Brain–Periphery Interactions in Huntington’s Disease: Mediators and Lifestyle Interventions
Abstract
:1. Introduction
1.1. Systemic Metabolic Vulnerabilities in Huntington’s Disease
1.2. Mouse Models of Huntington’s Disease to Study Brain–Periphery Interactions
2. Potential Mediators of Brain–Periphery Communication
2.1. Circulating mHtt, Inflammatory, and Immune Factors
2.1.1. mHtt
2.1.2. Immune System Dysregulation and Inflammation
2.2. Circulating Metabolites, Muscle Injury Markers
2.2.1. The Muscle–Brain Axis
2.2.2. The Gut–Brain Axis
2.3. Circulating Lipid and Peptide Messengers, Hormones
2.3.1. Lipids
2.3.2. Hypothalamic Hormones Regulating Systemic Metabolism
2.3.3. Stress Hormones
2.4. RNAs and Extracellular Vesicles
2.5. Cardio- and Neurovascular Changes
3. Healthy Lifestyles with Beneficial Metabolic Effects in HD
3.1. Dietary Approaches
3.1.1. Time and Calorie-Restricted Eating
3.1.2. Kynurenine Pathway Metabolism and Inflammation
3.1.3. Oxidative Stress and Antioxidants
3.1.4. Probiotics and Other Modulators of the Gut–Brain Axis
3.1.5. Mediterranean Diet
3.2. Exercise
3.2.1. Risks and Safety of Exercise Interventions for HD
3.2.2. Standalone Exercise with Clinical Benefits
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, C.; Cheung, W.H.; Li, J.; Chow, S.K.; Yu, J.; Wong, S.H.; Ip, M.; Sung, J.J.Y.; Wong, R.M.Y. Understanding the gut microbiota and sarcopenia: A systematic review. J. Cachexia Sarcopenia Muscle 2021, 12, 1393–1407. [Google Scholar] [CrossRef]
- Critchley, B.J.; Isalan, M.; Mielcarek, M. Neuro-Cardio Mechanisms in Huntington’s Disease and Other Neurodegenerative Disorders. Front. Physiol. 2018, 9, 559. [Google Scholar] [CrossRef]
- Liu, C.; Wong, P.Y.; Chow, S.K.H.; Cheung, W.H.; Wong, R.M.Y. Does the regulation of skeletal muscle influence cognitive function? A scoping review of pre-clinical evidence. J. Orthop. Transl. 2023, 38, 76–83. [Google Scholar] [CrossRef]
- Chuang, C.L.; Demontis, F. Systemic manifestation and contribution of peripheral tissues to Huntington’s disease pathogenesis. Ageing Res. Rev. 2021, 69, 101358. [Google Scholar] [CrossRef]
- van der Burg, J.M.; Björkqvist, M.; Brundin, P. Beyond the brain: Widespread pathology in Huntington’s disease. Lancet Neurol. 2009, 8, 765–774. [Google Scholar] [CrossRef]
- Gusella, J.F.; Wexler, N.S.; Conneally, P.M.; Naylor, S.L.; Anderson, M.A.; Tanzi, R.E.; Watkins, P.C.; Ottina, K.; Wallace, M.R.; Sakaguchi, A.Y.; et al. A polymorphic DNA marker genetically linked to Huntington’s disease. Nature 1983, 306, 234–238. [Google Scholar] [CrossRef]
- Saudou, F.; Humbert, S. The Biology of Huntingtin. Neuron 2016, 89, 910–926. [Google Scholar] [CrossRef]
- GeM-HD. CAG Repeat Not Polyglutamine Length Determines Timing of Huntington’s Disease Onset. Cell 2019, 178, 887–900.e14. [Google Scholar] [CrossRef]
- Berardelli, A.; Noth, J.; Thompson, P.D.; Bollen, E.L.; Currà, A.; Deuschl, G.; van Dijk, J.G.; Töpper, R.; Schwarz, M.; Roos, R.A. Pathophysiology of chorea and bradykinesia in Huntington’s disease. Mov. Disord. Off. J. Mov. Disord. Soc. 1999, 14, 398–403. [Google Scholar] [CrossRef]
- Walker, F.O. Huntington’s disease. Lancet 2007, 369, 218–228. [Google Scholar] [CrossRef]
- Tabrizi, S.J.; Flower, M.D.; Ross, C.A.; Wild, E.J. Huntington disease: New insights into molecular pathogenesis and therapeutic opportunities. Nat. Rev. Neurol. 2020, 16, 529–546. [Google Scholar] [CrossRef]
- O’Regan, G.C.; Farag, S.H.; Ostroff, G.R.; Tabrizi, S.J.; Andre, R. Wild-type huntingtin regulates human macrophage function. Sci. Rep. 2020, 10, 17269. [Google Scholar] [CrossRef]
- Davies, S.W.; Turmaine, M.; Cozens, B.A.; DiFiglia, M.; Sharp, A.H.; Ross, C.A.; Scherzinger, E.; Wanker, E.E.; Mangiarini, L.; Bates, G.P. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 1997, 90, 537–548. [Google Scholar] [CrossRef]
- DiFiglia, M.; Sapp, E.; Chase, K.O.; Davies, S.W.; Bates, G.P.; Vonsattel, J.P.; Aronin, N. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 1997, 277, 1990–1993. [Google Scholar] [CrossRef]
- Matsushima, A.; Pineda, S.S.; Crittenden, J.R.; Lee, H.; Galani, K.; Mantero, J.; Tombaugh, G.; Kellis, M.; Heiman, M.; Graybiel, A.M. Transcriptional vulnerabilities of striatal neurons in human and rodent models of Huntington’s disease. Nat. Commun. 2023, 14, 282. [Google Scholar] [CrossRef]
- Zuccato, C.; Cattaneo, E. Role of brain-derived neurotrophic factor in Huntington’s disease. Prog. Neurobiol. 2007, 81, 294–330. [Google Scholar] [CrossRef]
- Bossy-Wetzel, E.; Petrilli, A.; Knott, A.B. Mutant huntingtin and mitochondrial dysfunction. Trends Neurosci. 2008, 31, 609–616. [Google Scholar] [CrossRef]
- Kelly, M.P. Cyclic nucleotide signaling changes associated with normal aging and age-related diseases of the brain. Cell. Signal. 2018, 42, 281–291. [Google Scholar] [CrossRef]
- Drouin-Ouellet, J.; Sawiak, S.J.; Cisbani, G.; Lagacé, M.; Kuan, W.L.; Saint-Pierre, M.; Dury, R.J.; Alata, W.; St-Amour, I.; Mason, S.L.; et al. Cerebrovascular and blood-brain barrier impairments in Huntington’s disease: Potential implications for its pathophysiology. Ann. Neurol. 2015, 78, 160–177. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.Y.; Hsu, Y.H.; Lin, M.H.; Yang, T.H.; Chen, H.M.; Chen, Y.C.; Hsiao, H.Y.; Chen, C.C.; Chern, Y.; Chang, C. Neurovascular abnormalities in humans and mice with Huntington’s disease. Exp. Neurol. 2013, 250, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Hett, K.; Eisma, J.J.; Hernandez, A.B.; McKnight, C.D.; Song, A.; Elenberger, J.; Considine, C.; Donahue, M.J.; Claassen, D.O. Cerebrospinal Fluid Flow in Patients with Huntington’s Disease. Ann. Neurol. 2023, 94, 885–894. [Google Scholar] [CrossRef] [PubMed]
- Sarappa, C.; Salvatore, E.; Filla, A.; Cocozza, S.; Russo, C.V.; Saccà, F.; Brunetti, A.; De Michele, G.; Quarantelli, M. Functional MRI signal fluctuations highlight altered resting brain activity in Huntington’s disease. Brain Imaging Behav. 2017, 11, 1459–1469. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.J.; Salat, D.H.; Rosas, H.D. Complex relationships between cerebral blood flow and brain atrophy in early Huntington’s disease. Neuroimage 2012, 59, 1043–1051. [Google Scholar] [CrossRef] [PubMed]
- Harris, G.J.; Codori, A.M.; Lewis, R.F.; Schmidt, E.; Bedi, A.; Brandt, J. Reduced basal ganglia blood flow and volume in pre-symptomatic, gene-tested persons at-risk for Huntington’s disease. Brain 1999, 122, 1667–1678. [Google Scholar] [CrossRef] [PubMed]
- Lewandowski, N.M.; Bordelon, Y.; Brickman, A.M.; Angulo, S.; Khan, U.; Muraskin, J.; Griffith, E.Y.; Wasserman, P.; Menalled, L.; Vonsattel, J.P.; et al. Regional vulnerability in Huntington’s disease: fMRI-guided molecular analysis in patients and a mouse model of disease. Neurobiol. Dis. 2013, 52, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Sax, D.S.; Powsner, R.; Kim, A.; Tilak, S.; Bhatia, R.; Cupples, L.A.; Myers, R.H. Evidence of cortical metabolic dysfunction in early Huntington’s disease by single-photon-emission computed tomography. Mov. Disord. Off. J. Mov. Disord. Soc. 1996, 11, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Harris, G.J.; Aylward, E.H.; Peyser, C.E.; Pearlson, G.D.; Brandt, J.; Roberts-Twillie, J.V.; Barta, P.E.; Folstein, S.E. Single photon emission computed tomographic blood flow and magnetic resonance volume imaging of basal ganglia in Huntington’s disease. Arch. Neurol. 1996, 53, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Rocha, N.P.; Charron, O.; Colpo, G.D.; Latham, L.B.; Patino, J.E.; Stimming, E.F.; Freeman, L.; Teixeira, A.L. Cerebral blood flow is associated with markers of neurodegeneration in Huntington’s disease. Park. Relat. Disord. 2022, 102, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Stefanko, D.P.; Guo, Y.; Toy, W.A.; Petzinger, G.M.; Jakowec, M.W.; Holschneider, D.P. Evidence of functional brain reorganization on the basis of blood flow changes in the CAG140 knock-in mouse model of Huntington’s disease. Neuroreport 2016, 27, 632–639. [Google Scholar] [CrossRef]
- Carroll, J.B.; Bates, G.P.; Steffan, J.; Saft, C.; Tabrizi, S.J. Treating the whole body in Huntington’s disease. Lancet Neurol. 2015, 14, 1135–1142. [Google Scholar] [CrossRef]
- Smarr, B.; Cutler, T.; Loh, D.H.; Kudo, T.; Kuljis, D.; Kriegsfeld, L.; Ghiani, C.A.; Colwell, C.S. Circadian dysfunction in the Q175 model of Huntington’s disease: Network analysis. J. Neurosci. Res. 2019, 97, 1606–1623. [Google Scholar] [CrossRef] [PubMed]
- Vercruysse, P.; Vieau, D.; Blum, D.; Petersén, Å.; Dupuis, L. Hypothalamic Alterations in Neurodegenerative Diseases and Their Relation to Abnormal Energy Metabolism. Front. Mol. Neurosci. 2018, 11, 2. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Agrawal, N. Deciphering the key mechanisms leading to alteration of lipid metabolism in Drosophila model of Huntington’s disease. Biochim. Biophys. Acta Mol. Basis Dis. 2021, 1867, 166127. [Google Scholar] [CrossRef] [PubMed]
- Aziz, N.A.; van der Burg, J.M.; Landwehrmeyer, G.B.; Brundin, P.; Stijnen, T.; Roos, R.A. Weight loss in Huntington disease increases with higher CAG repeat number. Neurology 2008, 71, 1506–1513. [Google Scholar] [CrossRef] [PubMed]
- Ogilvie, A.C.; Nopoulos, P.C.; Schultz, J.L. Quantifying the Onset of Unintended Weight Loss in Huntington’s Disease: A Retrospective Analysis of Enroll-HD. J. Huntingt. Dis. 2021, 10, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Trejo, A.; Tarrats, R.M.; Alonso, M.E.; Boll, M.C.; Ochoa, A.; Velásquez, L. Assessment of the nutrition status of patients with Huntington’s disease. Nutrition 2004, 20, 192–196. [Google Scholar] [CrossRef]
- Pratley, R.E.; Salbe, A.D.; Ravussin, E.; Caviness, J.N. Higher sedentary energy expenditure in patients with Huntington’s disease. Ann. Neurol. 2000, 47, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Marder, K.; Zhao, H.; Eberly, S.; Tanner, C.M.; Oakes, D.; Shoulson, I. Dietary intake in adults at risk for Huntington disease: Analysis of PHAROS research participants. Neurology 2009, 73, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Christodoulou, C.C.; Demetriou, C.A.; Philippou, E.; Papanicolaou, E.Z. Investigating the Dietary Intake Using the CyFFQ Semi-Quantitative Food Frequency Questionnaire in Cypriot Huntington’s Disease Patients. Nutrients 2023, 15, 1136. [Google Scholar] [CrossRef]
- Süssmuth, S.D.; Müller, V.M.; Geitner, C.; Landwehrmeyer, G.B.; Iff, S.; Gemperli, A.; Orth, M. Fat-free mass and its predictors in Huntington’s disease. J. Neurol. 2015, 262, 1533–1540. [Google Scholar] [CrossRef]
- van der Burg, J.M.M.; Gardiner, S.L.; Ludolph, A.C.; Landwehrmeyer, G.B.; Roos, R.A.C.; Aziz, N.A. Body weight is a robust predictor of clinical progression in Huntington disease. Ann. Neurol. 2017, 82, 479–483. [Google Scholar] [CrossRef] [PubMed]
- Goodman, A.O.; Barker, R.A. Body composition in premanifest Huntington’s disease reveals lower bone density compared to controls. PLoS Curr. 2011, 3, Rrn1214. [Google Scholar] [CrossRef] [PubMed]
- Costa de Miranda, R.; Di Lorenzo, N.; Andreoli, A.; Romano, L.; De Santis, G.L.; Gualtieri, P.; De Lorenzo, A. Body composition and bone mineral density in Huntington’s disease. Nutrition 2019, 59, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Björkqvist, M.; Petersén, A.; Bacos, K.; Isaacs, J.; Norlén, P.; Gil, J.; Popovic, N.; Sundler, F.; Bates, G.P.; Tabrizi, S.J.; et al. Progressive alterations in the hypothalamic-pituitary-adrenal axis in the R6/2 transgenic mouse model of Huntington’s disease. Hum. Mol. Genet. 2006, 15, 1713–1721. [Google Scholar] [CrossRef]
- Lalić, N.M.; Marić, J.; Svetel, M.; Jotić, A.; Stefanova, E.; Lalić, K.; Dragasević, N.; Milicić, T.; Lukić, L.; Kostić, V.S. Glucose homeostasis in Huntington disease: Abnormalities in insulin sensitivity and early-phase insulin secretion. Arch. Neurol. 2008, 65, 476–480. [Google Scholar] [CrossRef] [PubMed]
- Mochel, F.; Charles, P.; Seguin, F.; Barritault, J.; Coussieu, C.; Perin, L.; Le Bouc, Y.; Gervais, C.; Carcelain, G.; Vassault, A.; et al. Early energy deficit in Huntington disease: Identification of a plasma biomarker traceable during disease progression. PLoS ONE 2007, 2, e647. [Google Scholar] [CrossRef] [PubMed]
- Kacher, R.; Mounier, C.; Caboche, J.; Betuing, S. Altered Cholesterol Homeostasis in Huntington’s Disease. Front. Aging Neurosci. 2022, 14, 797220. [Google Scholar] [CrossRef] [PubMed]
- Burtscher, J.; Pepe, G.; Maharjan, N.; Riguet, N.; Di Pardo, A.; Maglione, V.; Millet, G.P. Sphingolipids and impaired hypoxic stress responses in Huntington disease. Prog. Lipid Res. 2023, 90, 101224. [Google Scholar] [CrossRef] [PubMed]
- Li, J.Y.; Popovic, N.; Brundin, P. The use of the R6 transgenic mouse models of Huntington’s disease in attempts to develop novel therapeutic strategies. NeuroRx 2005, 2, 447–464. [Google Scholar] [CrossRef]
- Menalled, L.B.; Kudwa, A.E.; Miller, S.; Fitzpatrick, J.; Watson-Johnson, J.; Keating, N.; Ruiz, M.; Mushlin, R.; Alosio, W.; McConnell, K.; et al. Comprehensive behavioral and molecular characterization of a new knock-in mouse model of Huntington’s disease: zQ175. PLoS ONE 2012, 7, e49838. [Google Scholar] [CrossRef]
- Gray, M.; Shirasaki, D.I.; Cepeda, C.; André, V.M.; Wilburn, B.; Lu, X.H.; Tao, J.; Yamazaki, I.; Li, S.H.; Sun, Y.E.; et al. Full-length human mutant huntingtin with a stable polyglutamine repeat can elicit progressive and selective neuropathogenesis in BACHD mice. J. Neurosci. 2008, 28, 6182–6195. [Google Scholar] [CrossRef] [PubMed]
- Oh, H.S.; Rutledge, J.; Nachun, D.; Pálovics, R.; Abiose, O.; Moran-Losada, P.; Channappa, D.; Urey, D.Y.; Kim, K.; Sung, Y.J.; et al. Organ aging signatures in the plasma proteome track health and disease. Nature 2023, 624, 164–172. [Google Scholar] [CrossRef]
- Rieux, M.; Alpaugh, M.; Sciacca, G.; Saint-Pierre, M.; Masnata, M.; Denis, H.L.; Lévesque, S.A.; Herrmann, F.; Bazenet, C.; Garneau, A.P.; et al. Shedding a new light on Huntington’s disease: How blood can both propagate and ameliorate disease pathology. Mol. Psychiatry 2021, 26, 5441–5463. [Google Scholar] [CrossRef] [PubMed]
- Rieux, M.; Alpaugh, M.; Salem, S.; Siddu, A.; Saint-Pierre, M.; Denis, H.L.; Rohweder, H.; Herrmann, F.; Bazenet, C.; Lacroix, S.; et al. Understanding the role of the hematopoietic niche in Huntington’s disease’s phenotypic expression: In vivo evidence using a parabiosis model. Neurobiol. Dis. 2023, 180, 106091. [Google Scholar] [CrossRef] [PubMed]
- Träger, U.; Andre, R.; Lahiri, N.; Magnusson-Lind, A.; Weiss, A.; Grueninger, S.; McKinnon, C.; Sirinathsinghji, E.; Kahlon, S.; Pfister, E.L.; et al. HTT-lowering reverses Huntington’s disease immune dysfunction caused by NFκB pathway dysregulation. Brain 2014, 137 Pt 3, 819–833. [Google Scholar] [CrossRef] [PubMed]
- Leblhuber, F.; Walli, J.; Jellinger, K.; Tilz, G.P.; Widner, B.; Laccone, F.; Fuchs, D. Activated immune system in patients with Huntington’s disease. Clin. Chem. Lab. Med. 1998, 36, 747–750. [Google Scholar] [CrossRef] [PubMed]
- Dhankhar, J.; Agrawal, N.; Shrivastava, A. Pan-neuronal expression of human mutant huntingtin protein in Drosophila impairs immune response of hemocytes. J. Neuroimmunol. 2022, 363, 577801. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.H.; Maaroufi, H.O.; Ibrahim, E.; Kucerova, L.; Zurovec, M. Expression of Human Mutant Huntingtin Protein in Drosophila Hemocytes Impairs Immune Responses. Front. Immunol. 2019, 10, 2405. [Google Scholar] [CrossRef] [PubMed]
- Min, B.; Park, M.; Jeon, K.; Park, J.S.; Seo, H.; Jeong, S.; Kang, Y.K. Age-associated bimodal transcriptional drift reduces intergenic disparities in transcription. Aging 2018, 10, 789–807. [Google Scholar] [CrossRef]
- Peñalver, P.; Belmonte-Reche, E.; Adán, N.; Caro, M.; Mateos-Martín, M.L.; Delgado, M.; González-Rey, E.; Morales, J.C. Alkylated resveratrol prodrugs and metabolites as potential therapeutics for neurodegenerative diseases. Eur. J. Med. Chem. 2018, 146, 123–138. [Google Scholar] [CrossRef]
- Träger, U.; Andre, R.; Magnusson-Lind, A.; Miller, J.R.; Connolly, C.; Weiss, A.; Grueninger, S.; Silajdžić, E.; Smith, D.L.; Leavitt, B.R.; et al. Characterisation of immune cell function in fragment and full-length Huntington’s disease mouse models. Neurobiol. Dis. 2015, 73, 388–398. [Google Scholar] [CrossRef]
- Labbadia, J.; Morimoto, R.I. Huntington’s disease: Underlying molecular mechanisms and emerging concepts. Trends Biochem. Sci. 2013, 38, 378–385. [Google Scholar] [CrossRef]
- Cicchetti, F.; Lacroix, S.; Cisbani, G.; Vallières, N.; Saint-Pierre, M.; St-Amour, I.; Tolouei, R.; Skepper, J.N.; Hauser, R.A.; Mantovani, D.; et al. Mutant huntingtin is present in neuronal grafts in Huntington disease patients. Ann. Neurol. 2014, 76, 31–42. [Google Scholar] [CrossRef]
- Jeon, I.; Cicchetti, F.; Cisbani, G.; Lee, S.; Li, E.; Bae, J.; Lee, N.; Li, L.; Im, W.; Kim, M.; et al. Human-to-mouse prion-like propagation of mutant huntingtin protein. Acta Neuropathol. 2016, 132, 577–592. [Google Scholar] [CrossRef]
- Gosset, P.; Maxan, A.; Alpaugh, M.; Breger, L.; Dehay, B.; Tao, Z.; Ling, Z.; Qin, C.; Cisbani, G.; Fortin, N.; et al. Evidence for the spread of human-derived mutant huntingtin protein in mice and non-human primates. Neurobiol. Dis. 2020, 141, 104941. [Google Scholar] [CrossRef]
- Masnata, M.; Sciacca, G.; Maxan, A.; Bousset, L.; Denis, H.L.; Lauruol, F.; David, L.; Saint-Pierre, M.; Kordower, J.H.; Melki, R.; et al. Demonstration of prion-like properties of mutant huntingtin fibrils in both in vitro and in vivo paradigms. Acta Neuropathol. 2019, 137, 981–1001. [Google Scholar] [CrossRef]
- Dinamarca, M.C.; Colombo, L.; Brykczynska, U.; Grimm, A.; Fruh, I.; Hossain, I.; Gabriel, D.; Eckert, A.; Müller, M.; Pecho-Vrieseling, E. Transmission-selective muscle pathology induced by the active propagation of mutant huntingtin across the human neuromuscular synapse. Front. Mol. Neurosci. 2023, 16, 1287510. [Google Scholar] [CrossRef]
- Alpaugh, M.; Denis, H.L.; Cicchetti, F. Prion-like properties of the mutant huntingtin protein in living organisms: The evidence and the relevance. Mol. Psychiatry 2022, 27, 269–280. [Google Scholar] [CrossRef]
- Donnelly, K.M.; Coleman, C.M.; Fuller, M.L.; Reed, V.L.; Smerina, D.; Tomlinson, D.S.; Pearce, M.M.P. Hunting for the cause: Evidence for prion-like mechanisms in Huntington’s disease. Front. Neurosci. 2022, 16, 946822. [Google Scholar] [CrossRef]
- Crotti, A.; Glass, C.K. The choreography of neuroinflammation in Huntington’s disease. Trends Immunol. 2015, 36, 364–373. [Google Scholar] [CrossRef]
- Valadão, P.A.C.; Santos, K.B.S.; Ferreira, E.V.T.H.; Macedo, E.C.T.; Teixeira, A.L.; Guatimosim, C.; de Miranda, A.S. Inflammation in Huntington’s disease: A few new twists on an old tale. J. Neuroimmunol. 2020, 348, 577380. [Google Scholar] [CrossRef]
- Soltani Khaboushan, A.; Moeinafshar, A.; Ersi, M.H.; Teixeira, A.L.; Majidi Zolbin, M.; Kajbafzadeh, A.M. Circulating levels of inflammatory biomarkers in Huntington’s disease: A systematic review and meta-analysis. J. Neuroimmunol. 2023, 385, 578243. [Google Scholar] [CrossRef] [PubMed]
- Magnusson-Lind, A.; Davidsson, M.; Silajdžić, E.; Hansen, C.; McCourt, A.C.; Tabrizi, S.J.; Björkqvist, M. Skeletal muscle atrophy in R6/2 mice—Altered circulating skeletal muscle markers and gene expression profile changes. J. Huntington’s Dis. 2014, 3, 13–24. [Google Scholar] [CrossRef]
- McGarry, A.; Hunter, K.; Gaughan, J.; Auinger, P.; Ferraro, T.N.; Pradhan, B.; Ferrucci, L.; Egan, J.M.; Moaddel, R. An exploratory metabolomic comparison of participants with fast or absent functional progression from 2CARE, a randomized, double-blind clinical trial in Huntington’s disease. Sci. Rep. 2024, 14, 1101. [Google Scholar] [CrossRef]
- Ciammola, A.; Sassone, J.; Sciacco, M.; Mencacci, N.E.; Ripolone, M.; Bizzi, C.; Colciago, C.; Moggio, M.; Parati, G.; Silani, V.; et al. Low anaerobic threshold and increased skeletal muscle lactate production in subjects with Huntington’s disease. Mov. Disord. Off. J. Mov. Disord. Soc. 2011, 26, 130–137. [Google Scholar] [CrossRef]
- Kong, G.; Ellul, S.; Narayana, V.K.; Kanojia, K.; Ha, H.T.T.; Li, S.; Renoir, T.; Cao, K.L.; Hannan, A.J. An integrated metagenomics and metabolomics approach implicates the microbiota-gut-brain axis in the pathogenesis of Huntington’s disease. Neurobiol. Dis. 2021, 148, 105199. [Google Scholar] [CrossRef]
- Kong, G.; Cao, K.L.; Judd, L.M.; Li, S.; Renoir, T.; Hannan, A.J. Microbiome profiling reveals gut dysbiosis in a transgenic mouse model of Huntington’s disease. Neurobiol. Dis. 2020, 135, 104268. [Google Scholar] [CrossRef]
- Zielonka, D.; Piotrowska, I.; Marcinkowski, J.T.; Mielcarek, M. Skeletal muscle pathology in Huntington’s disease. Front. Physiol. 2014, 5, 380. [Google Scholar] [CrossRef]
- Mielcarek, M.; Isalan, M. A shared mechanism of muscle wasting in cancer and Huntington’s disease. Clin. Transl. Med. 2015, 4, 34. [Google Scholar] [CrossRef]
- Saft, C.; Zange, J.; Andrich, J.; Müller, K.; Lindenberg, K.; Landwehrmeyer, B.; Vorgerd, M.; Kraus, P.H.; Przuntek, H.; Schöls, L. Mitochondrial impairment in patients and asymptomatic mutation carriers of Huntington’s disease. Mov. Disord. Off. J. Mov. Disord. Soc. 2005, 20, 674–679. [Google Scholar] [CrossRef]
- Bozzi, M.; Sciandra, F. Molecular Mechanisms Underlying Muscle Wasting in Huntington’s Disease. Int. J. Mol. Sci. 2020, 21, 8314. [Google Scholar] [CrossRef]
- Evans, D.A.; Smith, L.A.; Scherr, P.A.; Albert, M.S.; Funkenstein, H.H.; Hebert, L.E. Risk of death from Alzheimer’s disease in a community population of older persons. Am. J. Epidemiol. 1991, 134, 403–412. [Google Scholar] [CrossRef]
- Mielcarek, M.; Toczek, M.; Smeets, C.J.; Franklin, S.A.; Bondulich, M.K.; Jolinon, N.; Muller, T.; Ahmed, M.; Dick, J.R.; Piotrowska, I.; et al. HDAC4-myogenin axis as an important marker of HD-related skeletal muscle atrophy. PLoS Genet. 2015, 11, e1005021. [Google Scholar] [CrossRef]
- Gizatullina, Z.Z.; Lindenberg, K.S.; Harjes, P.; Chen, Y.; Kosinski, C.M.; Landwehrmeyer, B.G.; Ludolph, A.C.; Striggow, F.; Zierz, S.; Gellerich, F.N. Low stability of Huntington muscle mitochondria against Ca2+ in R6/2 mice. Ann. Neurol. 2006, 59, 407–411. [Google Scholar] [CrossRef]
- Roth, J.R.; de Moraes, R.C.M.; Xu, B.P.; Crawley, S.R.; Khan, M.A.; Melkani, G.C. Rapamycin reduces neuronal mutant huntingtin aggregation and ameliorates locomotor performance in Drosophila. Front. Aging Neurosci. 2023, 15, 1223911. [Google Scholar] [CrossRef]
- van Diemen, M.P.J.; Hart, E.P.; Hameeteman, P.W.; Coppen, E.M.; Winder, J.Y.; den Heijer, J.; Moerland, M.; Kan, H.; van der Grond, J.; Webb, A.; et al. Brain Bio-Energetic State Does Not Correlate to Muscle Mitochondrial Function in Huntington’s Disease. J. Huntington’s Dis. 2020, 9, 335–344. [Google Scholar] [CrossRef]
- Burtscher, J.; Soltany, A.; Visavadiya, N.P.; Burtscher, M.; Millet, G.P.; Khoramipour, K.; Khamoui, A.V. Mitochondrial stress and mitokines in aging. Aging Cell 2023, 22, e13770. [Google Scholar] [CrossRef]
- Powers, W.J.; Haas, R.H.; Le, T.; Videen, T.O.; Markham, J.; Perlmutter, J.S. Platelet mitochondrial complex I and I+III activities do not correlate with cerebral mitochondrial oxidative metabolism. J. Cereb. Blood Flow Metab. 2011, 31, e1–e5. [Google Scholar] [CrossRef]
- van Diemen, M.P.J.; Hart, E.P.; Abbruscato, A.; Mead, L.; van Beelen, I.; Bergheanu, S.C.; Hameeteman, P.W.; Coppen, E.; Winder, J.Y.; Moerland, M.; et al. Safety, pharmacokinetics and pharmacodynamics of SBT-020 in patients with early stage Huntington’s disease, a 2-part study. Br. J. Clin. Pharmacol. 2021, 87, 2290–2302. [Google Scholar] [CrossRef]
- Burtscher, J.; Millet, G.P.; Place, N.; Kayser, B.; Zanou, N. The Muscle-Brain Axis and Neurodegenerative Diseases: The Key Role of Mitochondria in Exercise-Induced Neuroprotection. Int. J. Mol. Sci. 2021, 22, 6479. [Google Scholar] [CrossRef]
- Jiang, M.; Peng, Q.; Liu, X.; Jin, J.; Hou, Z.; Zhang, J.; Mori, S.; Ross, C.A.; Ye, K.; Duan, W. Small-molecule TrkB receptor agonists improve motor function and extend survival in a mouse model of Huntington’s disease. Human Mol. Genet. 2013, 22, 2462–2470. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, D.; Petrigna, L.; Pereira, F.C.; Muscella, A.; Bianco, A.; Tavares, P. The Impact of Physical Exercise on the Circulating Levels of BDNF and NT 4/5: A Review. Int. J. Mol. Sci. 2021, 22, 8814. [Google Scholar] [CrossRef] [PubMed]
- Ekwudo, M.N.; Gubert, C.; Hannan, A.J. The microbiota-gut-brain axis in Huntington’s disease: Pathogenic mechanisms and therapeutic targets. FEBS J. 2024. early view. [Google Scholar]
- Gubert, C.; Choo, J.M.; Love, C.J.; Kodikara, S.; Masson, B.A.; Liew, J.J.M.; Wang, Y.; Kong, G.; Narayana, V.K.; Renoir, T.; et al. Faecal microbiota transplant ameliorates gut dysbiosis and cognitive deficits in Huntington’s disease mice. Brain Commun. 2022, 4, fcac205. [Google Scholar] [CrossRef]
- Sharma, G.; Biswas, S.S.; Mishra, J.; Navik, U.; Kandimalla, R.; Reddy, P.H.; Bhatti, G.K.; Bhatti, J.S. Gut microbiota dysbiosis and Huntington’s disease: Exploring the gut-brain axis and novel microbiota-based interventions. Life Sci. 2023, 328, 121882. [Google Scholar] [CrossRef] [PubMed]
- Wronka, D.; Karlik, A.; Misiorek, J.O.; Przybyl, L. What the Gut Tells the Brain-Is There a Link between Microbiota and Huntington’s Disease? Int. J. Mol. Sci. 2023, 24, 4477. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Dawson, T.M.; Kulkarni, S. Neurodegenerative disorders and gut-brain interactions. J. Clin. Investig. 2021, 131, e143775. [Google Scholar] [CrossRef] [PubMed]
- Wasser, C.I.; Mercieca, E.C.; Kong, G.; Hannan, A.J.; McKeown, S.J.; Glikmann-Johnston, Y.; Stout, J.C. Gut dysbiosis in Huntington’s disease: Associations among gut microbiota, cognitive performance and clinical outcomes. Brain Commun. 2020, 2, fcaa110. [Google Scholar] [CrossRef] [PubMed]
- Stan, T.L.; Soylu-Kucharz, R.; Burleigh, S.; Prykhodko, O.; Cao, L.; Franke, N.; Sjögren, M.; Haikal, C.; Hållenius, F.; Björkqvist, M. Increased intestinal permeability and gut dysbiosis in the R6/2 mouse model of Huntington’s disease. Sci. Rep. 2020, 10, 18270. [Google Scholar] [CrossRef] [PubMed]
- Sciacca, S.; Favellato, M.; Madonna, M.; Metro, D.; Marano, M.; Squitieri, F. Early enteric neuron dysfunction in mouse and human Huntington disease. Park. Relat. Disord. 2017, 34, 73–74. [Google Scholar] [CrossRef] [PubMed]
- Chongtham, A.; Yoo, J.H.; Chin, T.M.; Akingbesote, N.D.; Huda, A.; Marsh, J.L.; Khoshnan, A. Gut Bacteria Regulate the Pathogenesis of Huntington’s Disease in Drosophila Model. Front. Neurosci. 2022, 16, 902205. [Google Scholar] [CrossRef]
- Manzke, P.; Crippa, J.A.S.; Marchioni, C.; Queiroz, M.E.C.; Brito, M.C.M.; Pimentel, A.V.; Bosaipo, N.B.; Foss, M.P.; Tumas, V. Circulating Endocannabinoids in Huntington’s Disease: An Exploratory Cross-Sectional Study. J. Huntington’s Dis. 2022, 11, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Ross, C.A.; Cai, H.; Cong, W.N.; Daimon, C.M.; Carlson, O.D.; Egan, J.M.; Siddiqui, S.; Maudsley, S.; Martin, B. Metabolic and hormonal signatures in pre-manifest and manifest Huntington’s disease patients. Front. Physiol. 2014, 5, 231. [Google Scholar] [CrossRef]
- Leoni, V.; Long, J.D.; Mills, J.A.; Di Donato, S.; Paulsen, J.S. Plasma 24S-hydroxycholesterol correlation with markers of Huntington disease progression. Neurobiol. Dis. 2013, 55, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Leoni, V.; Mariotti, C.; Tabrizi, S.J.; Valenza, M.; Wild, E.J.; Henley, S.M.; Hobbs, N.Z.; Mandelli, M.L.; Grisoli, M.; Björkhem, I.; et al. Plasma 24S-hydroxycholesterol and caudate MRI in pre-manifest and early Huntington’s disease. Brain 2008, 131 Pt 11, 2851–2859. [Google Scholar] [CrossRef]
- Popovic, V.; Svetel, M.; Djurovic, M.; Petrovic, S.; Doknic, M.; Pekic, S.; Miljic, D.; Milic, N.; Glodic, J.; Dieguez, C.; et al. Circulating and cerebrospinal fluid ghrelin and leptin: Potential role in altered body weight in Huntington’s disease. Eur. J. Endocrinol. 2004, 151, 451–455. [Google Scholar] [CrossRef]
- Rudenko, O.; Springer, C.; Skov, L.J.; Madsen, A.N.; Hasholt, L.; Nørremølle, A.; Holst, B. Ghrelin-mediated improvements in the metabolic phenotype in the R6/2 mouse model of Huntington’s disease. J. Neuroendocrinol. 2019, 31, e12699. [Google Scholar] [CrossRef]
- Shankaran, M.; Di Paolo, E.; Leoni, V.; Caccia, C.; Ferrari Bardile, C.; Mohammed, H.; Di Donato, S.; Kwak, S.; Marchionini, D.; Turner, S.; et al. Early and brain region-specific decrease of de novo cholesterol biosynthesis in Huntington’s disease: A cross-validation study in Q175 knock-in mice. Neurobiol. Dis. 2017, 98, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Dufour, B.D.; McBride, J.L. Normalizing glucocorticoid levels attenuates metabolic and neuropathological symptoms in the R6/2 mouse model of huntington’s disease. Neurobiol. Dis. 2018, 121, 214–229. [Google Scholar] [CrossRef]
- Dufour, B.D.; McBride, J.L. Corticosterone dysregulation exacerbates disease progression in the R6/2 transgenic mouse model of Huntington’s disease. Exp. Neurol. 2016, 283 Pt A, 308–317. [Google Scholar] [CrossRef]
- Lundh, S.H.; Soylu, R.; Petersén, A. Expression of mutant huntingtin in leptin receptor-expressing neurons does not control the metabolic and psychiatric phenotype of the BACHD mouse. PLoS ONE 2012, 7, e51168. [Google Scholar] [CrossRef]
- Hult, S.; Soylu, R.; Björklund, T.; Belgardt, B.F.; Mauer, J.; Brüning, J.C.; Kirik, D.; Petersén, Å. Mutant huntingtin causes metabolic imbalance by disruption of hypothalamic neurocircuits. Cell Metab. 2011, 13, 428–439. [Google Scholar] [CrossRef] [PubMed]
- Phan, J.; Hickey, M.A.; Zhang, P.; Chesselet, M.F.; Reue, K. Adipose tissue dysfunction tracks disease progression in two Huntington’s disease mouse models. Human Mol. Genet. 2009, 18, 1006–1016. [Google Scholar] [CrossRef] [PubMed]
- HuntingtonStudyGroup. Unified Huntington’s Disease Rating Scale: Reliability and consistency. Mov. Disord. Off. J. Mov. Disord. Soc. 1996, 11, 136–142. [Google Scholar]
- Kacher, R.; Lamazière, A.; Heck, N.; Kappes, V.; Mounier, C.; Despres, G.; Dembitskaya, Y.; Perrin, E.; Christaller, W.; Sasidharan Nair, S.; et al. CYP46A1 gene therapy deciphers the role of brain cholesterol metabolism in Huntington’s disease. Brain 2019, 142, 2432–2450. [Google Scholar] [CrossRef]
- Schultz, J.L.; Nopoulos, P.C.; Killoran, A.; Kamholz, J.A. Statin use and delayed onset of Huntington’s disease. Mov. Disord. Off. J. Mov. Disord. Soc. 2019, 34, 281–285. [Google Scholar] [CrossRef] [PubMed]
- Aziz, N.A. Statin use and delayed onset of Huntington’s disease. Mov. Disord. Off. J. Mov. Disord. Soc. 2019, 34, 762–763. [Google Scholar] [CrossRef] [PubMed]
- Gorabi, A.M.; Kiaie, N.; Aslani, S.; Sathyapalan, T.; Jamialahmadi, T.; Sahebkar, A. Implications on the Therapeutic Potential of Statins via Modulation of Autophagy. Oxid. Med. Cell Longev. 2021, 2021, 9599608. [Google Scholar] [CrossRef] [PubMed]
- de Candia, P.; Matarese, G. Leptin and ghrelin: Sewing metabolism onto neurodegeneration. Neuropharmacology 2018, 136 Pt B, 307–316. [Google Scholar] [CrossRef]
- Münzberg, H.; Morrison, C.D. Structure, production and signaling of leptin. Metabolism 2015, 64, 13–23. [Google Scholar] [CrossRef]
- Braun, T.P.; Marks, D.L. The regulation of muscle mass by endogenous glucocorticoids. Front. Physiol. 2015, 6, 12. [Google Scholar] [CrossRef]
- Zhang, M.; He, P.; Bian, Z. Long Noncoding RNAs in Neurodegenerative Diseases: Pathogenesis and Potential Implications as Clinical Biomarkers. Front. Mol. Neurosci. 2021, 14, 685143. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Cong, S. The Emerging Role of microRNAs in Polyglutamine Diseases. Front. Mol. Neurosci. 2019, 12, 156. [Google Scholar] [CrossRef] [PubMed]
- Saraiva, C.; Esteves, M.; Bernardino, L. MicroRNA: Basic concepts and implications for regeneration and repair of neurodegenerative diseases. Biochem. Pharmacol. 2017, 141, 118–131. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; Yu, J.T.; Tan, L. Causes and Consequences of MicroRNA Dysregulation in Neurodegenerative Diseases. Mol. Neurobiol. 2015, 51, 1249–1262. [Google Scholar] [CrossRef] [PubMed]
- Díez-Planelles, C.; Sánchez-Lozano, P.; Crespo, M.C.; Gil-Zamorano, J.; Ribacoba, R.; González, N.; Suárez, E.; Martínez-Descals, A.; Martínez-Camblor, P.; Álvarez, V.; et al. Circulating microRNAs in Huntington’s disease: Emerging mediators in metabolic impairment. Pharmacol. Res. 2016, 108, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Beatriz, M.; Vilaça, R.; Lopes, C. Exosomes: Innocent Bystanders or Critical Culprits in Neurodegenerative Diseases. Front. Cell Dev. Biol. 2021, 9, 635104. [Google Scholar] [CrossRef] [PubMed]
- Neueder, A.; Kojer, K.; Hering, T.; Lavery, D.J.; Chen, J.; Birth, N.; Hallitsch, J.; Trautmann, S.; Parker, J.; Flower, M.; et al. Abnormal molecular signatures of inflammation, energy metabolism, and vesicle biology in human Huntington disease peripheral tissues. Genome Biol. 2022, 23, 189. [Google Scholar] [CrossRef] [PubMed]
- Neueder, A.; Nitzschner, P.; Wagner, R.; Hummel, J.; Hoschek, F.; Wagner, M.; Abdelmoez, A.; von Einem, B.; Landwehrmeyer, G.B.; Tabrizi, S.J.; et al. Huntington disease alters the actionable information in plasma extracellular vesicles. Clin. Transl. Med. 2024, 14, e1525. [Google Scholar] [CrossRef] [PubMed]
- Romano, S.; Romano, C.; Peconi, M.; Fiore, A.; Bellucci, G.; Morena, E.; Troili, F.; Cipollini, V.; Annibali, V.; Giglio, S.; et al. Circulating U13 Small Nucleolar RNA as a Potential Biomarker in Huntington’s Disease: A Pilot Study. Int. J. Mol. Sci. 2022, 23, 12440. [Google Scholar] [CrossRef]
- Ferraldeschi, M.; Romano, S.; Giglio, S.; Romano, C.; Morena, E.; Mechelli, R.; Annibali, V.; Ubaldi, M.; Buscarinu, M.C.; Umeton, R.; et al. Circulating hsa-miR-323b-3p in Huntington’s Disease: A Pilot Study. Front. Neurol. 2021, 12, 657973. [Google Scholar] [CrossRef]
- Aganzo, M.; Montojo, M.T.; López de Las Hazas, M.C.; Martínez-Descals, A.; Ricote-Vila, M.; Sanz, R.; González-Peralta, I.; Martín-Hernández, R.; de Dios, O.; Garcés, C.; et al. Customized Dietary Intervention Avoids Unintentional Weight Loss and Modulates Circulating miRNAs Footprint in Huntington’s Disease. Mol. Nutr. Food Res. 2018, 62, e1800619. [Google Scholar] [CrossRef]
- Lee, M.; Im, W.; Kim, M. Exosomes as a potential messenger unit during heterochronic parabiosis for amelioration of Huntington’s disease. Neurobiol. Dis. 2021, 155, 105374. [Google Scholar] [CrossRef]
- Abildtrup, M.; Shattock, M. Cardiac Dysautonomia in Huntington’s Disease. J. Huntingt. Dis. 2013, 2, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Bellosta Diago, E.; Pérez-Pérez, J.; Santos Lasaosa, S.; Viloria Alebesque, A.; Martínez-Horta, S.; Kulisevsky, J.; López Del Val, J. Neurocardiovascular pathology in pre-manifest and early-stage Huntington’s disease. Eur. J. Neurol. 2018, 25, 956–962. [Google Scholar] [CrossRef] [PubMed]
- Zielonka, D.; Piotrowska, I.; Mielcarek, M. Cardiac dysfunction in Huntington’s disease. Exp. Clin. Cardiol. 2014, 20, 2547–2554. [Google Scholar]
- Mihm, M.J.; Amann, D.M.; Schanbacher, B.L.; Altschuld, R.A.; Bauer, J.A.; Hoyt, K.R. Cardiac dysfunction in the R6/2 mouse model of Huntington’s disease. Neurobiol. Dis. 2007, 25, 297–308. [Google Scholar] [CrossRef] [PubMed]
- Mielcarek, M.; Inuabasi, L.; Bondulich, M.K.; Muller, T.; Osborne, G.F.; Franklin, S.A.; Smith, D.L.; Neueder, A.; Rosinski, J.; Rattray, I.; et al. Dysfunction of the CNS-heart axis in mouse models of Huntington’s disease. PLoS Genet. 2014, 10, e1004550. [Google Scholar] [CrossRef] [PubMed]
- Wood, N.I.; Sawiak, S.J.; Buonincontri, G.; Niu, Y.; Kane, A.D.; Carpenter, T.A.; Giussani, D.A.; Morton, A.J. Direct evidence of progressive cardiac dysfunction in a transgenic mouse model of Huntington’s disease. J. Huntingt. Dis. 2012, 1, 57–64. [Google Scholar] [CrossRef]
- Kane, A.D.; Niu, Y.; Herrera, E.A.; Morton, A.J.; Giussani, D.A. Impaired Nitric Oxide Mediated Vasodilation in the Peripheral Circulation In The R6/2 Mouse Model Of Huntington’s Disease. Sci. Rep. 2016, 6, 25979. [Google Scholar] [CrossRef]
- Deckel, A.W.; Volmer, P.; Weiner, R.; Gary, K.A.; Covault, J.; Sasso, D.; Schmerler, N.; Watts, D.; Yan, Z.; Abeles, I. Dietary arginine alters time of symptom onset in Huntington’s disease transgenic mice. Brain Res. 2000, 875, 187–195. [Google Scholar] [CrossRef]
- Wolf, R.C.; Grön, G.; Sambataro, F.; Vasic, N.; Wolf, N.D.; Thomann, P.A.; Saft, C.; Landwehrmeyer, G.B.; Orth, M. Magnetic resonance perfusion imaging of resting-state cerebral blood flow in preclinical Huntington’s disease. J. Cereb. Blood Flow Metab. 2011, 31, 1908–1918. [Google Scholar] [CrossRef]
- Deckel, A.W.; Duffy, J.D. Vasomotor hyporeactivity in the anterior cerebral artery during motor activation in Huntington’s disease patients. Brain Res. 2000, 872, 258–261. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Patel, V.; Xiao, J.; Khan, M.M. The Role of Neurovascular System in Neurodegenerative Diseases. Mol. Neurobiol. 2020, 57, 4373–4393. [Google Scholar] [CrossRef] [PubMed]
- Estevez-Fraga, C.; Tabrizi, S.J.; Wild, E.J. Huntington’s Disease Clinical Trials Corner: August 2023. J. Huntington’s Dis. 2023, 12, 169–185. [Google Scholar] [CrossRef] [PubMed]
- Langbehn, D.R.; Hayden, M.R.; Paulsen, J.S. CAG-repeat length and the age of onset in Huntington disease (HD): A review and validation study of statistical approaches. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2010, 153b, 397–408. [Google Scholar] [CrossRef] [PubMed]
- Podvin, S.; Reardon, H.T.; Yin, K.; Mosier, C.; Hook, V. Multiple clinical features of Huntington’s disease correlate with mutant HTT gene CAG repeat lengths and neurodegeneration. J. Neurol. 2019, 266, 551–564. [Google Scholar] [CrossRef] [PubMed]
- Gusella, J.F.; MacDonald, M.E.; Lee, J.M. Genetic modifiers of Huntington’s disease. Mov. Disord. Off. J. Mov. Disord. Soc. 2014, 29, 1359–1365. [Google Scholar] [CrossRef] [PubMed]
- Keum, J.W.; Shin, A.; Gillis, T.; Mysore, J.S.; Abu Elneel, K.; Lucente, D.; Hadzi, T.; Holmans, P.; Jones, L.; Orth, M.; et al. The HTT CAG-Expansion Mutation Determines Age at Death but Not Disease Duration in Huntington Disease. Am. J. Hum. Genet. 2016, 98, 287–298. [Google Scholar] [CrossRef] [PubMed]
- GeM-HD. Identification of Genetic Factors that Modify Clinical Onset of Huntington’s Disease. Cell 2015, 162, 516–526. [Google Scholar] [CrossRef]
- Trembath, M.K.; Horton, Z.A.; Tippett, L.; Hogg, V.; Collins, V.R.; Churchyard, A.; Velakoulis, D.; Roxburgh, R.; Delatycki, M.B. A retrospective study of the impact of lifestyle on age at onset of Huntington disease. Mov. Disord. Off. J. Mov. Disord. Soc. 2010, 25, 1444–1450. [Google Scholar] [CrossRef]
- Burtscher, J.; Romani, M.; Bernardo, G.; Popa, T.; Ziviani, E.; Hummel, F.C.; Sorrentino, V.; Millet, G.P. Boosting mitochondrial health to counteract neurodegeneration. Prog. Neurobiol. 2022, 215, 102289. [Google Scholar] [CrossRef] [PubMed]
- Burtscher, J.; Strasser, B.; Burtscher, M. A mito-centric view on muscle aging and function. Front. Public Health 2023, 11, 1330131. [Google Scholar] [CrossRef] [PubMed]
- Myers, R.H.; Sax, D.S.; Koroshetz, W.J.; Mastromauro, C.; Cupples, L.A.; Kiely, D.K.; Pettengill, F.K.; Bird, E.D. Factors associated with slow progression in Huntington’s disease. Arch. Neurol. 1991, 48, 800–804. [Google Scholar] [CrossRef]
- van der Burg, J.M.M.; Weydt, P.; Landwehrmeyer, G.B.; Aziz, N.A. Effect of Body Weight on Age at Onset in Huntington Disease: A Mendelian Randomization Study. Neurol. Genet. 2021, 7, e603. [Google Scholar] [CrossRef]
- Duan, W.; Guo, Z.; Jiang, H.; Ware, M.; Li, X.J.; Mattson, M.P. Dietary restriction normalizes glucose metabolism and BDNF levels, slows disease progression, and increases survival in huntingtin mutant mice. Proc. Natl. Acad. Sci. USA 2003, 100, 2911–2916. [Google Scholar] [CrossRef]
- Moreno, C.L.; Ehrlich, M.E.; Mobbs, C.V. Protection by dietary restriction in the YAC128 mouse model of Huntington’s disease: Relation to genes regulating histone acetylation and HTT. Neurobiol. Dis. 2016, 85, 25–34. [Google Scholar] [CrossRef]
- Kudwa, A.E.; Menalled, L.B.; Oakeshott, S.; Murphy, C.; Mushlin, R.; Fitzpatrick, J.; Miller, S.F.; McConnell, K.; Port, R.; Torello, J.; et al. Increased Body Weight of the BAC HD Transgenic Mouse Model of Huntington’s Disease Accounts for Some but Not All of the Observed HD-like Motor Deficits. PLoS Curr. 2013, 5, ecurrents.hd.0ab4f3645aff523c56ecc8ccbe41a198. [Google Scholar] [CrossRef] [PubMed]
- Skillings, E.A.; Wood, N.I.; Morton, A.J. Beneficial effects of environmental enrichment and food entrainment in the R6/2 mouse model of Huntington’s disease. Brain Behav. 2014, 4, 675–686. [Google Scholar] [CrossRef]
- de Cabo, R.; Mattson, M.P. Effects of Intermittent Fasting on Health, Aging, and Disease. N. Engl. J. Med. 2019, 381, 2541–2551. [Google Scholar] [CrossRef]
- Longo, V.D.; Di Tano, M.; Mattson, M.P.; Guidi, N. Intermittent and periodic fasting, longevity and disease. Nat. Aging 2021, 1, 47–59. [Google Scholar] [CrossRef]
- Otten, J.J.; Hellwig, J.P.; Linda, D. Dietary Reference Intakes: The Essential Guide to Nutrient Requirements; The National Academies Press: Washington, DC, USA, 2006; p. 1344. [Google Scholar]
- Strasser, B.; Becker, K.; Fuchs, D.; Gostner, J.M. Kynurenine pathway metabolism and immune activation: Peripheral measurements in psychiatric and co-morbid conditions. Neuropharmacology 2017, 112 Pt B, 286–296. [Google Scholar] [CrossRef]
- Fathi, M.; Vakili, K.; Yaghoobpoor, S.; Tavasol, A.; Jazi, K.; Hajibeygi, R.; Shool, S.; Sodeifian, F.; Klegeris, A.; McElhinney, A.; et al. Dynamic changes in metabolites of the kynurenine pathway in Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease: A systematic Review and meta-analysis. Front. Immunol. 2022, 13, 997240. [Google Scholar] [CrossRef] [PubMed]
- Cervenka, I.; Agudelo, L.Z.; Ruas, J.L. Kynurenines: Tryptophan’s metabolites in exercise, inflammation, and mental health. Science 2017, 357, eaaf9794. [Google Scholar] [CrossRef] [PubMed]
- Stoy, N.; Mackay, G.M.; Forrest, C.M.; Christofides, J.; Egerton, M.; Stone, T.W.; Darlington, L.G. Tryptophan metabolism and oxidative stress in patients with Huntington’s disease. J. Neurochem. 2005, 93, 611–623. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, F.B.; Byrne, L.M.; Lowe, A.J.; Tortelli, R.; Heins, M.; Flik, G.; Johnson, E.B.; De Vita, E.; Scahill, R.I.; Giorgini, F.; et al. Kynurenine pathway metabolites in cerebrospinal fluid and blood as potential biomarkers in Huntington’s disease. J. Neurochem. 2021, 158, 539–553. [Google Scholar] [CrossRef] [PubMed]
- Cryan, J.F.; Dinan, T.G. Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 2012, 13, 701–712. [Google Scholar] [CrossRef] [PubMed]
- Strasser, B.; Fuchs, D. Role of physical activity and diet on mood, behavior, and cognition. Neurol. Psychiatry Brain Res. 2015, 21, 118–126. [Google Scholar] [CrossRef]
- Strasser, B.; Berger, K.; Fuchs, D. Effects of a caloric restriction weight loss diet on tryptophan metabolism and inflammatory biomarkers in overweight adults. Eur. J. Nutr. 2015, 54, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Strasser, B.; Kohlboeck, G.; Hermanky, M.; Leitzmann, M. Role of dietary protein and exercise on biomarkers of immune activation in older patients during hospitalization. Aging Clin. Exp. Res. 2020, 32, 2419–2423. [Google Scholar] [CrossRef]
- Yu, E.; Ruiz-Canela, M.; Guasch-Ferré, M.; Zheng, Y.; Toledo, E.; Clish, C.B.; Salas-Salvadó, J.; Liang, L.; Wang, D.D.; Corella, D.; et al. Increases in Plasma Tryptophan Are Inversely Associated with Incident Cardiovascular Disease in the Prevención con Dieta Mediterránea (PREDIMED) Study. J. Nutr. 2017, 147, 314–322. [Google Scholar] [CrossRef]
- Strasser, B.; Fuchs, D. Diet Versus Exercise in Weight Loss and Maintenance: Focus on Tryptophan. Int. J. Tryptophan Res. 2016, 9, 9–16. [Google Scholar] [CrossRef]
- Weyh, C.; Krüger, K.; Strasser, B. Physical Activity and Diet Shape the Immune System during Aging. Nutrients 2020, 12, 622. [Google Scholar] [CrossRef] [PubMed]
- Zemdegs, J.; Quesseveur, G.; Jarriault, D.; Pénicaud, L.; Fioramonti, X.; Guiard, B.P. High-fat diet-induced metabolic disorders impairs 5-HT function and anxiety-like behavior in mice. Br. J. Pharmacol. 2016, 173, 2095–2110. [Google Scholar] [CrossRef] [PubMed]
- Xyda, S.E.; Vuckovic, I.; Petterson, X.M.; Dasari, S.; Lalia, A.Z.; Parvizi, M.; Macura, S.I.; Lanza, I.R. Distinct Influence of Omega-3 Fatty Acids on the Plasma Metabolome of Healthy Older Adults. J. Gerontol. A Biol. Sci. Med. Sci. 2020, 75, 875–884. [Google Scholar] [CrossRef] [PubMed]
- Borsini, A.; Alboni, S.; Horowitz, M.A.; Tojo, L.M.; Cannazza, G.; Su, K.P.; Pariante, C.M.; Zunszain, P.A. Rescue of IL-1β-induced reduction of human neurogenesis by omega-3 fatty acids and antidepressants. Brain Behav. Immun. 2017, 65, 230–238. [Google Scholar] [CrossRef]
- Patrick, R.P.; Ames, B.N. Vitamin D and the omega-3 fatty acids control serotonin synthesis and action, part 2: Relevance for ADHD, bipolar disorder, schizophrenia, and impulsive behavior. FASEB J. 2015, 29, 2207–2222. [Google Scholar] [CrossRef] [PubMed]
- Vega, O.M.; Cepeda, C. Converging evidence in support of omega-3 polyunsaturated fatty acids as a potential therapy for Huntington’s disease symptoms. Rev. Neurosci. 2021, 32, 871–886. [Google Scholar] [CrossRef]
- Avallone, R.; Vitale, G.; Bertolotti, M. Omega-3 Fatty Acids and Neurodegenerative Diseases: New Evidence in Clinical Trials. Int. J. Mol. Sci. 2019, 20, 4256. [Google Scholar] [CrossRef] [PubMed]
- Chitre, N.M.; Moniri, N.H.; Murnane, K.S. Omega-3 Fatty Acids as Druggable Therapeutics for Neurodegenerative Disorders. CNS Neurol. Disord. Drug Targets 2019, 18, 735–749. [Google Scholar] [CrossRef]
- Pantzaris, M.; Loukaides, G.; Paraskevis, D.; Kostaki, E.G.; Patrikios, I. Neuroaspis PLP10™, a nutritional formula rich in omega-3 and omega-6 fatty acids with antioxidant vitamins including gamma-tocopherol in early Parkinson’s disease: A randomized, double-blind, placebo-controlled trial. Clin. Neurol. Neurosurg. 2021, 210, 106954. [Google Scholar] [CrossRef]
- Power, R.; Nolan, J.M.; Prado-Cabrero, A.; Roche, W.; Coen, R.; Power, T.; Mulcahy, R. Omega-3 fatty acid, carotenoid and vitamin E supplementation improves working memory in older adults: A randomised clinical trial. Clin. Nutr. 2022, 41, 405–414. [Google Scholar] [CrossRef]
- Strasser, B.; Gostner, J.M.; Fuchs, D. Mood, food, and cognition: Role of tryptophan and serotonin. Curr. Opin. Clin. Nutr. Metab. Care 2016, 19, 55–61. [Google Scholar] [CrossRef]
- Kumar, A.; Ratan, R.R. Oxidative Stress and Huntington’s Disease: The Good, The Bad, and The Ugly. J. Huntington’s Dis. 2016, 5, 217–237. [Google Scholar] [CrossRef]
- Félix-Soriano, E.; Stanford, K.I. Exerkines and redox homeostasis. Redox Biol. 2023, 63, 102748. [Google Scholar] [CrossRef]
- Samanta, S.; Chakraborty, S.; Bagchi, D. Pathogenesis of Neurodegenerative Diseases and the Protective Role of Natural Bioactive Components. J. Am. Nutr. Assoc. 2024, 43, 20–32. [Google Scholar] [CrossRef]
- da Cunha Germano, B.C.; de Morais, L.C.C.; Idalina Neta, F.; Fernandes, A.C.L.; Pinheiro, F.I.; do Rego, A.C.M.; Araújo Filho, I.; de Azevedo, E.P.; de Paiva Cavalcanti, J.R.L.; Guzen, F.P.; et al. Vitamin E and Its Molecular Effects in Experimental Models of Neurodegenerative Diseases. Int. J. Mol. Sci. 2023, 24, 11191. [Google Scholar] [CrossRef]
- Rai, S.N.; Singh, P.; Steinbusch, H.W.M.; Vamanu, E.; Ashraf, G.; Singh, M.P. The Role of Vitamins in Neurodegenerative Disease: An Update. Biomedicines 2021, 9, 1284. [Google Scholar] [CrossRef]
- Peyser, C.E.; Folstein, M.; Chase, G.A.; Starkstein, S.; Brandt, J.; Cockrell, J.R.; Bylsma, F.; Coyle, J.T.; McHugh, P.R.; Folstein, S.E. Trial of d-alpha-tocopherol in Huntington’s disease. Am. J. Psychiatry 1995, 152, 1771–1775. [Google Scholar]
- Maher, P. The Potential of Flavonoids for the Treatment of Neurodegenerative Diseases. Int. J. Mol. Sci. 2019, 20, 3056. [Google Scholar] [CrossRef]
- Wu, M.; Luo, Q.; Nie, R.; Yang, X.; Tang, Z.; Chen, H. Potential implications of polyphenols on aging considering oxidative stress, inflammation, autophagy, and gut microbiota. Crit. Rev. Food Sci. Nutr. 2021, 61, 2175–2193. [Google Scholar] [CrossRef]
- Del Bo, C.; Bernardi, S.; Cherubini, A.; Porrini, M.; Gargari, G.; Hidalgo-Liberona, N.; González-Domínguez, R.; Zamora-Ros, R.; Peron, G.; Marino, M.; et al. A polyphenol-rich dietary pattern improves intestinal permeability, evaluated as serum zonulin levels, in older subjects: The MaPLE randomised controlled trial. Clin. Nutr. 2021, 40, 3006–3018. [Google Scholar] [CrossRef]
- González-Domínguez, R.; Castellano-Escuder, P.; Carmona, F.; Lefèvre-Arbogast, S.; Low, D.Y.; Du Preez, A.; Ruigrok, S.R.; Manach, C.; Urpi-Sarda, M.; Korosi, A.; et al. Food and Microbiota Metabolites Associate with Cognitive Decline in Older Subjects: A 12-Year Prospective Study. Mol. Nutr. Food Res. 2021, 65, e2100606. [Google Scholar] [CrossRef]
- Ticinesi, A.; Mancabelli, L.; Carnevali, L.; Nouvenne, A.; Meschi, T.; Del Rio, D.; Ventura, M.; Sgoifo, A.; Angelino, D. Interaction Between Diet and Microbiota in the Pathophysiology of Alzheimer’s Disease: Focus on Polyphenols and Dietary Fibers. J. Alzheimer’s Dis. JAD 2022, 86, 961–982. [Google Scholar] [CrossRef]
- Strasser, B.; Ticinesi, A. Intestinal microbiome in normal ageing, frailty and cognition decline. Curr. Opin. Clin. Nutr. Metab. Care 2023, 26, 8–16. [Google Scholar] [CrossRef]
- Gubert, C.; Kong, G.; Costello, C.; Adams, C.D.; Masson, B.A.; Qin, W.; Choo, J.; Narayana, V.K.; Rogers, G.; Renoir, T.; et al. Dietary fibre confers therapeutic effects in a preclinical model of Huntington’s disease. Brain Behav. Immun. 2024, 116, 404–418. [Google Scholar] [CrossRef]
- Wu, D.; Lewis, E.D.; Pae, M.; Meydani, S.N. Nutritional Modulation of Immune Function: Analysis of Evidence, Mechanisms, and Clinical Relevance. Front. Immunol. 2018, 9, 3160. [Google Scholar] [CrossRef]
- Wasser, C.I.; Mercieca, E.C.; Kong, G.; Hannan, A.J.; Allford, B.; McKeown, S.J.; Stout, J.C.; Glikmann-Johnston, Y. A Randomized Controlled Trial of Probiotics Targeting Gut Dysbiosis in Huntington’s Disease. J. Huntingt. Dis. 2023, 12, 43–55. [Google Scholar] [CrossRef]
- Mishra, V.; Yadav, D.; Solanki, K.S.; Koul, B.; Song, M. A Review on the Protective Effects of Probiotics against Alzheimer’s Disease. Biology 2023, 13, 8. [Google Scholar] [CrossRef]
- Maggi, S.; Ticinesi, A.; Limongi, F.; Noale, M.; Ecarnot, F. The role of nutrition and the Mediterranean diet on the trajectories of cognitive decline. Exp. Gerontol. 2023, 173, 112110. [Google Scholar] [CrossRef]
- Scarmeas, N.; Anastasiou, C.A.; Yannakoulia, M. Nutrition and prevention of cognitive impairment. Lancet Neurol. 2018, 17, 1006–1015. [Google Scholar] [CrossRef]
- Ghosh, T.S.; Rampelli, S.; Jeffery, I.B.; Santoro, A.; Neto, M.; Capri, M.; Giampieri, E.; Jennings, A.; Candela, M.; Turroni, S.; et al. Mediterranean diet intervention alters the gut microbiome in older people reducing frailty and improving health status: The NU-AGE 1-year dietary intervention across five European countries. Gut 2020, 69, 1218–1228. [Google Scholar] [CrossRef]
- Blaak, E.E.; Canfora, E.E.; Theis, S.; Frost, G.; Groen, A.K.; Mithieux, G.; Nauta, A.; Scott, K.; Stahl, B.; van Harsselaar, J.; et al. Short chain fatty acids in human gut and metabolic health. Benef. Microbes 2020, 11, 411–455. [Google Scholar] [CrossRef]
- Dalile, B.; Van Oudenhove, L.; Vervliet, B.; Verbeke, K. The role of short-chain fatty acids in microbiota-gut-brain communication. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 461–478. [Google Scholar] [CrossRef]
- Rutsch, A.; Kantsjö, J.B.; Ronchi, F. The Gut-Brain Axis: How Microbiota and Host Inflammasome Influence Brain Physiology and Pathology. Front. Immunol. 2020, 11, 604179. [Google Scholar] [CrossRef]
- Merra, G.; Noce, A.; Marrone, G.; Cintoni, M.; Tarsitano, M.G.; Capacci, A.; De Lorenzo, A. Influence of Mediterranean Diet on Human Gut Microbiota. Nutrients 2020, 13, 7. [Google Scholar] [CrossRef]
- Christodoulou, C.C.; Demetriou, C.A.; Zamba-Papanicolaou, E. Dietary Intake, Mediterranean Diet Adherence and Caloric Intake in Huntington’s Disease: A Review. Nutrients 2020, 12, 2946. [Google Scholar] [CrossRef]
- Buruma, O.J.; Van der Kamp, W.; Barendswaard, E.C.; Roos, R.A.; Kromhout, D.; Van der Velde, E.A. Which factors influence age at onset and rate of progression in Huntington’s disease? J. Neurol. Sci. 1987, 80, 299–306. [Google Scholar] [CrossRef]
- Rivadeneyra, J.; Cubo, E.; Gil, C.; Calvo, S.; Mariscal, N.; Martínez, A. Factors associated with Mediterranean diet adherence in Huntington’s disease. Clin. Nutr. ESPEN 2016, 12, e7–e13. [Google Scholar] [CrossRef]
- Ticinesi, A.; Nouvenne, A.; Cerundolo, N.; Parise, A.; Meschi, T. Accounting Gut Microbiota as the Mediator of Beneficial Effects of Dietary (Poly)phenols on Skeletal Muscle in Aging. Nutrients 2023, 15, 2367. [Google Scholar] [CrossRef]
- Stillman, C.M.; Esteban-Cornejo, I.; Brown, B.; Bender, C.M.; Erickson, K.I. Effects of Exercise on Brain and Cognition Across Age Groups and Health States. Trends Neurosci. 2020, 43, 533–543. [Google Scholar] [CrossRef]
- Andrews, S.C.; Kämpf, L.; Curtin, D.; Hinder, M.; Wenderoth, N.; Stout, J.C.; Coxon, J.P. A single bout of moderate-intensity aerobic exercise improves motor learning in premanifest and early Huntington’s disease. Front. Psychol. 2023, 14, 1089333. [Google Scholar] [CrossRef]
- Huynh, K.; Nategh, L.; Jamadar, S.; Stout, J.; Georgiou-Karistianis, N.; Lampit, A. Cognition-oriented treatments and physical exercise on cognitive function in Huntington’s disease: A systematic review. J. Neurol. 2023, 270, 1857–1879. [Google Scholar] [CrossRef]
- Trovato, B.; Magri, B.; Castorina, A.; Maugeri, G.; D’Agata, V.; Musumeci, G. Effects of Exercise on Skeletal Muscle Pathophysiology in Huntington’s Disease. J. Funct. Morphol. Kinesiol. 2022, 7, 40. [Google Scholar] [CrossRef]
- Mueller, S.M.; Petersen, J.A.; Jung, H.H. Exercise in Huntington’s Disease: Current State and Clinical Significance. Tremor Other Hyperkinet Mov. 2019, 9, 601. [Google Scholar] [CrossRef]
- Al-Wardat, M.; Schirinzi, T.; Hadoush, H.; Kassab, M.; Yabroudi, M.A.; Opara, J.; Nawrat-Szoltysik, A.; Khalil, H.; Etoom, M. Home-Based Exercise to Improve Motor Functions, Cognitive Functions, and Quality of Life in People with Huntington’s Disease: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 14915. [Google Scholar] [CrossRef]
- Cabanas-Valdes, R.; Llurda-Almuzara, L.; Lopez-de-Celis, C.; Myers-Escola, A.; Svoboda, S.; Ortiz-Miguel, S.; Perez-Bellmunt, A. Does physical activity improve motor function and gait in huntington disease? A systematic review and meta-analysis. Rev. Neurol. 2022, 74, 392–402. [Google Scholar]
- Kim, K.H.; Song, M.K. Update of Rehabilitation in Huntington’s Disease: Narrative Review. Brain Neurorehabil. 2023, 16, e28. [Google Scholar] [CrossRef]
- Steventon, J.J.; Collett, J.; Furby, H.; Hamana, K.; Foster, C.; O’Callaghan, P.; Dennis, A.; Armstrong, R.; Nemeth, A.H.; Rosser, A.E.; et al. Alterations in the metabolic and cardiorespiratory response to exercise in Huntington’s Disease. Park. Relat. Disord. 2018, 54, 56–61. [Google Scholar] [CrossRef]
- Potter, M.C.; Yuan, C.; Ottenritter, C.; Mughal, M.; van Praag, H. Exercise is not beneficial and may accelerate symptom onset in a mouse model of Huntington’s disease. PLoS Curr. 2010, 2, RRN1201. [Google Scholar] [CrossRef]
- Corrochano, S.; Blanco, G.; Williams, D.; Wettstein, J.; Simon, M.; Kumar, S.; Moir, L.; Agnew, T.; Stewart, M.; Landman, A.; et al. A genetic modifier suggests that endurance exercise exacerbates Huntington’s disease. Hum. Mol. Genet. 2018, 27, 1723–1731. [Google Scholar] [CrossRef]
- Ercan, Z.; Bilek, F.; Demir, C.F. The effect of aerobic exercise on Neurofilament light chain and glial Fibrillary acidic protein level in patients with relapsing remitting type multiple sclerosis. Mult. Scler. Relat. Disord. 2021, 55, 103219. [Google Scholar] [CrossRef]
- Kosinski, C.M.; Schlangen, C.; Gellerich, F.N.; Gizatullina, Z.; Deschauer, M.; Schiefer, J.; Young, A.B.; Landwehrmeyer, G.B.; Toyka, K.V.; Sellhaus, B.; et al. Myopathy as a first symptom of Huntington’s disease in a Marathon runner. Mov. Disord. 2007, 22, 1637–1640. [Google Scholar] [CrossRef]
- Altschuler, E.L. Strenuous, intensive, long-term exercise does not prevent or delay the onset of Huntington’s disease. Med. Hypotheses 2006, 67, 1429–1430. [Google Scholar] [CrossRef]
- Frese, S.; Petersen, J.A.; Ligon-Auer, M.; Mueller, S.M.; Mihaylova, V.; Gehrig, S.M.; Kana, V.; Rushing, E.J.; Unterburger, E.; Kägi, G.; et al. Exercise effects in Huntington disease. J. Neurol. 2017, 264, 32–39. [Google Scholar] [CrossRef]
- Mueller, S.M.; Gehrig, S.M.; Petersen, J.A.; Frese, S.; Mihaylova, V.; Ligon-Auer, M.; Khmara, N.; Nuoffer, J.M.; Schaller, A.; Lundby, C.; et al. Effects of endurance training on skeletal muscle mitochondrial function in Huntington disease patients. Orphanet J. Rare Dis. 2017, 12, 184. [Google Scholar] [CrossRef]
- Busse, M.; Quinn, L.; Debono, K.; Jones, K.; Collett, J.; Playle, R.; Kelly, M.; Simpson, S.; Backx, K.; Wasley, D.; et al. A randomized feasibility study of a 12-week community-based exercise program for people with Huntington’s disease. J. Neurol. Phys. Ther. 2013, 37, 149–158. [Google Scholar] [CrossRef]
- Garber, C.E.; Blissmer, B.; Deschenes, M.R.; Franklin, B.A.; Lamonte, M.J.; Lee, I.M.; Nieman, D.C.; Swain, D.P. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med. Sci. Sports Exerc. 2011, 43, 1334–1359. [Google Scholar] [CrossRef]
- Spiering, B.A.; Clark, B.C.; Schoenfeld, B.J.; Foulis, S.A.; Pasiakos, S.M. Maximizing Strength: The Stimuli and Mediators of Strength Gains and Their Application to Training and Rehabilitation. J. Strength Cond. Res. 2023, 37, 919–929. [Google Scholar] [CrossRef]
- Sultana, R.N.; Sabag, A.; Keating, S.E.; Johnson, N.A. The Effect of Low-Volume High-Intensity Interval Training on Body Composition and Cardiorespiratory Fitness: A Systematic Review and Meta-Analysis. Sports Med. 2019, 49, 1687–1721. [Google Scholar] [CrossRef]
- Calverley, T.A.; Ogoh, S.; Marley, C.J.; Steggall, M.; Marchi, N.; Brassard, P.; Lucas, S.J.E.; Cotter, J.D.; Roig, M.; Ainslie, P.N.; et al. HIITing the brain with exercise: Mechanisms, consequences and practical recommendations. J. Physiol. 2020, 598, 2513–2530. [Google Scholar] [CrossRef]
- Bartlett, D.M.; Dominguez, D.J.; Lazar, A.S.; Kordsachia, C.C.; Rankin, T.J.; Lo, J.; Govus, A.D.; Power, B.D.; Lampit, A.; Eastwood, P.R.; et al. Multidisciplinary rehabilitation reduces hypothalamic grey matter volume loss in individuals with preclinical Huntington’s disease: A nine-month pilot study. J. Neurol. Sci. 2020, 408, 116522. [Google Scholar] [CrossRef] [PubMed]
- Cruickshank, T.M.; Thompson, J.A.; Dominguez, D.J.; Reyes, A.P.; Bynevelt, M.; Georgiou-Karistianis, N.; Barker, R.A.; Ziman, M.R. The effect of multidisciplinary rehabilitation on brain structure and cognition in Huntington’s disease: An exploratory study. Brain Behav. 2015, 5, e00312. [Google Scholar] [CrossRef]
- Thompson, J.A.; Cruickshank, T.M.; Penailillo, L.E.; Lee, J.W.; Newton, R.U.; Barker, R.A.; Ziman, M.R. The effects of multidisciplinary rehabilitation in patients with early-to-middle-stage Huntington’s disease: A pilot study. Eur. J. Neurol. 2013, 20, 1325–1329. [Google Scholar] [CrossRef]
- Aldine, A.S.; Ogilvie, A.; Wemmie, J.; Kent, J.; Schultz, J.; Long, J.D.; Kamholz, J.; Sajjad, H.; Kline, J.; Shaw, E.; et al. Moderate Intensity Exercise in Pre-manifest Huntington’s Disease: Results of a 6 months Trial. SVOA Neurol. 2021, 2, 6–36. [Google Scholar]
- Burtscher, J.; Burtscher, M.; Millet, G.P. The central role of mitochondrial fitness on antiviral defenses: An advocacy for physical activity during the COVID-19 pandemic. Redox Biol. 2021, 43, 101976. [Google Scholar] [CrossRef] [PubMed]
- Thyfault, J.P.; Bergouignan, A. Exercise and metabolic health: Beyond skeletal muscle. Diabetologia 2020, 63, 1464–1474. [Google Scholar] [CrossRef]
- Heisz, J.J.; Waddington, E.E. The Principles of Exercise Prescription for Brain Health in Aging. Exerc. Sport Mov. 2024, 2, 1–5. [Google Scholar] [CrossRef]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.-P.; Chastin, S.; Chou, R. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef]
Species | Subjects/Model | Main Findings | References |
---|---|---|---|
mHtt | |||
Mouse | Female zQ175 HD model mice in parabiosis with wild-type mice | mHTT was found in the plasma and circulating blood cells of wild-type mice and mHTT aggregates in organs like liver, kidney, muscle, and brain (including vascular abnormalities), suggesting that mHTT is transported in the blood and can induce pathology in remote organs. | [53] |
Mouse | Female zQ175 HD model mice in parabiosis with wild-type mice | mHTT aggregation and a compromised BBB were observed in wild-type mice sharing their circulating system with HD mice. Ablation of the hematopoietic niche did not significantly affect these results. | [54] |
Inflammatory factors, immune system | |||
Human | Different cohorts of HD patients and controls used for the individual experiments (for detailed information see Supplementary Materials in [55]) | HD myeloid cells produced increased inflammatory cytokines due to mHtt and its effects on the NFκB pathway. Reducing Htt with small interfering RNA particles in HD monocytes/macrophages, reversed the excessive cytokine production and associated transcriptional changes. | [55] |
Human | 12 people with manifest HD (42.4 ± 1.7 years, 4 female, disease duration 2–13 years, 11 controls (47.0 ± 12.0, 4 female) | Immunoglobulin A, soluble tumor necrosis factor receptor, interleukin-2-receptor, neopterin, and complement component C3 increased in HD serum and tryptophan decreased. These changes were correlated to cognitive deficits. | [56] |
Fly | Drosophila expressing human Htt-Q93 exon 1 in neurons | Neuronal mHtt-Q93 caused elevated ROS levels in circulating immune cells, reduced immune cell numbers, and perturbed immune function. | [57] |
Fly | Drosophila expressing human Htt-Q93 in hemocytes (insect immune cells) | mHtt expression in hemocytes did not impair motor function but compromised the immune system, leading to greater infection susceptibility. | [58] |
Mouse | Female YAC128 HD model mice | Unlike in skeletal muscle and brain, transcriptional drifts in splenic T-cells suggest accelerated aging in YAC128 mice. | [59] |
Mouse | 3-nitropropionic acid model of HD in 12-week-old C57BL/6 mice | Alkylated resveratrol prodrug improved inflammation (reduced serum interleukin-6 levels) and delayed motor symptom onset and weight loss. | [60] |
Mouse | R6/2, HdhQ150 knock-in and YAC128 mouse models of HD | Myeloid cells from the spleen and blood cells from HD model mice produced increased inflammatory cytokines but not bone marrow CD11b(+) cells. Greater phagocytosis was observed in R6/2 macrophages, reflecting observations in HD patients [55]. | [61] |
Species | Subjects/Model | Main Findings | References |
---|---|---|---|
Muscle injury markers | |||
Mouse | R6/2 and Q175 HD model mice | Increased levels of muscle injury markers in HD mouse serum: skeletal Troponin I (sTnI), fatty acid binding protein 3 (FABP3), and Myosin light chain 3 (Myl3). In HD mice, genes related to muscle contractility were downregulated and components of the nuclear factor ‘kappa-light-chain-enhancer’ of activated B-cells (NfκB) were upregulated. | [73] |
Circulating metabolites | |||
Human | 7 people with HD (3 female, range 40–66 CAG) with fast progression, 13 (6 female, range 41–49 CAG) with absent progression (range 24 to 67 years for both groups) | Decreases in several plasma metabolites (related to oxidative stress, inflammation, nitric oxide/urea/glucose metabolism, polyamines, AMPK signaling) were associated with faster progression. | [74] |
Human | 15 people with symptomatic (6 female, 48.2 ± 10.2 years, 45.3 ± 3.2 CAG) and 10 with presymptomatic (3 female, 37.6 ± 6.7 years, 43.8 ± 2.5 CAG) HD, 25 controls (9 female, 43.7 ± 10.6 years) | Higher plasma levels of lactate in people with HD were correlated with a lower anaerobic threshold than controls. | [75] |
Mouse | Male R6/1 mouse model of HD (4 to 12 weeks old) | Early gut microbiome perturbance and gut dysbiosis and elevated butanoate metabolism pathway in 12-week-old R6/1 mice, modest changes in plasma metabolome. | [76,77] |
Species | Subjects/Model | Main Findings | References |
---|---|---|---|
Human | 42 manifest HD gene expansion carriers (60% females, UHDRS motor score 37.5 (30.5–71), and 30 healthy controls | Plasma levels of anandamide and 2-arachidonoylglycerol did not differ between groups and were not correlated to UHDRS or other clinical scores. | [102] |
Human | 15 people with pre-manifest (46.8 ± 2.1 years, 42.3 ± 0.1 CAG repeats), 8 with manifest HD (57.6 ± 4.1 years, 42.5 ± 0.1 CAG repeats), 16 familial, 10 pre-manifest, and 5 manifest age- and sex-matched controls. | Decreased levels of circulating growth factors (growth hormone, prolactin), total cholesterol, HDL-C, and LDL-C and perturbed levels of ghrelin, glucagon, and amylin in pre-manifest and manifest HD. Increased C-reactive protein in pre-manifest HD subjects. | [103] |
Human | Progression groups (manifest HD): 21 low (35.6 ± 7.2 years, 41.4 ± 1.5 CAG), 47 medium (44.9 ± 10.1 years, 41.8 ± 2.2 CAG) and 52 high (49.2 ± 10.9 years, 42.8 ± 2.3 CAG), 30 controls (45.8 ± 11.4 years), men and women | Plasma 24S-hydroxycholesterol levels progressively decreased with an increasing disease progression score and correlated with several clinical markers, including striatal volume and UHDRS total motor score. | [104] |
Human | 96 people with manifest HD (stage 1–3), 33 HD gene-positive pre-manifest subjects (38–55 CAG repeats), 62 controls, men and women | Levels of the brain-generated cholesterol metabolite 24S-hydroxycholesterol, but not cholesterol itself, were reduced in people with symptomatic HD as compared to presymptomatic and control groups. Circulating 24S-hydroxycholesterol levels correlated with striatal volume decrease. | [105] |
Human | Presymptomatic: 10 women (37 ± 2 years), 7 men (38 ± 4 years), Clinical stage I/II: 16 women (46 ± 3 years),12 men (43 ± 2 years), Clinical stage III: 19 women (47 ± 3 years) and 10 men (51 ± 3 years), Clinical stage IV: 3 women (53 ± 6 years), 5 men (50 ± 5 years), Controls 40 women (46 ± 3 years), 28 men (43 ± 3 years) | Increasing urinary cortisol with disease progression. | [44] |
Human | 15 HD mutation carriers (48.9 ± 3.2 years, 9 female, UHDRS 43.8 ± 5.5), 20 healthy controls undergoing orthopedic surgery (46.2 ± 4.1 years, 9 female) | Higher ghrelin and lower leptin levels in plasma of people with HD. No differences to controls in cerebrospinal fluid samples. No significant differences for insulin, glucose, insulin-like growth factor 1, or growth hormone. No correlations with disease duration were found. | [106] |
Mouse | Female R6/2 HD model mice | During the symptomatic stage (12 weeks old), plasma ghrelin levels were reduced in R6/2 mice, and expression of several components of the ghrelin axis and circadian rhythms were perturbed. Chronic ghrelin treatment attenuated metabolic and drinking/resting behavior impairments. | [107] |
Mouse | Heterozygous Q175 HD model mice | Reduced 24-hydroxy-cholesterol levels in plasma of Q175 mice reflect changes in cholesterol metabolism in the brain. | [108] |
Mouse | Male and female R6/2 HD model mice | Increased circulating corticosterone levels in R6/2 mice (similar to increased cortisol levels in HD patients. Adrenalectomy and normalization of corticosterone levels improved metabolism (indirect calorimetry) and skeletal muscle wasting. In female R6/2 mice, it also attenuated brain atrophy and mHtt pathology. | [109,110] |
Mouse | Male and female BACHD model mice | BACHD mice have increased serum leptin, insulin, and insulin-like growth factor 1, and developed impaired glucose metabolism and pronounced insulin and leptin resistance (these effects could be reproduced by targeted overexpression of mHtt in the hypothalamus but could not be abolished by inactivation of mHTT in leptin receptor-expressing neurons). | [111,112] |
Mouse | Male and female R6/2 and CAG140 mice | Leptin and adiponectin levels were reduced in HD mouse plasma. | [113] |
Mouse | R6/2 HD model mice | Levels of circulating glucose, insulin, ACTH, and corticosterone were higher and of corticotrophin-releasing hormone lower in HD mice; the adrenal cortex was enlarged. These events may explain muscular atrophy, reduced bone mineral density, abdominal fat accumulation, and insulin resistance in R6/2 mice. Increased cortisol levels were confirmed in HD patients in the same study (see above). | [44] |
Methods | Subjects/Model | Main Findings | References |
---|---|---|---|
Studies in humans | |||
Proteomics and RNAseq on EVs isolated from human plasma | 22 people with presymptomatic HD; 20 with early-manifest HD, 24 controls (more details in [128]) | Although major EV characteristics (size, concentration) were similar between groups, differences in RNA content yielded good sensitivity to distinguish the groups. More EVs of small size were detected in the HD groups. The patterns of dysregulated RNAs suggest the liver to be the main organ releasing HD-specific EVs. | [129] |
Transcriptomics and proteomics on skeletal muscle, skin (fibroblasts) and adipose tissue | 21 people with presymptomatic HD (31.2–56.5 years, 10 females, 40–48 CAG repeats); 20 with early-manifest HD (35.4–58.9 years, 41–50 CAG repeats, 10 females), 20 controls (31.6–55.9 years, 10 females) | Robust transcriptomic and proteomic dysregulation depending on disease stage, with inflammation, energy metabolism, and EVs being confirmed as crucial factors in peripheral HD pathologies; e.g., peroxisome proliferator-activated receptor alpha dysregulated in presymptomatic HD muscle and early HD adipose tissue. TBC1D3D gene expression (involved in EV regulation) was downregulated in all analyzed tissues in presymptomatic HD and restored in early HD. | [128] |
Exploratory microarray study of whole noncoding RNA expression profiles in plasma | 9 people with HD (48.25 ± 10.47 years; 5 female), 8 healthy controls (49.17 ± 11.79; 6 females) 5 psychiatric patients (50.25 ± 11.47; 3 female), confirmation in 23 symptomatic HD, 15 patients with pre-manifest HD, and controls | Higher levels of SNORD13 in HD patients were correlated to disease duration and symptoms and affected factors relevant to HD pathogenesis. The authors suggest SNORD13 as a peripheral marker for cerebral HD pathology. | [130] |
Exploratory microarray study of whole noncoding RNA expression profiles in plasma | 9 people with HD (48 ± 10 years old; 5 female), 8 healthy controls (49 ± 12; 6 female) 5 psychiatric patients (50 ± 11; 2 female), confirmation in 33 HD gene carriers, and controls (healthy and psychiatric patients) | Downregulation of hsa-miR-98 (−1.5-fold) and upregulation of hsa-miR-323b-3p (+1.5-fold) in HD. | [131] |
Human: 12 months of a customized HD diet, biochemical analysis of blood samples, cognitive and clinical testing | 11 people with manifest HD (5 female, 49,0 ± 10,1 years old) and BMI ≤ 18 kg m−2 or unintentional weight loss | Unintentional weight loss was prevented by a customized diet in all participants: fat mass and blood leptin increased. Cognition (6/11) and motor function (3/11) improved in some participants only. Several circulating miRNAs (that were previously reported to be increased in HD) were downregulated due to the customized diet. | [132] |
Mouse study | |||
Immunohisto-/cytochemistry, western blots, flow cytometry | R6/2 and zQ175 HD model mice in heterochronic parabiosis with wild-type HD mice (combinations of ages from 6 to 30 weeks) | Heterochronic parabiosis improved markers of mitochondrial biogenesis and cell death, reduced weight loss, and increased cognitive function and survival in HD. | [133] |
Species | Subjects/Model | Main Findings | References |
---|---|---|---|
Brain blood flow and neurovasculature | |||
Human | 18 pre-manifest (44.3 ± 11.3 years, 41.9 ± 1.8 CAG repeats, 12 female) and 21 manifest HD gene carriers (49.9 ± 12.6 years, 44.6 ± 4.1 CAG repeats, 14 female) and 16 controls (48.12 ± 11.02 years, 10 female) | Bilaterally decreased cerebral blood flow in caudate and putamen correlated with worse motor and cognitive symptoms and with markers of neurodegeneration. | [28] |
Human | 15 pre-manifest and manifest HD patients (3 females, 27–77 years old, 40–44 CAG repeats) and 14 matched controls, post-mortem tissues from 22 HD patients (43–54 CAG repeats) and 9 controls | Despite relatively preserved larger cerebral blood vessel morphologies, arterial cerebral blood volumes were decreased in cortex in HD and blood vessel density increased in HD putamen. Markers for blood–brain barrier function indicate leakage in HD, which was confirmed by increased extravascular fibrin deposition. In vivo MRI data suggest blood–brain barrier deficits increase with disease progression. Similar results were obtained in R6/2 mice, published in the same paper. | [19] |
Human | 17 people with early-manifest HD (50.3 ± 5.5 years, 43.8 ± 1.7 CAG repeats), 41 controls | Cerebral blood flow strongly reduced in HD in specific cortical and subcortical areas. Cerebral blood flow was associated with cognitive performance (Stroop test). | [23] |
Human | 18 pre-manifest HD mutation carriers (36.3 ± 9 years, 42.1 ± 3.1 CAG repeats) and 14 controls (37.2 ± 10.3 years) | Decreased cerebral blood flow in medial and lateral prefrontal regions and increased in the precuneus and—in people close to symptom onset—in the putamen/increased in the hippocampus. | [142] |
Human | 11 people with manifest HD (42.1 ± 3.0 years, based on HD mutation and/or UHDRS); 9 controls (35.4 ± 3.2 years) | Blood flow velocity in the anterior cerebral artery was hyporeactive in people with HD during maze testing. This was linked more to motor planning and execution (maze tracing) than to problem thinking (maze solving). | [143] |
Human | 20 presymptomatic HD gene expansion carriers, (37.4 ± 9.1 years, 43.8 ± 2.4 CAG repeats), 24 controls (39.9 ± 8.7, <31 CAG repeats) | Reduced putamen volumes in HD and impaired basal ganglia perfusion. | [24] |
Mouse | Male R6/2 HD model mice | Increasing impairments in NO-dependent vasodilation of the femoral artery in 12–16-week-old R6/2 animals, endothelial dysfunction due to impaired NO-dependent vasodilation in 16-week-old R6/2 | [140] |
Mouse | Male and female R6/1 HD model mice | NO levels were altered by dietary l-arginine (low: 0%, normal: 1.2%, or high: 5%), the dietary precursor of NO. High arginine increased cerebral blood flow and accelerated body weight loss and motor symptom onset. Low arginine reduced nitrotyrosine deposition and weight loss but not motor symptoms. | [141] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burtscher, J.; Strasser, B.; Pepe, G.; Burtscher, M.; Kopp, M.; Di Pardo, A.; Maglione, V.; Khamoui, A.V. Brain–Periphery Interactions in Huntington’s Disease: Mediators and Lifestyle Interventions. Int. J. Mol. Sci. 2024, 25, 4696. https://doi.org/10.3390/ijms25094696
Burtscher J, Strasser B, Pepe G, Burtscher M, Kopp M, Di Pardo A, Maglione V, Khamoui AV. Brain–Periphery Interactions in Huntington’s Disease: Mediators and Lifestyle Interventions. International Journal of Molecular Sciences. 2024; 25(9):4696. https://doi.org/10.3390/ijms25094696
Chicago/Turabian StyleBurtscher, Johannes, Barbara Strasser, Giuseppe Pepe, Martin Burtscher, Martin Kopp, Alba Di Pardo, Vittorio Maglione, and Andy V. Khamoui. 2024. "Brain–Periphery Interactions in Huntington’s Disease: Mediators and Lifestyle Interventions" International Journal of Molecular Sciences 25, no. 9: 4696. https://doi.org/10.3390/ijms25094696
APA StyleBurtscher, J., Strasser, B., Pepe, G., Burtscher, M., Kopp, M., Di Pardo, A., Maglione, V., & Khamoui, A. V. (2024). Brain–Periphery Interactions in Huntington’s Disease: Mediators and Lifestyle Interventions. International Journal of Molecular Sciences, 25(9), 4696. https://doi.org/10.3390/ijms25094696