Predicting Cellular Rejection of Renal Allograft Based on the Serum Proteomic Fingerprint
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Population
4.2. MIR Spectra Acquisition
4.3. Spectra Pre-Processing and Processing
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kaballo, M.A.; Canney, M.; O’Kelly, P.; Williams, Y.; O’Seaghdha, C.M.; Conlon, P.J. A comparative analysis of survival of patients on dialysis and after kidney transplantation. Clin. Kidney J. 2018, 11, 389–393. [Google Scholar] [CrossRef]
- Meier-Kriesche, H.U.; Schold, J.D. The impact of pretransplant dialysis on outcomes in renal transplantation. Semin. Dial. 2005, 18, 499–504. [Google Scholar] [CrossRef]
- Oniscu, G.C.; Brown, H.; Forsythe, J.L.R. Impact of cadaveric renal transplantation on survival in patients listed for transplantation. J. Am. Soc. Nephrol. 2005, 16, 1859–1865. [Google Scholar] [CrossRef]
- Meier-Kriesche, H.U.; Schold, J.D.; Srinivas, T.R.; Reed, A.; Kaplan, B. Kidney transplantation halts cardiovascular disease progression in patients with end-stage renal disease. Am. J. Transplant. 2004, 4, 1662–1668. [Google Scholar] [CrossRef]
- Neipp, M.; Karavul, B.; Jackobs, S.; zu Vilsendorf, A.M.; Richter, N.; Becker, T.; Schwarz, A.; Klempnauer, J. Quality of Life in Adult Transplant Recipients More than 15 Years after Kidney Transplantation. Transplantation 2006, 81, 1640–1644. [Google Scholar] [CrossRef]
- Antoun, J.; Brown, D.J.; Clarkson, B.G.; Shepherd, A.I.; Sangala, N.C.; Lewis, R.J.; McNarry, M.A.; Mackintosh, K.A.; Corbett, J.; Saynor, Z.L. Experiences of adults living with a kidney transplant—Effects on physical activity, physical function, and quality of life: A descriptive phenomenological study. J. Ren. Care 2023, 49, 198–205. [Google Scholar] [CrossRef]
- Mayrdorfer, M.; Liefeldt, L.; Wu, K.; Rudolph, B.; Zhang, Q.; Friedersdorff, F.; Lachmann, N.; Schmidt, D.; Osmanodja, B.; Naik, M.G.; et al. Exploring the Complexity of Death-Censored Kidney Allograft Failure. J. Am. Soc. Nephrol. 2021, 32, 1513–1526. [Google Scholar] [CrossRef]
- Josephson, M.A. Monitoring and managing graft health in the kidney transplant recipient. Clin. J. Am. Soc. Nephrol. 2011, 6, 1774–1780. [Google Scholar] [CrossRef]
- Ghelichi-Ghojogh, M.; Mohammadizadeh, F.; Jafari, F.; Vali, M.; Jahanian, S.; Mohammadi, M.; Jafari, A.; Khezri, R.; Nikbakht, H.A.; Daliri, M.; et al. The global survival rate of graft and patient in kidney transplantation of children: A systematic review and meta-analysis. BMC Pediatr. 2022, 22, 503. [Google Scholar] [CrossRef]
- Schnuelle, P.; Gottmann, U.; Köppel, H.; Brinkkoetter, P.T.; Krzossok, S.; Weiss, J.; Schmitt, W.; Yard, B.A.; Schwarzbach, M.H.M.; Post, S.; et al. Comparison of early renal function parameters for the prediction of 5-year graft survival after kidney transplantation. Nephrol. Dial. Transplant. 2007, 22, 235–245. [Google Scholar] [CrossRef]
- Xie, W.Y.; Kim, K.; Goussous, N.; Drachenberg, C.B.; Scalea, J.R.; Weir, M.R.; Bromberg, J.S. Causes of Renal Allograft Injury in Recipients with Normal Donor-derived Cell-free DNA. Transplant. Direct 2021, 7, E679. [Google Scholar] [CrossRef]
- Josephson, M.A.; Becker, Y.; Budde, K.; Kasiske, B.L.; Kiberd, B.A.; Loupy, A.; Małyszko, J.; Mannon, R.B.; Tönshoff, B.; Cheung, M.; et al. Challenges in the management of the kidney allograft: From decline to failure: Conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2023, 104, 1076–1091. [Google Scholar] [CrossRef]
- Duncan, L.; Heathcote, J.; Djurdjev, O.; Levin, A. Screening for renal disease using serum creatinine: Who are we missing? Nephrol. Dial. Transplant. 2001, 16, 1042–1046. [Google Scholar] [CrossRef]
- Ramalhete, L.; Araújo, R.; Calado, C.R.C. Discriminating B and T-lymphocyte from its molecular profile acquired in a label-free and high-throughput method. Vib. Spectrosc. 2020, 111, 103177. [Google Scholar] [CrossRef]
- Ramalhete, L.M.; Araújo, R.; Ferreira, A.; Calado, C.R.C. Proteomics for Biomarker Discovery for Diagnosis and Prognosis of Kidney Transplantation Rejection. Proteomes 2022, 10, 24. [Google Scholar] [CrossRef]
- De Fijter, J.W. Rejection and function and chronic allograft dysfunction. Kidney Int. 2010, 78, S38–S41. [Google Scholar] [CrossRef]
- Andreev, E.; Koopman, M.G.; Arisz, L. A rise in plasma creatinine that is not a sign of renal failure: Which drugs can be responsible? J. Intern. Med. 1999, 246, 247–252. [Google Scholar] [CrossRef]
- Moein, M.; Papa, S.; Ortiz, N.; Saidi, R. Protocol Biopsy After Kidney Transplant: Clinical Application and Efficacy to Detect Allograft Rejection. Cureus 2023, 15, e34505. [Google Scholar] [CrossRef]
- Collins, A.J.; Kasiske, B.; Herzog, C.; Chavers, B.; Foley, R.; Gilbertson, D.; Grimm, R.; Liu, J.; Louis, T.; Manning, W.; et al. Excerpts from the United States Renal Data System 2004 Annual Data Report: Atlas of end-stage renal disease in the United States. Am. J. Kidney Dis. 2005, 45, A5–A7. [Google Scholar] [CrossRef]
- Tsai, S.-F.; Chen, C.-H.; Shu, K.-H.; Cheng, C.-H.; Yu, T.-M.; Chuang, Y.-W.; Huang, S.-T.; Tsai, J.-L.; Wu, M.-J. Current Safety of Renal Allograft Biopsy With Indication in Adult Recipients. Medicine 2016, 95, e2816. [Google Scholar] [CrossRef]
- Plattner, B.W.; Chen, P.; Cross, R.; Leavitt, M.A.; Killen, P.D.; Heung, M. Complications and adequacy of transplant kidney biopsies: A comparison of techniques. J. Vasc. Access 2018, 19, 291–296. [Google Scholar] [CrossRef]
- El-Zoghby, Z.M.; Stegall, M.D.; Lager, D.J.; Kremers, W.K.; Amer, H.; Gloor, J.M.; Cosio, F.G. Identifying specific causes of kidney allograft loss. Am. J. Transplant. 2009, 9, 527–535. [Google Scholar] [CrossRef]
- Novotny, M.; Kment, M.; Viklicky, O. Antibody-Mediated Rejection of Renal Allografts: Diagnostic Pitfalls and Challenges. Physiol. Res. 2021, 70, 551–565. [Google Scholar] [CrossRef]
- Loupy, A.; Lefaucheur, C. Antibody-Mediated Rejection of Solid-Organ Allografts. N. Engl. J. Med. 2018, 379, 1150–1160. [Google Scholar] [CrossRef]
- Lefaucheur, C.; Louis, K.; Philippe, A.; Loupy, A.; Coates, P.T. The emerging field of non–human leukocyte antigen antibodies in transplant medicine and beyond. Kidney Int. 2021, 100, 787–798. [Google Scholar] [CrossRef]
- Callemeyn, J.; Lamarthée, B.; Koenig, A.; Koshy, P.; Thaunat, O.; Naesens, M. Allorecognition and the spectrum of kidney transplant rejection. Kidney Int. 2022, 101, 692–710. [Google Scholar] [CrossRef]
- Aziz, F.; Parajuli, S.; Garg, N.; Mohamed, M.; Zhong, W.; Djamali, A.; Mandelbrot, D. How Should Acute T-cell Mediated Rejection of Kidney Transplants Be Treated: Importance of Follow-up Biopsy. Transpl. Direct 2022, 8, e1305. [Google Scholar] [CrossRef]
- Malone, A.F. Transplant biopsy assessment in 21st century. J. Am. Soc. Nephrol. 2021, 32, 1827–1828. [Google Scholar] [CrossRef]
- Randhawa, P. T-cell-mediated rejection of the kidney in the era of donor-specific antibodies. Curr. Opin. Organ Transpl. 2015, 20, 325–332. [Google Scholar] [CrossRef]
- Jeong, H.J. Diagnosis of renal transplant rejection: Banff classification and beyond. Kidney Res. Clin. Pract. 2020, 39, 17–31. [Google Scholar] [CrossRef]
- Gwinner, W.; Metzger, J.; Husi, H.; Marx, D. Proteomics for rejection diagnosis in renal transplant patients: Where are we now? World J. Transpl. 2016, 6, 28. [Google Scholar] [CrossRef] [PubMed]
- Lepoittevin, M.; Kerforne, T.; Pellerin, L.; Hauet, T.; Thuillier, R. Molecular Markers of Kidney Transplantation Outcome: Current Omics Tools and Future Developments. Int. J. Mol. Sci. 2022, 23, 6318. [Google Scholar] [CrossRef] [PubMed]
- Finlayson, D.; Rinaldi, C.; Baker, M.J. Is Infrared Spectroscopy Ready for the Clinic? Anal. Chem. 2019, 91, 12117–12128. [Google Scholar] [CrossRef] [PubMed]
- Cunha, B.R.; Ramalhete, L.; Fonseca, L.P.; Calado, C.R.C. Fourier-Transform Mid-Infrared (FT-MIR) Spectroscopy in Biomedicine. In Essential Techniques for Medical and Life Scientists: A Guide to Contemporary Methods and Current Applications—Part II; Tutar, Y., Ed.; Bentham Science Publishers: Sharjah, United Arab Emirates, 2020; ISBN 9789811464867. [Google Scholar]
- Glassford, S.E.; Byrne, B.; Kazarian, S.G. Recent applications of ATR FTIR spectroscopy and imaging to proteins. Biochim. Biophys. Acta Proteins Proteom. 2013, 1834, 2849–2858. [Google Scholar] [CrossRef] [PubMed]
- Miller, L.M.; Bourassa, M.W.; Smith, R.J. FTIR spectroscopic imaging of protein aggregation in living cells. Biochim. Biophys. Acta Biomembr. 2013, 1828, 2339–2346. [Google Scholar] [CrossRef] [PubMed]
- Krimm, S.; Bandekar, J. Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Adv. Protein Chem. 1986, 38, 181–364. [Google Scholar] [CrossRef] [PubMed]
- Usoltsev, D.; Sitnikova, V.; Kajava, A.; Uspenskaya, M. Systematic FTIR spectroscopy study of the secondary structure changes in human serum albumin under various denaturation conditions. Biomolecules 2019, 9, 359. [Google Scholar] [CrossRef] [PubMed]
- Sadat, A.; Joye, I.J. Peak fitting applied to fourier transform infrared and raman spectroscopic analysis of proteins. Appl. Sci. 2020, 10, 5918. [Google Scholar] [CrossRef]
- Gwinner, W.; Karch, A.; Braesen, J.H.; Khalifa, A.A.; Metzger, J.; Naesens, M.; Van Loon, E.; Anglicheau, D.; Marquet, P.; Budde, K.; et al. Noninvasive Diagnosis of Acute Rejection in Renal Transplant Patients Using Mass Spectrometric Analysis of Urine Samples: A Multicenter Diagnostic Phase III Trial. Transplant. Direct 2022, 8, e1316. [Google Scholar] [CrossRef]
- Lim, J.; Lee, C.-H.; Kim, K.Y.; Jung, H.; Choi, J.-Y.; Cho, J.; Park, S.; Kim, Y.-L.; Baek, M.; Park, J.B.; et al. Novel urinary exosomal biomarkers of acute T cell-mediated rejection in kidney transplant recipients: A cross-sectional study. PLoS ONE 2018, 13, e0204204. [Google Scholar] [CrossRef]
- Blydt-Hansen, T.D.; Sharma, A.; Gibson, I.W.; Mandal, R.; Wishart, D.S. Urinary Metabolomics for Noninvasive Detection of Borderline and Acute T Cell–Mediated Rejection in Children After Kidney Transplantation. Am. J. Transplant. 2014, 14, 2339–2349. [Google Scholar] [CrossRef] [PubMed]
Characteristics | No Cellular Rejection (n = 17) | Cellular Rejection (n = 11) | p-Value | ||
---|---|---|---|---|---|
Average or % | S.D. | Average or % | S.D. | ||
Age (years) | 47.9 | 15.8 | 48.7 | 16.4 | 0.901 |
Sex (% male) | 59% | - | 36% | - | 0.084 |
Donor type (% from deceased donor) | 88% | - | 100% | - | 0.668 |
Organ (% of kidneys alone) | 76% | - | 64% | - | 0.760 |
Rejection classification grade at time of biopsy | |||||
Cellular borderline | - | 18.2% (2) | |||
Cellular I | - | 63.6% (7) | |||
Cellular II | - | 18.2% (2) | |||
No alteration | 41.2% (7) | - | |||
Acute tubular necrosis | 17.6% (3) | - | |||
Previous rejection treated | 11.8% (2) | - | |||
HIV nephropathy | 5.9% (1) | - | |||
IgA nephropathy recurrence | 11.8% (2) | - | |||
IF/TA | 5.9% (1) | - | |||
PVAN | 5.9% (1) | - | |||
Serum creatinine | 2.23 | 1.1 | 2.18 | 0.79 | 0.99 |
Blood urea nitrogen | 94.2 | 51.6 | 86.6 | 26.8 | 0.93 |
Blood pressure | |||||
Diastolic | 73.7 | 8.7 | 77.1 | 9.7 | 0.303 |
Systolic | 131.8 | 19.7 | 140.8 | 23.1 | 0.255 |
Glomerular filtration rate estimate | 39.8 | 24.55 | 31.41 | 8.72 | 0.555 |
Spectra Pre-Processing Method | AUC | Accuracy | F1 | Precision | Sensitivity | Specificity |
---|---|---|---|---|---|---|
Normalized and baseline correction | 0.193 | 0.429 | 0.385 | 0.333 | 0.455 | 0.412 |
Second derivative | 0.885 | 0.750 | 0.759 | 0.611 | 1.000 | 0.588 |
Normalized second derivative | 0.719 | 0.536 | 0.552 | 0.444 | 0.727 | 0.412 |
The best feature from second derivative (1524 cm−1) | 0.824 | 0.893 | 0.880 | 0.786 | 1.000 | 0.824 |
The 2 best features from second derivative (previous plus 1631 cm−1) | 0.952 | 0.821 | 0.783 | 0.750 | 0.818 | 0.824 |
The 3 best features from second derivative (previous plus 1505 cm−1) | 0.973 | 0.929 | 0.917 | 0.846 | 1.000 | 0.882 |
The 4 best features from second derivative (previous plus 1558 cm−1) | 0.984 | 0.929 | 0.917 | 0.846 | 1.000 | 0.882 |
The 5 best features from second derivative (previous plus 1575 cm−1) | 0.963 | 0.929 | 0.917 | 0.846 | 1.000 | 0.882 |
The 6 best features from second derivative (previous plus 1599 cm−1) | 0.963 | 0.929 | 0.917 | 0.846 | 1.000 | 0.882 |
The 7 best features from second derivative (previous plus 1673 cm−1) | 0.952 | 0.821 | 0.800 | 0.714 | 0.909 | 0.765 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramalhete, L.; Vieira, M.B.; Araújo, R.; Vigia, E.; Aires, I.; Ferreira, A.; Calado, C.R.C. Predicting Cellular Rejection of Renal Allograft Based on the Serum Proteomic Fingerprint. Int. J. Mol. Sci. 2024, 25, 3844. https://doi.org/10.3390/ijms25073844
Ramalhete L, Vieira MB, Araújo R, Vigia E, Aires I, Ferreira A, Calado CRC. Predicting Cellular Rejection of Renal Allograft Based on the Serum Proteomic Fingerprint. International Journal of Molecular Sciences. 2024; 25(7):3844. https://doi.org/10.3390/ijms25073844
Chicago/Turabian StyleRamalhete, Luís, Miguel Bigotte Vieira, Rúben Araújo, Emanuel Vigia, Inês Aires, Aníbal Ferreira, and Cecília R. C. Calado. 2024. "Predicting Cellular Rejection of Renal Allograft Based on the Serum Proteomic Fingerprint" International Journal of Molecular Sciences 25, no. 7: 3844. https://doi.org/10.3390/ijms25073844
APA StyleRamalhete, L., Vieira, M. B., Araújo, R., Vigia, E., Aires, I., Ferreira, A., & Calado, C. R. C. (2024). Predicting Cellular Rejection of Renal Allograft Based on the Serum Proteomic Fingerprint. International Journal of Molecular Sciences, 25(7), 3844. https://doi.org/10.3390/ijms25073844