involves chelating AI** in the rhizosphere using organic acid
anions to form nontoxic OA-Al chelates, which limit Al>* uptake by roots, preventing
AI%* interaction with sensitive root sites [5]. Under Al stress, plants enhance resistance
by upregulating root secretion of OAs such as citrate, malate, and oxalate, which aid in
removing AI** from roots. Consequently, a better understanding of the genes involved
in plant Al resistance will contribute to the discovery of novel genotypes suitable for
cultivation in acidic soils.
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In the past decades, numerous genes and signaling pathways have been identified
in relation to the exudation of OAs induced by Al stress. For example, the first gene
identified was THRALMT1 (aluminum-activated malate transporter) in wheat [6], followed
by SbMATE (multidrug and toxic compound extrusion) in sorghum [7] and HvAACT1
(aluminum-activated citrate transported 1) in barley, all of which are responsible for the
secretion of OAs in response to aluminum [8]. These transporters belong to the MATE
family. Since then, multiple MATE genes have been found to participate in the modulation
of OAs’ exudation for Al resistance, making the MATE family the most widely categorized
multidrug efflux transporter family [3]. MATE transporters are widely present in bacteria,
fungi, plants, and mammals, and they possess a unique structure with 12 transmembrane
(TM) helices [9]. Homologous genes encoding MATE proteins are required for Al resistance
and detoxification and are localized in the root epidermis cells [10]. Furthermore, MATE
transporters also play a key role in a wide range of biological functions, including the accu-
mulation of alkaloids and flavonoids, iron homeostasis and translocation, plant diseases
and virus resistance, and plant hormone signaling [11].

Based on genome-wide analysis, numerous putative MATE transporters have been
identified in multiple plant species, including 49 in maize [12], 67 in tomato [13], 56 in
Arabidopsis thaliana [14,15], 45 in Oryza sativa [14], and 117 in Glycine max [16]. Among
these species, Glycine max has the highest number of MATE transporters. As an important
oil-bearing crop, soybean is extensively cultivated in acidic soils with a long history. This
has led to the development of diverse Al tolerance genes and mechanisms in soybeans.
When exposed to Al stress, the roots of soybeans secrete organic acids (OAs) as a means of
Al detoxification [17]. Tolerant soybean genotypes exhibit higher OA secretion compared
to sensitive cultivars. Previous studies have indicated that several MATE genes encode
proteins that participate in the Al-induced secretion of OAs in soybeans as a response
to Al toxicity. GSMATE from Glycine soja exhibits the highest expression level in roots
and enhances resistance to Al stress [3]. GmFRD3b has higher expression levels in the
iron-efficient cultivar than in the iron-inefficient line, indicating a similar function to
AtFRD3 in facilitating the efflux of citrate into the xylem [18]. Additionally, another study
showed upregulation of GmMATE?75 in an Al-tolerant genotype called Jiyu 70, suggesting
its involvement in Al resistance [19]. Therefore, conducting further studies on GmMATEs
from different soybean phenotypes would be valuable in enhancing our understanding of
how soybeans cope with Al stress.

The Tamba black soybean (TBS) genotype is renowned for its remarkable Al tolerance
attributed to its ability to secrete citrate in response to Al stress [20]. In the present study,
we aimed to investigate the functions of the MATE gene family in TBS in response to Al
stress. We identified the MATE gene family and evaluated the gene expression patterns of
these MATE family genes through RN A-seq analysis following Al treatment. Furthermore,
we characterized the function and subcellular localization of the sensitive GmMATE genes
through citrate transport activity assays and subcellular location detection methods. We
also analyzed the phenotypes of Arabidopsis plants overexpressing these genes to gain
insights into the mechanisms. Overall, our findings demonstrate which MATE genes are
involved in Al tolerance and how they enhance Al tolerance in Glycine max “Tamba”.

2. Results
2.1. Identification of MATE Genes in the Soybean Genome

Through Blast searches and domain (Pfam: PF01554) prediction, 124 soybean MATE
genes were ultimately identified. The genes were named GmMATE1-124 according to Liu
et al. [16] and their physical location on the chromosome. The proteins encoded by these
genes exhibit lengths ranging from 80 to 593 amino acids, molecular weights spanning from
8.71 to 64.28 kD, and predicted isoelectric points varying between 5.13 and 9.70 (Table S1).

A comparison was conducted among soybean MATE protein sequences, along with
45 Arabidopsis and 56 rice MATE protein sequences. The resulting phylogenetic tree cate-
gorized all MATE proteins into five subfamilies (Figure 1), with soybean MATE protein
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family members distributed among all these subfamilies. The fifth subfamily comprised the
highest count of soybean MATE proteins, with 40 numbers, while the second and fourth
group contains 32 and 31 soybean MATE proteins respectively.

Figure 1. The phylogenetic tree of the MATE (multidrug and toxic compound extrusion) family from
Arabidopsis thaliana, Oryza sativa, and Glycine max. The tree was constructed with MEGA 6.0 using the
maximum likelihood (ML) method. Bootstrap values in percentages are 1000 replicates. Different
subfamilies are highlighted using different colors: group I in red, group II in orange, group III in
deep yellow, group IV in green, and group V in blue.

2.2. Gene Structure of the GmMATE Genes

The evolutionary progression of a gene family is chiefly evident in the diversity of
gene structures and alterations in conserved motifs. Utilizing the MEME online prediction
tool, the conserved motifs in soybean MATE proteins were identified, as illustrated in
Figure 2A. Ten conserved sequences were detected and denoted as motifs 1-10. The motif
sequence was listed in Table S2. The first group of GmMATE proteins had fewer motifs than
other groups in general. The majority of the members in groups II-V shared 7-10 motifs.
All members of group Il were equipped with motif 3. The existence of a protein domain
in the MATE genes was searched in the NCBI Conserved Domain Search. As shown in
Figure 2B, all of the identified GmMATE proteins contain MATE-related domains. The
exon—intron structure of GmMATE genes was analyzed using the annotation information of
the soybean genome (Figure 2C). Members of group II had a smaller number of exons, with
approximately 1-3 exons. However, members of groups III, IV, and V typically possessed
6-8 exons, with a few exceptions among those with shorter sequences, which may have a
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lower number of exons such as GmMATE59 and GmMATES3. Group I members generally
included a higher number of exons of over seven. Whereas, an exception was observed in
GmMATE71, which contained only four exons.
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Figure 2. Gene structure, domain, and conserved motif analysis of GmMATE genes. (A) Distributions
of conserved motifs in GmMATE genes. The sequence information of the motifs was listed in Table S2.
(B) MATE and MATE-like domains of GmMATE genes. (C) Introns and exons on GmMATE genes.

2.3. Gene Location of the GmMATE Genes on the Chromosome

The 124 GmMATE genes have been mapped to all 20 soybean chromosomes (Figure 3).
However, their distribution across individual chromosomes appears to be uneven. Chro-
mosome 9 exhibits the highest density of GmMATE genes, with a total of 12 members
spanning from GmMATE 46 to GmMATE 57. Meanwhile chromosomes 2, 10, and 18 also
have a high density of MATE genes, each harboring nine GmMATE genes. In contrast,
chromosomes 4, 14, and 15 contain a lower number of GmMATE genes, with only four
identified on each chromosome.

2.4. The Expression of GmMATE Genes on TBS under AI>* Stress

We identified the GmMATE genes in the transcriptome data to assess their expression
patterns under Al stress. The expression heatmap of these genes is presented in Figure 4A.
According to the expression profiles of the GmMATE genes across different treatments, the
GmMATE genes were classified into nine clusters with time series analysis (Figure 4B). We
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focused on clusters 1 and 9, which showed a tendency of low expression in the NC, AC,
and LD treatments, and high expression in the HD treatment. The expression patterns
of genes within clusters 1 and 9 are depicted in Figure 4C. Noteworthily, within the two
clusters, GmMATE13 and GmMATE75 demonstrated significant upregulation, with fold
changes of 6.5 and 245, respectively, in the HD treatment compared to the NC treatment.
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Figure 3. Chromosomal location of GmMATE genes. Chr01-20 represent the 20 chromosomes
of soybean.

2.5. Character of GmMATE13 and GmMATE75 Genes in TBS

The full-length coding sequences (CDS) of GmMATE13 and GmMATE75 were am-
plified using cDNA from TBS. Sequencing results indicated that the full-length CDS of
GmMATE13 and GmMATE?75 are 1503 bp and 1674 bp, respectively. The sequence analy-
sis revealed that the molecular formula of GmMATE13 protein is Ca457H3941 Ng07Og82520,
with a total of 7707 atoms. The molecular weight is 53.5 kD, and the isoelectric point
(PI) is 7.72. The amino acid composition is characterized by a high proportion of leucine
(13.6%) and proline (10.4%), and a low proportion of cysteine (0.4%). The instability index
(31.05 < 40) indicates that GmMATE13 is a stable protein. The SOPMA software (https:
/ /npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA /npsa_sopma.html, accessed
on 6 December 2022) predicted the secondary structure of this protein, where x-helices
account for 57.00%, extended chains account for 12.00%, B-turns account for 5.40%, and
irregular coils account for 25.6%.
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Figure 4. The expression of GmMATE genes in Tamba black soybean under Al stress. (A) The heatmap
of MATE gene expression in neutral control (NC), acidic control (AC), low dose (LD, 10 pmol/L), and
high dose (HD, 50 umol/L) AICl; groups. (B) Time series analysis of GimMATE genes under Al stress.
(C,D) Heatmap of the expression of genes belonging to cluster 1 and cluster 9.

The molecular formula of the GmMATE?5 protein is Ca763H4426N7020760523, with a
total of 8674 atoms. The molecular weight is 60.4 kD and the PI is 9.54. The amino acid
composition of GmMATE?5 includes a higher proportion of leucine (12.6%) and proline
(11.1%), and a lower proportion of cysteine (0.7%). The instability index is 28.14 < 40,
indicating that GmMATE?5 is a stable protein. The SOPMA software (https:/ /npsa-prabi.
ibep.fr/cgi-bin/npsa_automat.pl?page=/NPSA /npsa_sopma.html, accessed on 6 Decem-
ber 2022) predicted the secondary structure of this protein, where o-helices account for
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53.14%, extended chains account for 11.85%, p-turns account for 4.67%, and irregular
coils account for 30.34%. In addition, the SWISS-MODEL performed an online predic-
tion of the tertiary structure of the GmMATE13 and GmMATE?5 proteins (Figure 5).
The amino acid sequences of GmMATE13 and GmMATE?5 were compared using BlastP
(https:/ /blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins, accessed on 10 December 2022),
and the sequences with higher homology were selected for constructing an evolutionary
tree. The results show that GmMATE13 clusters with GsDTX42 and VuMATE2, while
GmMATE?5 clusters with GsFRD3, VuMATE1, and AhFDRLI1 (Figure 5C).

C A GmMATE75 (NP 001342385.1)
100 GsFRD3 (KHN37617.1)

i VuMATE] (AIS76465.1)

100
AhFRDLI (XP 025615025.1)

97 — BOoMATE (XP 013628387.1)
100 |: AtMATE (NP 187461.1)
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100 GsDTX42 (XP 028182382.1)
0.050

Figure 5. The structure and phylogenetic analysis of the GmMATE13 and GmMATE?5 proteins
in TBS. (A) Predicted 3D structure of GmMATE13. (B) Predicted 3D structure of GmMATE75.
(C) Phylogenetic tree of GmMATE13 and GmMATE?5 proteins.

2.6. The Expression of GmMATE13 and GmMATE75 upon AI3* Stress

The qRT-PCR results showed significant upregulation of both GmMATE13 and Gm-
MATE75 under Al stress (Figure 6A,B). The two genes demonstrated significantly higher
expression levels in response to high AI** concentration treatment (above 50 pM AI%*), as
compared to their expression levels in low A13* concentration treatment (25 uM A13*). Specif-
ically, GmMATE13 showed the highest expression level at 50 pM AP* treatment (Figure 6A),
while GmMATE75 showed the highest expression level at 75 uM AI** treatment (Figure 6B).
In terms of treated time gradient of 0-24 h, both GmMATE13 and GmMATE75 expression
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increased with AI3* treatment time. GmMATE13 reached its highest expression level at
12 h (Figure 6C), while GmMATE75 reached its highest expression level at 18 h (Figure 6D).
Both GmMATE13 and GmMATE75 showed the highest expression level under Al treatment
compared to other metal ion treatments. Additionally, GmMATE13 was upregulated in
response to Ga, Fe, Cu, and Gr treatments (Figure 6E), while GmMATE75 was upregulated in
response to Ga, Fe, and Gr treatments (Figure 6F). Furthermore, under Al stress, GmMATE13
was upregulated in the roots, stems, and leaves of the TBS, while it was downregulated in
the cotyledons (Figure 6G). On the other hand, GmMATE75 was only upregulated in the
roots under Al stress, with no change in expression in other tissues (Figure 6H).
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Figure 6. GmMATE13 and GmMATE75 expression pattern upon Al stress. (A,B) Relative expression
of GmMATE13 and GmMATE?75 treated with gradient AlCl3 concentration for 24 h. (C,D) Relative
expression of GmMATE13 and GmMATE?5 treated with 50 uM AIClj3 at various times of exposure.
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GmMATE13-eGFP

GmMATE75-eGFP

(E,F) Expression level of GmMATE13 and GmMATE75 treated with different metal ions for 24 h. CK
was the untreated group. (G,H) Expression pattern of GmMATE13 and GmMATE75 in different plant
organs, including roots (R), stems (S), leaves (L), and cotyledons (C). Data shown as mean + SEM of
n = 3 independent experiments and was analyzed using one-way ANOVA with Dunnett’s multiple
comparisons test. Different letters above columns indicate significance at p < 0.05.

2.7. Subcellular Localization of MATE Proteins

It has been reported that most MATE proteins in plants are localized on cell mem-
branes [21]. After the transient expression of GmMATE13-eGFP and GmMATE75-eGFP
plasmids in Nicotiana benthamiana, green fluorescence with confocal microscopy was found
to be concentrated on the cytoplasmic membrane, indicating that both GmMATE13 and
GmMATE?5 proteins are localized on the plasma membrane of plant cells (Figure 7).

GFP Bright field Merged

Figure 7. Subcellular localization of the GmMATE13 and GmMATE?5 proteins; the images were
captured with Zeiss LSM 900 confocal microscopy and the scale bar was 20 pum.

2.8. Screening and Al Tolerance Identification of Arabidopsis Mutant Complementation Plants

RT-PCR analysis confirmed the complementary expression of GmMATE13 and Gm-
MATE?5 in the Arabidopsis mutant atmate (Figure 8A). The relative root elongation, root tip
tissue staining, and citrate secretion were examined under Al stress. Arabidopsis comple-
mentation plants overexpressing GmMATE13 or GmMATE75 exhibited significantly higher
relative root elongation compared to the atmate mutant but lower than the WT (Figure 8B,C).
Staining with Evans blue and Chrome azurol S indicated reduced root tip damage and
decreased absorption of AI** in the Arabidopsis complementation plants compared to the
atmate mutant (Figure 8D). Citrate secretion under Al stress showed a similar pattern to
root elongation, with significantly higher levels in Arabidopsis complementation plants
overexpressing GmMATE13 or GmMATE75 compared to the atmate mutant (Figure SE).
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Figure 8. The function of GmMATE13 and GmMATE75 on Al resistance. (A) Expression of GmMATE13
and GmMATE?75 in WT and two complementary lines (CE1 and CE2) were detected by RT-PCR.
(B) Phenotypic analysis of WT, atmate, GmMATE13-CE, and GmMATE75-CE, scale bar was 1 cm.
(C) Relative root elongation of the plants treated with 50 uM AICI3 for 7 days. (D) Evans blue
and Chrome Azurol S staining of the root tips treated with 50 uM AICl; for 24 h, scale bar was
0.5 mm. (E) Citrate secretion of the Arabidopsis roots treated with 50 AIClI3 Al for 24 h. Data shown
as mean + SEM of n = 4 independent experiments and was analyzed using one-way ANOVA with
Dunnett’s multiple comparisons test. Different letters above columns indicate significance at p < 0.05.

3. Discussion

Aluminum toxicity is one of the primary limiting factors for crop growth and yield
in acidic soils. The secretion of organic acids, such as citrate, in the root system is a well-
known mechanism for Al tolerance in plants [22]. Many studies have shown that the
secretion of OAs is mediated by anion channels and transport proteins located on the
plasma membrane. Multidrug and toxic compound extrusion transporters (MATE) are
commonly found in plant cells, predominantly in cell membranes, where they serve a
crucial function in expelling plant secondary metabolites and toxic compounds [23]. Over
the past few decades, many members of the MATE gene family associated with aluminum
tolerance have been identified, including the sorghum SbPMATE gene [24], barley HVAACT
gene [8], Arabidopsis AtMATE gene [25], maize ZmMATE gene [26], rice bean VuMATE
gene [27], rice OsFRDL4 gene [28], and peanut AhFRDLI gene [29]. These genes have been
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shown to play important roles in citrate secretion and genetic transformation of these genes
can enhance the secretion of citrate in plant root tips, thereby alleviating aluminum toxicity.

MATE transporters have been found in both prokaryotic and eukaryotic organisms,
exhibiting a distinctive topology [30]. However, the MATE family were conserved between
dicots and monocots [19]. Referring to Duan et al. [21], Blast searches were conducted
using the MATE genes from two extensively studied plants, Arabidopsis thaliana and Oryza
sativa, as query sequences to identify GmMATE genes in the present study. In comparison
to a previous study on MATE genes in soybeans that identified 117 GmMATE genes [16],
our research has identified an expanded set of 124 GmMATE genes. The seven additional
GmMATE genes, namely GmMATE118-124, are situated on chromosomes 5, 6, 8, 11, 12,
16, and 18, respectively, and they share MATE or MATE-like domains. The functional
characterization of these genes awaits further investigation and could provide valuable
insights in future studies.

The GmMATE genes were identified in the transcriptome profile of Tamba black soy-
beans to assess the relation of the expression of GmMATE genes and the Al tolerance of
TBS. Among the GmMATE genes in TBS, GmMATE13 and GmMATE?75 exhibited significant
upregulation in response to high-dose Al** treatment, with fold changes of 6.5 and 245,
respectively, compared to the NC treatment. They were proposed to function as important
plasma-membrane-localized citrate transporters in TBS. Both genes were cloned and char-
acterized, revealing a high degree of homology with GsFRD3, VuMATE1, VuMATE?2, and
GsDTX42. VuMATE1 and VuMATE2 are Al-activated citrate transporters that conferred Al-
induced citrate efflux in Arabidopsis [31,32]. Additionally, subcellular localization showed
that GmMATE13 and GmMATE?5 were localized on the plasma membrane, consistent
with the localization of EEMATEL in Eucalyptus camaldulensis [33], OsFRDLA4 in rice [28], and
ZmMATEL] in maize [26], which verified their potential functioning as Al-activated citrate
transporters. They were mainly expressed in plant roots upon AI** treatment. GmMATE13
was upregulated in roots, stems, and leaves, while GmMATE75 was only upregulated in
roots, indicating the expression of GmMATE13 participates in more pathways in addition to
responses to Al stress and GmMATE?5 is closely related with the modulation of Al tolerance
in roots. These findings are consistent with the MATE expression patterns in rice bean and
buckwheat [32,34]. Furthermore, GmMATE13 and GmMATE75 showed the highest relative
expression levels at 12 h and 18 h, respectively. Similarly, PtrMATE1 was induced after 12 h
of Al stress, while PtrMATE2 was induced after 24 h in poplar. The different response times
of the two MATE genes may suggest the synergistic secretion of citrate by these citrate
channel proteins to adapt to Al stress [17]. These findings also imply the coordinated action
of GmMATE13 and GmMATE?75 in TBS to cope with Al stress.

Numerous studies have shown that overexpression of MATE genes can enhance citrate
secretion in plants under Al stress and alleviate Al toxicity. For example, overexpression
of the BOMATE and GmMATE?2 genes can increase citrate secretion in Arabidopsis thaliana
and tobacco, respectively [35]. Additionally, in Arabidopsis mutants, overexpression of the
ANFRDLI1 gene can restore citrate secretion and iron transport [29]. In the present study,
transgenic complementation experiments in the Arabidopsis mutant atmate demonstrated
that both the GimMATE13 and GmMATE75 genes mediated the secretion of citrate and
improved Al tolerance. Furthermore, research by Liu et al. found that GmMATE13 and
GmMATE?5 are involved in response to Al stress [16]. Subsequently, Zhou et al. discovered
that overexpressing GmMATE75 in Arabidopsis resulted in increased citrate secretion under
Al stress, thus alleviating the inhibition of root elongation caused by Al [19]. Wang et al.
found that the overexpression of GmMATE13 significantly increased citrate secretion in
soybean hairy roots [36]. These results further demonstrate the involvement of GmMATE13
and GmMATE?5 in citrate secretion. In summary, our results indicated both GmMATE13
and GmMATE?75 are citrate transporter proteins located on the cytoplasmic membrane.
Overexpression of both genes in the mutant Arabidopsis can alleviate Al-stress-induced
root tip impairment. This discovery provides valuable gene resources for breeding plant
varieties suitable for growth in acidic soils.
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In summary, GmMATE13 or GmMATE?5 are proposed as key participants in confer-
ring aluminum tolerance in TBS. They are citrate transporters at the plasma membrane. The
expression levels of GmMATE13 and GmMATE75 are significantly upregulated under Al
stress, which contribute to inducing the production of citrate efflux. The tolerance of plants
to aluminum toxicity could therefore increase. The two GmMATE genes show differential
expression responses under different durations of aluminum stress, indicating potential
synergistic actions of their encoded proteins in adapting to aluminum stress.

4. Materials and Methods
4.1. Identification of MATE Genes in Soybean and Their Molecular Characteristics

The genome sequences and the annotation file of soybean (Glycine max Wm82.a2.v1)
were downloaded from Phytozome (https://phytozome-next.jgi.doe.gov/, accessed on
20 December 2023). The 56 and 45 MATE gene family members in Arabidopsis thaliana and
Oryza sativa were used as seed sequences to search the genome of soybeans for MATE-
related protein sequences with the threshold E-value setting to <1 x 1075 [21]. The
obtained sequences were checked in the NCBI Conserved Domain Search (https://www.
ncbi.nlm.nih.gov/Structure/cdd /wrpsb.cgi, accessed on 12 January 2024) and Pfam (http:
/ /pfam.xfam.org/, accessed on 12 January 2024) to detect the existence of conserved
MATE protein domains. The protein length (number of amino acids), molecular weight,
and theoretical isoelectric point were computed by ExPASy (https://web.expasy.org/
protparam/, accessed on 20 January 2024) [37].

4.2. Phylogenetic Analysis of MATE Gene Family

The phylogenetic tree of protein sequences encoded by MATE family genes in A.
thaliana, O. sativa, and G. max was constructed in the MEGA 6.0 software (Koichiro Tamura,
Japan) with the maximum likelihood (ML) algorithm under 1000 bootstrap tests. The
protein sequence used in constructing the phylogenetic tree is listed in Table S3.

4.3. Gene Structure, Motif Analysis, and Chromosomal Location

Conserved motifs within the MATE proteins were identified using the Multiple Em
for Motif Elicitation (MEME, https://meme-suite.org/, accessed on 12 January 2023). The
maximum number of motifs were set to ten. The gene structure and chromosome location
of each GmMATE gene was analyzed and illustrated in TBtools (Guangzhou, China) with
the annotation file of G. max Wm82.a2.v1.

4.4. Plant Culture and AP+ Treatments

TBS seeds were sterilized, rinsed, and then incubated on moistened filter paper in
the dark at 25 °C for germination. The seedlings were cultured in 8 L aquariums with
1/2 Hoagland’s nutrient solution (pH 6.0), with a light cycle of 14 h light/10 h dark
(200 pmol photons m~2s 1) ata temperature of 27/22 °C (day/night). The nutrient
solution was refreshed every two days. After the true leaf was fully expanded, the seedlings
were transferred into 0.5 mM CaCl, solution (pH 4.3) pretreated for 24 h. Then, the seedlings
were transferred and cultured in the solution with 10 and 50 pM AICl3 (pH 4.3, 0.5 mmol /L
CaClp) for 3 d. After treatment, root apices (02 cm) were excised and immediately frozen
in liquid nitrogen before isolating the total RNA. Each treatment was replicated three times.
The seedlings without CaCl, and AICl; treatments and those only treated with CaCl, were
used as the neutral and acidic controls.

Arabidopsis wild type and Al sensitivity mutant atmate were utilized for transfection
GmMATE genes and evaluating the response of GmMATE genes to Al stress. Arabidopsis
seeds were placed on 1/2 Murashige and Skoog (MS) agar medium and kept in darkness
at 4 °C for 2 days. Subsequently, the Arabidopsis seedlings were transferred to fresh 1/2 MS
medium containing a specific concentration of Al and cultured for several days at 22 °C
under long-day conditions until all the samples were collected. The collected plant materials
were instantly put into liquid nitrogen and stored at —80 °C for RNA isolation.
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4.5. RNA Extraction and Transcriptome Sequencing

Total RNA was extracted using the RNAi*° Plus kit (Takara, Dalian, China) according
to the manufacturer’s description and the concentration and integrity of RNA was mea-
sured using a NanoDrop 2000 spectrophotometer (Thermo, Waltham, MA, USA) and the
2100 bioanalyzer (Agilent Technologies, Santa Clara, CA, USA), respectively. Samples with
high RNA integrity and OD260/280 (above eight) were selected for library construction [38].
The whole library was finally sequenced with the Illumina HiSeq platform (Novogene,
Beijing, China).

4.6. Detecting MATE Family Gene Expression via RNA-Seq and Cluster Analysis

The transcription sequence of GnMATE genes were used in discovering MATE gene
expression in TBS. Gene expression levels were estimated by fragments per kilobase of
transcript per million fragments (FPKM) mapped. The expression level of MATE family
genes was evaluated among different treatment groups, namely neutral control (NC), acidic
control (AC), low dose (LD), and high dose (HD) of AICI; (10 and 50 pmol/L).

The Mfuzz R package (version 2.62) was employed to cluster the expression levels of
all MATE genes. This package is based on Fuzzy C-Means Clustering, which is initially used
to analyze the time trend of gene expression in data with time series characteristics [39].
This cluster analysis was performed on the transcriptome data to comprehend the dynamic
expression patterns of the biological molecules with the associated functions. C-means
clustering was calculated using the reads per million (FPKM) fragments of the neutral and
acidic controls and two concentrations of AI** treatment.

4.7. Character of the GmMATE13 and GmMATE75 Genes

The physicochemical properties of the GmMATE13 and GmMATE?75 proteins were pre-
dicted using ExPASY ProtParam (https://web.expasy.org/protparam/, accessed on 10 De-
cember 2022). Protein function domain, secondary structure, and transmembrane domain
prediction were carried out using the CDD (https://www.ncbi.nlmnih.gov/structure/cdd/
wrpsb.cgi, accessed on 10 December 2022), SOPMA (https:/ /npsa-prabi.ibcp.fr/cgi-bin/
npsa_automat.pl?page=npsa_sopma.html, accessed on 10 December 2022), and TMHMM
(http:/ /www.cbs.dtu.dk/services/ TMHMM/, accessed on 10 December 2022) online soft-
ware, respectively. The tertiary structures of GmMATE13 and GmMATE7?5 were predicted
using SWISS-MODEL (https:/ /swissmodel.expasy.org/interactive, accessed on 15 Decem-
ber 2022). Additionally, homologous sequences of GmMATE13 and GmMATE?5 were
downloaded after aligning the amino acid sequences with BLASTP, and a phylogenetic tree
was constructed using the MEGAG®6.0 software.

4.8. GmMATE13 and GmMATE75 Expression

After 2 weeks of cultivation, TBS seedlings were pre-treated with 0.5 mmol/L CaCl,
(pH 4.5) for 24 h. To test the sensitivity of MATE genes to AI3* concentration, the seedlings
were transferred and cultured in the solution with gradient concentrations of 0, 25, 50,
75, and 100 pM AICl; (pH 4.3, 0.5 mmol/L CaCly) for 24 h. Root tips were collected
to determine the expression level of MATE genes. Moreover, to analyze the temporal
expression pattern of MATE genes in response to Al stress, the seedlings were transferred
to a solution of 50 umol/L AICI; (pH 4.3, 0.5 mmol/L CaCl,) for 24 h, and the root tips
were obtained from different time points at 3, 6, 9, 12, 15, 18, 21, and 24 h. To determine the
impact of other metal ions on GmMATE gene expression, the seedlings were transferred
to solutions containing various metal ions, including 50 pmol/L AlCl3, 5 pmol/L CuCl,,
50 umol/L FeCls, 50 umol /L Ga(NO3)3, 50 pmol /L GrClz, 50 uM La(NO3)3, and 50 umol /L
MnCl; cultured for 24 h, respectively. Root tips were collected for measuring the expression
of GmMATE 13 and GmMATE 75. Three biological replicates were performed for each
treatment. Furthermore, to evaluate the organ-specific expression patterns of MATE genes,
different parts of TBS seedlings, including root tips (R), stems (S), leaves (L), and cotyledons
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(C) were collected after treatment with 50 uM AICl; solution for 24 h. Three biological
replicates were performed for each treatment.

Total RNA extraction was the same as described above. Complementary DNA (cDNA)
was synthesized using the PrimeScript™ II 1st Strand cDNA Synthesis Kit (Takara, Dalian,
Japan) following the manufacturer’s instructions. Real-time quantitative PCR was per-
formed following the manufacturer’s instructions. The primers designed for GmMATE13
and GmMATE75 were based on their coding regions. Real-time PCR was performed to
amplify the PCR products of the GmMATE13 and GmMATE75 PCR products. The primers
used are listed in Table S4. The mRNA abundance was calculated according to the 2744t
method, with the expression levels normalized to the internal reference gene 40S rRNA
gene (XM_0035498336.4).

4.9. Subcellular Localization of GmMATE Genes

To determine the subcellular localization of GmMATE13 and GmMATE?5 proteins,
their coding sequences (CDS) were cloned into the pBI121-eGFP vector with a CaMV 355
promoter. The GFP control and GmMATE expression vectors were transiently transformed
into Nicotiana benthamiana with the Agrobacterium-mediated transient expression system.
Confocal microscopy (Zeiss, LSM 900, Jena, Germany) was used to capture GFP fluorescence
and bright-field images, confirming the subcellular location of GmMATE proteins.

4.10. Heterologous Expression of GmMATEs in the Arabidopsis Al Sensitivity Mutant Atmate

The Arabidopsis Al sensitivity mutant atmate was used to create GmMATE transgenic
lines expressing GmMATE13 and GmMATE75. The CDS of the genes were cloned into a
PCXSN vector with a CaMV 35S promoter. Positive colonies were identified using colony
PCR and Sanger sequencing. Agrobacterium strain K599 was used to transfer the expression
vectors into atmate. Two independent transgenic lines for each gene were obtained and
named GmMATE13-CE1, GmMATE13-CE2, GmMATE75-CE1, and GmMATE75-CE2.

4.11. Al Resistance Analysis in Transgenic Atmate

The transgenic atmate lines, along with wild type (WT) and atmate plants, were tested
for aluminum (Al) resistance. Two-week-old seedlings were pre-treated with 0.5 mM CaCl,
and then exposed to 0 (control) and 50 uM AICl3 for 7 days. Root tips were collected
for analysis of relative root elongation (RRE), Evans blue staining, and Chrome Azurol S
staining. RRE% = (Al-treated root length — Al untreated root length)/(Control untreated
root length — Control treated root length). Evans blue staining was used to assess plant
cell injury and activity under acidic conditions. Root tips were stained with a 0.25% Evans
blue solution. Chrome azurol S staining was performed to measure the accumulation of Al.
Root tips were stained with a 0.1% Chrome azurol S solution. Stained roots were observed
and captured using a dissecting microscope.

4.12. Statistical Analysis

Statistical analyses were performed using SPSS 22.0. One-way ANOVA and Student’s
t-test were used to compare significant differences among different groups, with p < 0.05
considered statistically significant. Results were presented as mean £ SEM (standard error
of the mean).

5. Conclusions

The expression patterns of MATE genes in Tamba black soybean exhibit varied re-
sponses to aluminum stress. Among them, two MATE genes, GSMATE13 and GsMATE?5,
were found to be significantly upregulated under aluminum stress. Based on the results of
protein structure, phylogenetic analysis, gene expression, protein localization, and overex-
pression validation in Arabidopsis, these two proteins were identified as citrate transporters
located on the plasma membrane, participating in the efflux of citrate ions and alleviating
aluminum toxicity in plants. This may be one of the reasons for aluminum tolerance in
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Tamba black soybean plants. Subsequent studies will involve knockout and overexpression
of the MATE genes in Tamba black soybean to determine their roles in aluminum tolerance.
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