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Abstract: Identification of druggable proteins can greatly reduce the cost of discovering new potential
drugs. Traditional experimental approaches to exploring these proteins are often costly, slow, and
labor-intensive, making them impractical for large-scale research. In response, recent decades have
seen a rise in computational methods. These alternatives support drug discovery by creating ad-
vanced predictive models. In this study, we proposed a fast and precise classifier for the identification
of druggable proteins using a protein language model (PLM) with fine-tuned evolutionary scale
modeling 2 (ESM-2) embeddings, achieving 95.11% accuracy on the benchmark dataset. Further-
more, we made a careful comparison to examine the predictive abilities of ESM-2 embeddings and
position-specific scoring matrix (PSSM) features by using the same classifiers. The results suggest that
ESM-2 embeddings outperformed PSSM features in terms of accuracy and efficiency. Recognizing
the potential of language models, we also developed an end-to-end model based on the generative
pre-trained transformers 2 (GPT-2) with modifications. To our knowledge, this is the first time a
large language model (LLM) GPT-2 has been deployed for the recognition of druggable proteins.
Additionally, a more up-to-date dataset, known as Pharos, was adopted to further validate the
performance of the proposed model.
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1. Introduction

Druggability refers to the potential of a target to be effectively influenced by pharma-
ceutical interventions. Meanwhile, the notion of the “druggable genome” [1] was initially
introduced in 2002, characterized by a protein’s potential to interact with a modulator and
yield a desired therapeutic outcome. They joined forces to coin the term “druggable pro-
tein”, which can be used in a narrow sense to describe a protein’s capability to interact with
small molecule ligands that modify its function or in a broader sense to signify a protein’s
ability as a viable therapeutic target in the treatment of human diseases. Druggable proteins
play a crucial role in drug development and discovery. Yet, assessing the druggability of
a potential target protein is a complex and challenging task with no universally accepted
solution [2].

Traditionally, the primary methods for identifying novel druggable proteins have
centered on biochemistry techniques, encompassing approaches like pocket estimation
methods [3], the detection of protein-protein interaction sites [4,5], and ligand-specific
methods [6]. However, these technical approaches face obstacles such as low efficiency,
high costs, and a substantial dependence on advanced equipment and skilled personnel.
Additionally, a protein target found to be undruggable late in the drug discovery process
represents a significant expenditure of time and resources within the pharmaceutical
industry [7]. Time-saving and good efficiency are crucial in the prescreening process. To
overcome these limitations, computational strategies have been applied with the help of
large amounts of data [8].
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Machine learning methods have been used and continue to yield better results with
the surging protein sequence databases in distinguishing druggable proteins from undrug-
gable ones. In 2012, support vector machine (SVM) and random forest (RF) algorithms
were employed by Yu et al. [5], utilizing data sourced from the DrugBank database [9]. In
2016, Jamali et al. pioneered the use of a neural network classifier for predicting druggable
proteins; physicochemical properties, amino acids, and dipeptides were chosen as fea-
tures [10]. This approach attained a cross-validation accuracy of 92.10%. They developed a
balanced dataset that has been extensively utilized in subsequent studies. Lin et al., in 2018,
extracted protein features using dipeptide composition, pseudo-amino acid composition,
and reduced sequence, followed by a genetic algorithm for feature selection [11]. They
improved the SVM classifier with bagging ensemble learning for prediction, achieving an
accuracy of 93.78%. In 2022, Yu et al. implemented a hybrid deep learning model with
dictionary encoding, dipeptide composition, tripeptide composition, and composition-
transition-distribution, achieving an accuracy of 92.40% and a recall of 94.50% (higher than
Linetal.) [12].

Many researchers have employed machine learning and deep learning techniques,
including neural networks [10,12], SVM [13], RF [5], etc. [14]. However, within the realm
of bioinformatics, natural language processing (NLP) models are increasingly gaining
researchers’ interest [15]. Word embeddings are widely utilized for NLP tasks to capture
semantic characteristics and linguistic relationships within text data, converting raw text
into numerical vectors or metrics that facilitate the development of machine learning
(ML) models [16]. Notably, protein sequences bear a resemblance to natural languages in
human beings, as they are constructed from different amino acids, effectively forming a
‘language of life’ [17]. Recently, a new generation of deep-learning-based language models
has emerged, which is designed to generate embeddings for protein sequences. These
models, such as ESM-2 [18], UniRep [19], and ProtTrans [17], are trained on extensive
protein sequence datasets and excel at creating informative protein representations solely
from sequence information.

In this paper, we employed evolutionary scale modeling 2 (ESM-2) for the analysis
of druggable proteins across several well-established datasets, including DrugBank [9],
Pharos [20], and those used in other papers. The data we used is the pure protein sequence.
When applying traditional machine learning algorithms, we used ESM-2 to generate 320-
dimensional vectors and then input them into classifiers like SVM, naive Bayes (NB) [21],
and extreme gradient boosting (XGB) [22] using the Python scikit-learn library [23]. We also
incorporated deep learning techniques such as capsule networks (CapsNets) and bidirec-
tional long short-term memory (BiLSTM) [24] networks, conducting extensive training over
many epochs to optimize parameters. For instance, in the case of CapsNets, we explored
various kernel sizes to determine the optimal settings. To maximize ESM-2's capabilities,
we fine-tuned it by training on Jamali’s dataset [10]. This fine-tuning process sought to
produce better 320-dimensional embeddings, which are aimed at enhancing performance
metrics for distinguishing druggable proteins within the same predictive model framework.
To broaden the scope of our research, we also investigated features through non-machine-
learning techniques, including a position-specific scoring matrix (PSSM) using the Blast
software (v2.13.0) [25]. Our analysis revealed that pre-trained models marginally surpass
PSSM-based features in terms of both embedding efficiency and overall accuracy. Moreover,
we presented a novel methodology by leveraging a language model originally intended
for purposes other than protein-related tasks to evaluate its efficacy in druggable protein
classification. This marked the first instance of directly employing a modified generative
pre-trained transformer 2 (GPT-2) [26] language model for classification problems related
to druggable proteins. Figure 1 outlines the main framework of our research, tracing the
pathway from protein sequence data through a series of predictive models, culminating in
the identification of druggable proteins, as described in the preceding text.
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Figure 1. Flow chart of our study. ESM-2: evolutionary scale modeling 2; 320D: 320 dimensions; SVM:

i

support vector machine; DNN: deep neural network; NB: naive bayes; XGB: extreme gradient boost-
ing; CapsNet: capsule networks; BILSTM: bidirectional long short-term memory; RF: random forest;
DPC-PSSM: dipeptide composition position-specific scoring matrix; KSB-PSSM: K-Separated-Bigrams
position-specific scoring matrix; GPT2: generative pre-trained transformer 2; 400D: 400 dimensions;
1200D: 1200 dimensions.

2. Results and Discussion
2.1. Machine Learning Classifiers Performance

We utilized 5-fold cross-validation (CV) to guarantee the selection of the most effective
model and to prevent overfitting. Detailed information regarding the division of our dataset
into training, validation, and test sets is comprehensively outlined in Section 3.1. Following
this, Table 1 assessed the performance of traditional classifiers on Jamali’s dataset, while
Table 2 addressed the Pharos dataset. The terms accuracy, precision, sensitivity, specificity,
F1 Score, and Matthews Correlation Coefficient are abbreviated as ACC, P, SN, SP, F1, and
MCC, respectively. The corresponding receiver operating characteristic (ROC) curves are
shown in Figure 2. The Shapley Additive Explanations (SHAP) [27] analysis of XGB, SVM,
and RF for Jamali’s dataset is shown in Figure 3. We calculate the average magnitude of
SHAP values for each feature across all samples by first taking the absolute values and then
averaging these. Specifically, we sum the absolute SHAP values for the S-FPSSM, DPC-
PSSM, and KSB-PSSM feature groups (each containing 400 features) and then compute
the average importance of these groups. This approach quantifies the impact of each
feature group on the models’ predictions. Through further calculation, it is found that
S-FPSSM exhibits the highest mean absolute SHAP value, making it the most important
PSSM feature, followed by DPC-PSSM and KSB-PSSM. For S-PSSM, higher values strongly
correlate with a protein being druggable, as seen from the placement and color of the dots.
Conversely, lower values decrease the likelihood. The magnitude of a SHAP value indicates
the strength of a feature’s influence on the model’s decision.

Comparatively, the ESM-2 encoding method generally resulted in better classifier
performance across both datasets, with SVM and XGB classifiers frequently achieving the
highest scores in various metrics. The best accuracy on Jamali’s dataset was achieved
with ESM-2 encoding and an SVM classifier, reaching 0.9326. For the Pharos dataset, the
highest accuracy was obtained using ESM-2 embedding with an XGB classifier, achieving
an accuracy of 0.8739. In the SHAP value analysis, S-FPSSM was the top feature influencing
the model’s predictions, ranking above DPC-PSSM and KSB-PSSM in terms of combined
feature importance.
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Table 1. Machine learning classifiers on Jamali’s dataset (test set).

Encoding Classifier ACC P SN SP F1 MCC
SVM 0.8271 0.8280 0.8214 0.8326 0.8247 0.6541

+0.0169 £0.0269 +0.0327 +0.0176 +0.0263 +0.0309

XCB 0.9037 0.9043 0.9007 0.9066 0.9025 0.8074

PSSM (1200 dimensions) +0.0245 £0.0203 +0.0332 +0.0146 +0.0200 +0.0212
NB 0.7347 0.8232 0.5912 0.8754 0.6882 0.4875

+0.0295 +0.0503 +0.0646 +0.0256 +0.0471 +0.0597

RE 0.8664 0.8593 0.8730 0.8599 0.8661 0.7329

+0.0269 +0.0341 +0.0220 +0.0169 +0.0268 +0.0276

SVM 0.9326 0.9406 0.9196 0.9449 0.9300 0.8652

+0.0087 +0.0121 +0.0114 +0.0098 +0.0158 +0.0154

XGB 0.9065 0.8951 0.9151 0.8983 0.9050 0.8132

ESM-2 (320 dimensions) +0.0170 +0.0179 +0.0246 +0.0114 +0.0289 +0.0369
NB 0.8847 0.8904 0.8705 0.8983 0.8803 0.7694

+0.0153 +0.0156 +0.0247 £0.0250 +0.0258 +0.0289

RE 0.8913 0.8990 0.8750 0.9067 0.8868 0.7825

+0.0177 +0.0237 +0.0331 +0.0127 +0.0135 +0.0318

Abbreviations: SVM: support vector machine; XGB: extreme gradient boosting; NB: naive bayes; RF: random
forest; ACC: accuracy; P: precision; SN: sensitivity; SP: specificity; F1: F1 Score; MCC: Matthews Correlation
Coefficient; PSSM: position-specific scoring matrix; ESM-2: evolutionary scale modeling 2.
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Figure 2. ROC curves for different datasets using various features with a 5-fold CV on the test set.
Abbreviations: SVM: support vector machine; XGB: extreme gradient boosting; NB: naive bayes;
RF: random forest; AUC: accuracy; ESM-2: evolutionary scale modeling 2; ROC: receiver operating
characteristic; CV: cross-validation.
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Figure 3. SHAP analysis of the importance of PSSM-based features on Jamali’s dataset. (a) XGB;
(b) SVM; (c) RF. Abbreviations: SHAP: Shapley Additive Explanations; XGB: extreme gradient
boosting; SVM: support vector machine; RF: random forest; DPC-PSSM: dipeptide composition
position-specific scoring matrix; KSB-PSSM: K-Separated-Bigrams position-specific scoring matrix.

Table 2. Machine learning classifiers on Pharos dataset (test set).

Encoding Classifier ACC P SN SP F1 MCC
SVM 0.8156 0.8527 0.7692 0.8633 0.8088 0.6347
+0.0296 40.0287 +0.0326 40.0135 +0.0311 +0.0470
XCB 0.8226 0.8842 0.7482 0.8992 0.8106 0.6540
PSSM (1200 dimensions) +0.0254 £0.0198 +0.0343 $0.0121 +0.0212 +0.0429
NB 0.7234 0.7731 0.6433 0.8057 0.7022 0.4546
+0.0356 +0.0301 +0.0431 +0.0198 +0.0232 +0.0553
RE 0.8120 0.8947 0.7132 0.9136 0.7937 0.6387

+0.0155 +0.0217 +0.0236 +0.0292 £0.0252 +0.0370
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Table 2. Cont.
Encoding Classifier ACC P SN SP F1 MCC
SVM 0.8455 0.8264 0.8547 0.8372 0.8403 0.6911
+0.0285 +0.0352 +0.0126 +0.0194 +0.0356 +0.0419
XCB 0.8739 0.8208 0.9401 0.8139 0.8764 0.7562
ESM-2 (320 di ons) +0.0192 40.0148 +0.0150 +0.0236 +0.0142 +0.0359
1MENSIoNS NB 0.7195 0.6578 0.8547 0.5968 0.7434 0.4641
+0.0257 40.0411 +0.0266 40.0303 +0.0325 +0.0606
RE 0.8739 0.8307 0.9207 0.8294 0.8749 0.7528
+0.0211 +0.0157 +0.0305 +0.0359 +0.0167 +0.0227

Abbreviations: SVM: support vector machine; XGB: extreme gradient boosting; NB: naive bayes; RF: random
forest; ACC: accuracy; P: precision; SN: sensitivity; SP: specificity; F1: F1 Score; MCC: Matthews Correlation
Coefficient; PSSM: position-specific scoring matrix; ESM-2: evolutionary scale modeling 2.

2.2. Deep Learning Classifiers Performance

In this study, we extended our research to deep learning models on 5-fold CV, di-
verging from previous works that did not employ neural network-based classifiers [11].
The training was conducted on Jamali’s dataset and Pharos dataset, employing DNNSs,
CapsNets, and BiLSTM networks. Tables 3 and 4 show the results of the two datasets. The
ESM-2 encoding consistently outperformed PSSM across both Jamali and Pharos datasets,
leading to higher performance with various classifiers. Specifically, CaspNet with ESM-2
encoding achieved the highest accuracy on Jamali’s dataset (0.9340), while DNN with ESM-
2 encoding showed superior performance on the Pharos dataset (0.9037). This indicates
the effectiveness and generalizability of ESM-2 encoding in enhancing classifier outcomes
despite its lower dimensionality compared to PSSM.

Table 3. Deep learning classifiers on Jamali’s dataset (test set).

Encoding Classifier ACC P SN SP F1 MCC

DNN 0.8827 0.9318 0.8233 0.9409 0.8742 0.7703
PSSM (1200 dimensions) +0.0134 +0.0162 +0.0139 +0.0198 +0.0271 +0.0347
CapsNet 0.8740 0.8245 0.9495 0.7989 0.8826 0.7568
+0.0173 +0.0284 +0.0147 +0.0277 +0.0137 +0.0276

BIiLSTM 0.8867 0.9138 0.8514 0.9213 0.8815 0.7750
+0.0144 +0.0167 £0.0229 +0.0226 +0.0125 +0.0304

DNN 0.9105 0.8991 0.9145 0.9069 0.9067 0.8209

ESM-2 (320 dimensions) +0.0160 +0.0141 +0.0153 +0.0297 +0.0220 +0.0285
CapsNet 0.9340 0.9128 0.9544 0.9151 0.9331 0.8690

+0.0129 +0.0312 +0.0164 +0.0119 +0.0211 +0.0252

BIiLSTM 0.8984 0.8736 0.9209 0.8778 0.8966 0.7979

+0.0171 +0.0184 +0.0131 +0.0172 +0.0219 +0.0278

Abbreviations: DNN: deep neural network; CapsNet: capsule network; BILSTM: bidirectional long short-term
memory; ACC: accuracy; P: precision; SN: sensitivity; SP: specificity; F1: F1 Score; MCC: Matthews Correlation
Coefficient; PSSM: position-specific scoring matrix; ESM-2: evolutionary scale modeling 2.

For the CapsNets, we trained them with different kernel sizes since they achieved the
best results on Jamali’s dataset. The evaluation of the ACC and MCC on the independent
test set is shown in Figure 4. This plot facilitated an understanding of the impact that
different kernel sizes and epochs have on the model’s performance, revealing that a kernel
size of three was the most effective for this dataset.
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Table 4. Deep learning classifiers on Pharos dataset (test set).
Encoding Classifier ACC P SN SP F1 MCC
DNN 0.8886 0.8789 0.9074 0.8689 0.8929 0.7774
40.0120 40.0218 4+0.0197 +0.0319 4+0.0317 +0.0293
. . 0.8602 0.9026 0.8148 0.9078 0.8564 0.7245
PSSM (1200 dimensions)  CapsNet 4+0.0193 +0.0146 40.0246 +0.0177 4+0.0119 +0.0362
BILSTM 0.8578 0.8333 0.9028 0.8107 0.8667 0.7175
40.0137 4+0.0179 40.0253 +0.0214 40.0198 +0.0272
DNN 0.9037 0.8889 0.9119 0.8962 0.9003 0.8075
40.0164 +0.0243 4+0.0114 +0.0166 40.0226 +0.0203
. . 0.8997 0.8677 0.9318 0.8705 0.8986 0.8017
ESM-2 (320 dimensions)  CapsNet 4+0.0156 +0.0254 +0.0171 +0.0178 40.0170 +0.0206
BILSTM 0.8222 0.8870 0.7185 0.9167 0.7939 0.6516
40.0317 +0.0265 40.0382 +0.0445 40.0417 +0.0501

ACC

Epochs

Abbreviations: DNN: deep neural network; CapsNet: capsule network; BILSTM: bidirectional long short-term
memory; ACC: accuracy; P: precision; SN: sensitivity; SP: specificity; F1: F1 Score; MCC: Matthews Correlation
Coefficient; PSSM: position-specific scoring matrix; ESM-2: evolutionary scale modeling 2.

In Figure 5, we employed the Uniform Manifold Approximation and Projection
(UMAP) [28] to visualize the abstract features learned by different neural network ar-
chitectures from high-dimensional data. This data was extracted from the second-to-last
layer of each model, which typically contains the most meaningful representations for
classification tasks, just prior to the final decision-making layer. In the plot below, 1 rep-
resented druggable, and 0 represented undruggable. Two datasets (Jamali’s dataset and
Pharos), two different features (1200-dimensional PSSM features and 320-dimensional
esm2_t6_8M_UR50D embeddings), and three kinds of neural networks (BiLSTM, CapsNet,
DNN) were used, resulting in 12 plots. The purpose of these visualizations is to com-
pare how different architectures organize and differentiate the data based on the learned
features. Observations from these plots reveal distinct patterns of data clustering, which
are significantly influenced by the choice of embedding technique and the nature of the
dataset used. These patterns provide insights into the effectiveness of each architecture in
distinguishing between druggable and undruggable proteins, thereby guiding the selection
of the most suitable model and features for the identification.

1250
1240
1240
220 1 1230
1220
200

8 210
= 08 < 200
180
4190
07
160 180
1/1 170
140 300 9 160
7
5 150
Epochs 3 .
. Kernel Size
3 Kernel Size 120
(a) (b)

Figure 4. ACC and MCC plots of CapsNets with various kernel sizes across different training epochs.
(a) ACC; (b) MCC. Abbreviations: ACC: accuracy; MCC: Matthews Correlation Coefficient; CapsNets:
capsule networks.
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Figure 5. UMAP visualization on two datasets with different features and different models. Ab-
breviations: ESM2: evolutionary scale modeling 2; BILSTM: bidirectional long short-term memory;
CapsNet: capsule network; DNN: deep neural network.

2.3. Performance Variance Analysis

In the case of the Pharos dataset, which was used in its pure form without being
integrated with other datasets, there were no existing benchmark comparisons. Thus, we
opted to compare it with Jamali’s dataset. When comparing the ACC of the Pharos dataset
to Jamali’s dataset, using identical types of features and classifiers, it became apparent that
Jamali’s dataset yielded slightly better results. Two reasons accounted for the differences in
our findings. Firstly, the reduced size of the Pharos dataset, intended to create a balanced
dataset, resulted in the elimination of many protein sequences. Despite containing over
20,000 protein sequences, the Pharos dataset suffered from a lack of balance, leaving only
704 sequences that could be regarded as reliably druggable. This was significantly less
than Jamali’s dataset, which had over 1200 druggable proteins. The diminished size of
Pharos’s training set could adversely affect the model’s learning capabilities. Another key
difference lay in the labeling variance between the datasets. For example, 43 proteins were
classified differently in terms of druggability in the Pharos dataset and Jamali’s dataset, with
37 marked as druggable in Pharos but not in Jamali’s, and vice versa for 6 (Figure 6). This
discrepancy could be attributed to the advancements in the pharmaceutical industry, given
that the Pharos dataset was relatively more recent. Furthermore, the labeling attributes
in both datasets differed. Jamali’s dataset contained labels marked as undruggable that
were classified as Tchem in Pharos, whereas Tchem labels indicate the ability to bind small
molecules with high potency [29]. It's noteworthy that numerous Tchem entities, which could
potentially be classified as Tclin (druggable), were currently categorized as undruggable. This
was a common issue in the classification of druggable proteins. As the field progresses, many
proteins initially deemed negative in our training sets could turn out to be positive. These
three factors likely contributed to the variance observed between the two datasets.

Label Difference

334 6 328

druggable
|

400

- 300

Jamali's Dataset

undruggable

317 267 85 756 - 200

-100

! !
Tdark Tchem
Pharos Dataset

I
Tclin Tbio

Figure 6. Heat map of labeling differences for the common protein sequences across these two
datasets, totaling 2101 protein sequences.
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2.4. Comparison with State-of-the-Art Methods

In our study, we evaluated our models against earlier classifiers using Jamali’s dataset.
Table 5 displays the comparison results, with all computational findings sourced from the
papers that introduced these models. Our most effective model emerged as the fine-tuned
ESM-2 using Jamali’s dataset with CapsNet. We also drew the protein contact maps of
our fine-tuned model (Figure 7). The visualizations are matrix (generated by ESM-2) plots
where each element of the matrix corresponds to a pair of amino acids in the protein
sequence. The color intensity or shading in each cell of the matrix indicates the likelihood
or strength of interaction between these amino acid pairs. It can be observed that the contact
map generated by our fine-tuned model, shown in the second row, focuses on specific areas.
This suggests that the model is well-trained. Notably, the model excelled in speed, requiring
only a few minutes to predict a sequence-based protein dataset when running on platforms
like Google Colab or Kaggle. This efficiency is a significant improvement over traditional
methods that rely on handcrafted features, making our approach more effective in feature
generation and prediction. The modified GPT-2 model does not achieve very good results;
however, as an end-to-end model, it does not require any feature generation tasks.

i 3 Ui J

Figure 7. Protein contact maps. The first row is the underfitting ESM-2 model, the second row is the fine-

tuned one on Jamali’s dataset, and the third row is the original ESM-2 model. For each row, it is labeled
as undruggable protein (Jamali’s dataset), druggable protein (Jamali’s dataset), undruggable protein
(Pharos dataset), and druggable protein (Pharos dataset). For each column, the protein is the same.

Table 5. Performance comparison with state-of-the-art models.

Model ACC SN SpP F1 MCC

DrugMiner [10] 0.9210 0.9280 0.9134 0.9241 0.8417
GA-Bagging-SVM [11] 0.9378 0.9286 0.9445 0.9358 0.8781
XGB-DrugPred [30] 0.9486 0.9375 0.9574 0.9417 0.8900
DrugFinder [31] 0.9498 0.9633 0.9683 0.9460 0.8996
Modified GPT-2 0.9282 0.9332 0.9224 0.9332 0.8556
Fine-tunned ESM-2 with CapsNet 0.9511 0.9683 0.9691 0.9512 0.9011

Abbreviations: ACC: accuracy; SN: sensitivity; SP: specificity; F1: F1 Score; MCC: Matthews Correlation Coefficient;
GPT-2: generative pre-trained transformer 2; GA-Bagging-SVM: high-level abbreviations for the model proposed
in the original article; GA: Genetic Algorithm; Bagging: Bootstrap Aggregating; SVM: Support Vector Machine;
XGB-DrugPred: high level abbreviations for the model proposed in the original article; XGB: eXtreme Gradient
Boosting; DrugPred: Drug Prediction.
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2.5. PSSM Versus PLM

PSSM excels in pinpointing protein domains and functional sites by using evolutionary
data. In contrast, the protein language model (PLM) broadens this scope by using large
datasets to predict various biological properties, including structure, function, and interac-
tions. This approach complements the detailed insights gained from PSSM with extensive
predictive capabilities. In the comparative analysis of classification tasks in this study, it has
been observed that fine-tuning embeddings from the ESM-2 model demonstrate marginally
superior performance over PSSM features. However, this outcome could be significantly
influenced by the specific datasets employed. The selection of varied PSSM features and
the choice of different pre-trained models are factors that might also affect these results.
Notwithstanding, when considering practicality, pre-trained models hold an advantage
due to their time efficiency and effective utilization of computational resources, particularly
GPU power. This contrasts with the PSSM approach, which can be notably time-intensive
as it iterates through the entire dataset using CPU.

2.6. Web Server

Previous research has significantly advanced our understanding of druggable proteins.
To make the latest findings accessible, some researchers have developed web servers. For
example, Jamali et al. established a web server (https://www.drugminer.org/ (accessed
on 19 March 2024)) that enables users to explore druggable proteins identified in their
research, along with the comprehensive dataset utilized. Similarly, Arwa Raies et al.
introduced a web application (http://drugnomeai.public.cgr.astrazeneca.com (accessed on
19 March 2024)) that allows for the visualization of druggability predictions and essential
features that determine gene druggability, categorized by disease type and modality [32].
Inspired by these state-of-the-art efforts, we have launched a web server available at
https:/ /www.druggableprotein.com (accessed on 19 March 2024). Current web servers
related to druggable proteins are shown in Table 6. The web application interface is shown
in Figure 8. Running on a computer with 1 core and 2 GB of RAM, this platform offers
users the capability to upload FASTA files for prediction, as well as to generate fine-tuned
ESM-2 embeddings and 1200D PSSM embeddings.

DRUGGABLE PROTEIN

{5l Aot We have developed a simple web server that predicts druggable proteins using our
e classification model. This model generates a 1200-dimensional feature matrix based on

‘ Predict PSSM, utilizing the methods proposed in our paper. It also produces 320-dimensional
fine-tuned ESM2 embeddings. You can upload a FASTA file, and we will process the

ﬁ Resul prediction for you. However, due to computational power restrictions, it is not

advisable to upload proteins with excessively long sequences.

Eﬁ Contact
L Select FASTA File
-~ FAQ
Upload File Download File

select a fasta file

Figure 8. The web server interface.
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Table 6. Available web servers on druggable protein research.

Web Server Link Summary Data Available

https:/ /www.drugminer.org
http:/ /drugnomeai.public.cgr.astrazeneca.com

https:/ /druggableprotein.com (ours)

Search for druggable protein and view

their features yes
Provide visualization and clear explanation

of the findings yes
Upload files in FASTA format and receive yes

predicted results

3. Materials and Methods
3.1. Datasets

In our research, we worked with two datasets for the analysis. Initially, we picked the
DrugMiner dataset [10], a well-regarded benchmark created by Jamali in 2016. This is quite
a balanced dataset. It includes 1224 druggable proteins and 1319 undruggable proteins. The
positive samples, which are proteins approved as drug targets by the FDA and correspond
to a variety of diseases like leukemia, thrombocytopenia, angina pectoris, and hypertension,
were sourced from the DrugBank database [9]. On the other hand, the negative samples,
proteins that cannot be considered drug targets, were collected from Swiss-Prot, employing
the methods proposed by Li et al. [33] and Bakheet et al. [34]. Additionally, we used a highly
imbalanced dataset sourced from Pharos [20]. This original dataset consists of four classes:
Tbio (12,277) [35], Tchem (1915), Tdark (5516), and Tclin (704) [36], with 20,142 protein
sequences in total. Among these classes, we only used two of them, Tclin and Tdark.
Tclin is recognized as the druggable category. Tdark comprises unstudied proteins, which
are mainly considered undruggable. However, it may still contain some proteins with
potential druggability.

We kept Jamali’s dataset in its entirety, which was also adopted by many other research
papers [11,12,14,37]. For the Pharos dataset, we encountered a distinction where “Tdark”
represented the unstudied proteins, while “Tbio” and “Tchem” exhibited varying degrees
of druggability. To address this ambiguity, we conducted two methods on this dataset.

Method 1: We began by selecting all the “Tclin” terms (704 in total) and subsequently
employed random sampling from the “Tdark” dataset while maintaining result repro-
ducibility by Python’s random seed (set to 42) to form the final dataset (704 out of 5516).
This approach was adopted to ensure a balanced dataset, resulting in 704 positive samples
(druggable proteins) and 704 negative samples (undruggable proteins).

Method 2: We directly designated “Iclin” terms as positive data, while the remaining
terms were considered negative. To maintain dataset balance, we applied the SMOTE
(Synthetic Minority Over-sampling Technique) method [38], resulting in 11,432 positive
samples (druggable proteins) and 11,432 negative samples (undruggable proteins).

Although Method 2 achieved a high accuracy during the training process, it under-
performed in the validation or test stages. Consequently, Method 1 was employed for the
Pharos dataset in this study.

We divided the Jamali’s dataset and Pharos dataset into training and testing sets
with an 80:20 ratio. Within the training set, we further split the data into 80% for training
and 20% for validation. Table 7 details the number of samples used in each process.
Table 8 provides a simple description of the range of protein sequence lengths and other
statistical information, including the mean and standard deviation rounded to integer
values for clarity.


https://www.drugminer.org
http://drugnomeai.public.cgr.astrazeneca.com
https://druggableprotein.com

Int. J. Mol. Sci. 2024, 25, 4507 12 of 20
Table 7. Details of the samples in each process.
Dataset Train Train Validation  Validation Test Test
Positive Negative Positive Negative Positive Negative
Jamali’s 784 845 196 211 244 263
Pharos 452 452 112 112 140 140
Table 8. Summary of the data.
Dataset Longest Shortest Mean Medium Standard Deviation
Jamali’s 5762 8 506 390 521
Pharos 34,350 2 554 411 528

3.2. Feature Representation
3.2.1. PLM Embeddings

A PLM can create an embedding of consistent size for proteins of any length. Among
all sorts of language models, the ESM-2 model class was chosen for its speed and ef-
fectiveness [19]. The ESM-2 language models were trained using the masked language
modeling objective, which involves predicting the identity of amino acids randomly se-
lected within a protein sequence, relying on their contextual information within the re-
mainder of the sequence [18]. The training approach enables the model to capture depen-
dencies between amino acids. The model can generate a numerical vector of 1280 dimen-
sions (esm2_t33_650M_URS50D) or 640 dimensions (esm2_t12_35M_URS50D) or 320 di-
mensions (esm2_t6_8M_URS50D) for each protein. For our research, we selected the
esm2_t6_8M_URS50D model, which produces a full output as a dictionary that includes
logits for language modeling predictions, attention weights, and contact predictions. In
our specific downstream classification task, we extracted the sixth representation layer
of this model, corresponding to the final layer, which yielded a 320-dimensional vector
output. Additionally, the attention contacts produced by the esm2_t6_8M_UR50D model
were utilized to draw protein contact maps [39]. These maps are crucial for identifying
potential targets for drug binding. To elucidate, a protein contact map offers a simplified
representation of a protein’s three-dimensional structure. It systematically records the prox-
imity of amino acids within the protein, with each contact point in the map representing a
pair of amino acids that are close together in three-dimensional space, typically within a
predetermined threshold distance. This 2D matrix representation, unlike the full atomic
coordinates, remains invariant regardless of the protein’s orientation and position. Such
a characteristic makes contact maps particularly suitable for analysis via computational
models, enabling simpler and more effective predictions by machine learning techniques
due to their reduced complexity compared to complete 3D structures.

3.2.2. PSSM Features

PSSM is often used to establish evolutionary patterns for extracting features. The
PSSM generated by Blast [25] is represented as a matrix with dimensions L*20, where L
denotes the protein sequence’s length. In this study, all the PSSM matrices were produced
by employing PSI-BLAST against the SWISS-PROT database [40]. This searching process
involves three iterations, using an E-value cutoff of 0.001 for multiple sequence alignment.
We concatenated three PSSM-based features, DPC-PSSM (400D), KSB-PSSM (400D), and
S-FPSSM (400D), to form a 1200-dimensional vector for each protein. The details about the
three PSSM features are shown below.

DPC-PSSM: By extending the traditional dipeptide composition (DPC) from the pri-
mary sequence to incorporate the PSSM, a new method termed DPC-PSSM has been
created [41]. This approach is designed to reflect the influence of local sequence order.
It calculates the frequency of each possible dipeptide (a pair of adjacent amino acids) in
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a protein sequence. With 20 standard amino acids in existence, there are 400 (20 x 20)
possible dipeptides. The 400-dimensional vector can be defined as:

Y = (Y11, Y1200+ Y2200+ - Y201 - - - Y2020) 1)

1 -

Yij =171 thi Pii XPry1,(1 < 1,j < 20). 2)

KSB-PSSM: K-Separated-Bigrams-PSSM builds upon the concept of dipeptide com-

position, focusing on pairs of amino acids that are distanced by ‘k’ intervening amino

acids [42]. By setting a key parameter k (we used k = 3), it calculates the transfer probability

between amino acids separated by two others, resulting in a 400-dimensional feature. The
calculation is shown below:

Y = (y11(k), -, y1.2006), y21(K), -, y2,20(K), - - Y200, - - - Y2020 (K)) T, 3)

L—k ..
vij(k) =Y 1 pri X prokj (1 <14,j <20). (4)

S-FPSSM: Derived from FPSSM by row transformation, S-FPSSM is a 400-dimensional
feature [43]. FPSSM itself is a matrix that filters out negative values in the original PSSM.
The calculation involves summing products of elements in the FPSSM and a delta func-
tion indicating the presence of a specific amino acid at a given position. The formula is
calculated as:

i L
Y](l) = Zk:l fpk,j X ék,i/ (5)
5ki:].if1'k:ai o
, e
{6k,i — 0 otherwise ! = ¥ =20). ©)

In the given equation, fpk,j is the value in the FPSSM’s kth row and jth column, ry is
the kth amino acid in the protein sequence, and a; is the ith ranked amino acid in the PSSM.
These three PSSM-based features enhance the classifier’s performance by fully capturing
the evolutionary information in protein sequences. We conducted a SHAP analysis on
the importance of three PSSM-based features using XGB as the classifier, following the
explanatory framework introduced by Lundberg et al. [27]. SHAP leverages game theory
principles to quantitatively evaluate the influence of various input features on prediction
outcomes, which assess the average marginal contribution of each feature across all possible
combinations, thus ensuring a fair attribution of each feature’s impact on model predictions.

3.3. Model Architecture
3.3.1. Machine Learning Methods

In this paper, we compared the classification performance of various traditional ma-
chine learning classifiers, such as SVM, RF, NB, and XGB, on selected features. We used
the scikit-learn package (v1.3.2) [23] to implement all these models. We employed the grid
search method for hyperparameters optimization, and Table 9 shows our final settings
using the Python scikit-learn library.

Table 9. Final hyperparameters for machine learning models.

Model Final Hyperparameters
SVM C =10, gamma = "scale’, decision_function_shape = "ovr’, kernel = "rbf’
RF n_estimators = 1000, max_depth = 3, random_state = 0, n_jobs = —1
NB priors = None, var_smoothing = 1 x 10~
max_depth = 15, learning_rate = 0.1, n_estimators = 2000, min_child_weight = 5, max_delta_step = 0,
XGB subsample = 0.8, colsample_bytree = 0.7, reg_alpha = 0, reg_lambda = 0.4, scale_pos_weight = 0.8,

objective = 'binary:logistic’, eval_metric = "auc’, seed = 1440, gamma = 0

Abbreviations: SVM: support vector machine; XGB: extreme gradient boosting; NB: naive bayes; RF: random forest.
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3.3.2. DNN

The deep neural network (DNN) architecture provides the foundational structure for
deep learning. Rooted in the principles of artificial neural networks (ANNSs), a traditional
machine learning algorithm, DNNs have been instrumental in advancing various research
and application fields. The key distinctions between DNNs and ANNSs lie in the depth
of hidden layers, the connections between layers, and the capability to learn features
effectively across diverse datasets. Essentially, a DNN is an evolved version of a multilayer
neural network featuring multiple hidden layers situated between the input and output
layers, often referred to as a multilayer perceptron (MLP) [44]. We devised a DNN featuring
three hidden layers with 180, 60, and 30 neurons, respectively, culminating in an output
layer with a single neuron. Each layer employed the ReLU activation function to introduce
non-linearity alongside a dropout strategy with a rate of 0.5 to prevent overfitting. The
model uses binary cross entropy as the loss function, is optimized with the Adam optimizer
at a learning rate of 0.001, and processes data in batches of 10. Figure 9 shows the DNN
architecture.

>0.5 druggable

<0.5 undruggable

Hidden Layer 3
Hidden Layer 2

Hidden Layer 1

Figure 9. DNN architecture.

3.3.3. CapsNet

CapsNets [45], which are variants of convolutional neural networks (CNNs) [46], have
emerged as a novel approach in the field of deep learning. Unlike CNNs, CapsNets are
structured to recognize hierarchical relationships within data, which is highly beneficial in
understanding complex structures like biological sequences. Like CNNs, CapsNets have
convolution layers, padding, and strides but do not have pooling layers, which are used
to reduce the spatial dimensions of the representation. Pooling, typically employed to
reduce the dimensions of data representations in these networks, often results in the loss of
essential spatial information. This loss is particularly problematic in biological sequences
where the detailed spatial relationships between various high-level features are critical for
accurate analysis and interpretation.

In a CapsNet, the primary structural unit is the ‘capsule’, a group of neurons whose
activity vector represents the instantiation parameters of a specific type of entity, such as an
object or an object part. The length of this activity vector represents the probability that the
entity exists, and its orientation encodes the instantiation parameters. This is a significant
shift from the scalar-output feature detectors of CNNs, allowing for a more dynamic and
interpretable approach. The model employs binary cross entropy as the loss function, uses
the Adam optimizer with a learning rate of 0.001, and convolutional layers with a kernel
size of 3 and a stride of 1. Figure 10 shows the CapsNet architecture.
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Figure 10. Capsule network architecture.

3.3.4. BILSTM

Long Short-Term Memory (LSTM) networks [47] are specialized subsets of Recurrent
Neural Networks (RNNs) designed to solve common issues like the vanishing gradient
problem found in traditional RNNs. They utilize a system of input, forget, and output
gates to control the flow of information, enabling them to selectively retain or discard
information over extended sequences. Building on the gating mechanism, BiLSTM [24]
networks further refine the LSTM networks by processing data in both forward and reverse
directions through two parallel LSTM layers.

Our BiLSTM model configuration included an input dimension of 320, a hidden
dimension of 64, and an output dimension of 2. This model processes data in batches of
16 and utilizes the Adam optimizer with a learning rate of 0.001 to optimize the model
parameters, incorporating binary cross entropy as the loss function. The architecture took
advantage of a bidirectional strategy to analyze sequences through an LSTM layer that
processes information in both forward and backward directions. This method allowed
for a comprehensive understanding of input features from both perspectives, significantly
enhancing prediction accuracy. Figure 11 shows the BILSTM architecture.

®

i LSTM  A—

druggable undruggable

/‘ BIiLSTM

Forward (h/)— LSTM | —> LSTM / ---[ LSTM, —> LSTM/ —

® ©®-© ©

Figure 11. BiLSTM network architecture.

3.4. LLM Solution: Modified GPT-2

ESM-2 is a transformer-based model designed for PLMs, but many large language
models (LLMs) already exist [45]. These LLMs should also be capable of doing down-
stream tasks, just like the ESM-2 model. Recognizing the potential of such models in tasks
beyond NLP, we adapted the GPT-2 [26] architecture to classify proteins as druggable
or undruggable.
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The original GPT-2 vocab size was 50,257; we changed it to 33, which matches the
alphabet size of ESM-2 models. We reduced the block size, number of heads, and layers to
accelerate prediction speed. The input to the model was the tokenized protein sequence, and
the output consisted of classification probabilities rather than embeddings, rendering this
task end-to-end. Essentially, we fed a pure protein sequence into the model, and it returned
classification results, indicating whether the sequence was druggable or undruggable.

We modified the GPT-2 model, which is written in Pytorch framework (https://
github.com/karpathy/nanoGPT (accessed on 19 March 2024)). The model started by
encoding the protein sequence into a unified representation, where the final embedding
was obtained by summing position embeddings and token embeddings (Figure 12a). These
embeddings were then transformed through a series of self-attention and feed-forward
neural network layers (transformer blocks), and finally, a softmax function was applied to
generate probabilities for the two classes (Figure 12b). The modified architecture introduced
a novel aspect by adapting GPT-2, initially designed for language understanding, to
effectively capture intricate patterns in protein data.
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Figure 12. The modified GPT-2 for classification. (a) The embedding technique; (b) The modified

architecture.

3.5. The Fine-Tuning Process

In the fine-tuning process, we trained the esm2_t6_8M_UR50D model with some
additional layers on Jamali’s dataset. This process was aimed at generating better 320-
dimensional embeddings.

Starting from the encoding of the protein sequences, we employed an alphabet com-
prising 33 characters, which is the same as the original ESM-2 models. This alphabet
included a unique ‘X’ symbol representing proteins absent in nature, alongside special-
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ized tokens designated for specific functions: ‘cls’ for classification, ‘unk’ for unknown
sequences, ‘eos’ for marking the end of sequences, and “pad” for sequence padding. A
protein of length L is encoded into a one-dimensional vector, also of length L, where each
element ranges from integer values of 0 to 33. This is achieved through dictionary encoding
using the specified alphabet. To address computational limitations, the contact prediction
head in our model utilizes an input feature size of 24, substantially reduced from the 120
features used in the standard ESM-2 model. We ensured a balanced dataset by aligning
and equalizing the number of positive and negative samples. Following the approach
used in the ESM-2 embedding with DNN architecture, we incorporated a fully connected
layer and a classification layer in our model. When using 320-dimensional embeddings
for downstream tasks, we extract the results before the fully connected layer and the
classification layer.

During the training process, proteins were initially sorted based on their sequence
length. Subsequently, a batch size of two was employed to ensure uniform padding to a
consistent length. Opting for a smaller batch size proves advantageous as it minimizes
excessive padding, mitigating information loss. The chosen loss function was binary cross-
entropy (BCE). Additionally, we analyzed the unsupervised self-attention map contact
predictions [47] in the representation layer to understand the attention allocation between
druggable and undruggable proteins. Attention contacts allow the model to focus on
different parts of the input sequence when producing a particular part of the output
sequence. This mechanism is analogous to how human attention works when we focus on
certain aspects of a visual scene or a piece of text.

3.6. Performance Evaluation

Our assessment of the predictive models for distinguishing druggable proteins in-
volved 5-fold CV and independent tests. By averaging the performance across different
data subsets, we ensured the model’s robustness and minimized overfitting. This method
allowed us to select the most consistent and reliable model across all folds. To evaluate the
performance of the proposed model, six standard metrics were utilized: accuracy (ACC),
precision (P), sensitivity (SN), specificity (SP), F1, and Matthews correlation coefficient
(MCC). These metrics were derived from the counts of true negatives (TN), true positives
(TP), false positives (FP), and false negatives (FN). Detailed calculations are shown below.

ACC =15 }TII;I;SJF FN @)
P ®)

SN = TPZ% 9)

SP = TNTJl:I FP 10)
F1=2 v (11)

* 2TP + FP + EN

MCC — (TP x TN) — (FP x FN) 12
~ /(TP +FN) x (TN + FP) x (TP + FP) x (TN + FN)

Furthermore, we employed ROC curves and the area under the curve (AUC) to
illustrate the model’s capability. The AUC value, which ranges from 0 to 1, serves as an
indicator of performance quality, with 1 denoting the best performance and 0 indicating
the worst. Notably, an AUC of 0.5 signifies performance equivalent to random prediction.
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4. Conclusions

In this study, we focused on identifying druggable proteins using two different
datasets. We explored various methods to create input features, particularly using the PLMs
and PSSMs, with a range of models, including machine learning classifiers (SVM, NB, RE,
XGB) and deep learning classifiers (DNN, CapsNet, BILSTM). The ESM-2 model performed
better than PSSM features in our tests on two datasets. This highlights the strength of PLMs
in predicting druggable proteins, suggesting that PLMs might offer an advantage over
traditional search methods. However, it’s important to consider that these results might be
influenced by the specific characteristics of the datasets used. The performance of PLMs
could also vary depending on the dataset context.

Crucially, our work underscores the transformative potential of PLMs in the realm
of protein classification through the deployment and fine-tuning of models like ESM-2.
These models, with their ability to generate robust protein feature embeddings, repre-
sent a promising frontier for future research in drug discovery and protein science. Fur-
thermore, although the modified GPT-2 model did not achieve the best performance in
our current setup, its inclusion marks a pioneering step towards integrating LLMs in
predicting druggable proteins. The flexibility and generalizability of PLMs and LLMs
suggest vast potential for broader applications in the field, and they may shed light on
other protein-related annotation tasks. The corresponding source code can be found at
https:/ /github.com/txz32102 /DruggableProtein (accessed on 19 March 2024), and the web
server is available at https://www.druggableprotein.com (accessed on 19 March 2024).
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