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Abstract: Treating female canine mammary gland tumors is crucial owing to their propensity for
rapid progression and metastasis, significantly impacting the overall health and well-being of dogs.
Mitoquinone (MitoQ), an antioxidant, has shown promise in inhibiting the migration, invasion,
and clonogenicity of human breast cancer cells. Thus, we investigated MitoQ’s potential anticancer
properties against canine mammary gland tumor cells, CMT-U27 and CF41.Mg. MitoQ markedly sup-
pressed the proliferation and migration of both CMT-U27 and CF41.Mg cells and induced apoptotic
cell death in a dose-dependent manner. Furthermore, treatment with MitoQ led to increased levels
of pro-apoptotic proteins, including cleaved-caspase3, BAX, and phospho-p53. Cell cycle analysis
revealed that MitoQ hindered cell progression in the G1 and S phases in CMT-U27 and CF41.Mg cells.
These findings were supported using western blot analysis, demonstrating elevated levels of cleaved
caspase-3, a hallmark of apoptosis, and decreased expression of cyclin-dependent kinase (CDK) 2 and
cyclin D4, pivotal regulators of the cell cycle. In conclusion, MitoQ exhibits in vitro antitumor effects
by inducing apoptosis and arresting the cell cycle in canine mammary gland tumors, suggesting its
potential as a preventive or therapeutic agent against canine mammary cancer.

Keywords: antioxidants; cancer; canine; mammary gland; apoptosis

1. Introduction

Canine mammary gland tumors (CMT) represent the most prevalent tumors in fe-
male canines, and the treatment of these tumors is pivotal for the welfare and well-being
of affected animals. Dogs have evolved from mere pets to cherished family members,
underscoring the significance of addressing their health concerns. In European studies,
CMT accounts for 0.25% of female dogs in Italy (1997–1998) [1], 0.21% of female dogs in
the population of insured dogs in the UK (1997–1998), and 1.11% female dogs in Sweden
(1995–2002) [1–3]. Previous reports indicate a comparable distribution of benign (53%) and
malignant (47%) tumors among female dogs [4], with shared clinical, genetic, and patholog-
ical characteristics alongside epidemiological, environmental, and biological factors [5,6].
Although adjuvant chemotherapies like doxorubicin [7,8], carboplatin [9,10], mitoxantrone,
and paclitaxel have been explored for malignant neoplasms, large-scale studies reveal lim-
ited clinical efficacy, and agents such as gemcitabine [11–13], doxorubicin, docetaxel [14],
and mitoxantrone [15] are associated with high recurrence rates and unfavorable prognoses
in CMT patients.

Traditional cancer treatment protocols involving surgery, chemotherapy, and other
interventions can prolong the lives of dogs diagnosed with mammary gland cancer. Thus,
this study delves into exploring the anticancer effects of MitoQ, either as an adjuvant
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treatment or a standalone anticancer agent, for addressing mammary epithelial cell tumors
in dogs [3,7].

The excessive generation of oxidative stress correlates with cancer growth [16], with
the rise in reactive oxygen species (ROSs) in cancer cells being metabolism dependent. Dys-
regulation of oncogene signaling pathways, ROSs, and antioxidants influences anticancer
therapy outcomes [17]. Mitochondria, the sites of respiration and oxidative metabolism,
play a critical role in ROS generation, rendering mitochondria-targeting agents promising
candidates for anticancer therapy with minimal toxicity [18]. Cancer cells can adapt to
elevated ROS levels [19], surviving DNA damage, protein toxicity, and metabolic stress [20],
highlighting the significance of antioxidants in anticancer therapy [21]. ROSs impact signal
transduction and signaling pathway regulation, leading to tumorigenesis, aberrant prolif-
eration, and cell metastasis and migration [22]. ROS-mediated DNA oxidation activates
tumorigenesis and deactivates tumor suppressor genes [23], with excessive tumorigenesis
resulting from the stimulation of the PI3K/AKT and MAPK signaling pathways alongside
ROS-mediated inhibition of protein phosphatases [24–26]. In tumors, some malignant
cells resort to glycolysis for energy production due to oxygen availability fluctuations and
changes in cellular properties [27]. Mitochondria maintain tumor oxidative capacity when
such mutations occur, terminating glycolysis [28,29].

Tumor metastasis poses a significant and often fatal challenge to cancer treatment [30],
with studies indicating the release of approximately 1 × 106 tumor cells per gram of tumor
mass into circulation daily [31]. These metastatic progenitor cells induce tumor metastasis
in various organs of mice, with mitochondria associated with electron transport chain (ETC)
superoxide playing a crucial role in promoting tumor cell migration, invasion, clonogenicity,
and metastasis. Mitochondrial superoxide elimination is pivotal for prevention [32,33].

MitoQ, a mitochondria-targeted antioxidant, has been investigated for its potential
anticancer effects in humans. Mitochondria, essential organelles responsible for energy
production, also regulate cell death and survival [34,35]. MitoQ, comprising coenzyme
Q10 and the lipophilic triphenylphosphonium cation (TPP+), exhibits superior antioxidant
activity compared to non-target antioxidants [36]. MitoQ’s ubiquinone molecules shield
mitochondrial membranes from lipid peroxidation [37], being introduced into the lipid
bilayer of the matrix and reduced to ubiquinol from complex II [38]. MitoQ participates
in the antioxidant signaling pathway, converting generated superoxide into water, and
being recycled without destruction, efficiently reducing mtO2-signals [37]. Notably, MitoQ
concentrates up to 100-fold on the matrix surface of the mitochondrial inner membrane [27]
and exists in ubiquinone and ubiquinol forms [39]. MitoQ scavenges superoxides from
the ETC and acts as an antioxidant, converting peroxides to water. Unlike endogenous
coenzyme Q10, MitoQ evades oxidation by ETC complex III, undergoing recycling rather
than destruction after the process, preserving mitochondrial function [40,41]. This unique
property enables MitoQ to efficiently reduce mtO2- signals and maintain mitochondrial
function [41].

In contrast to coenzyme Q10, MitoQ remains unoxidized by ETC complex III, making
it effective in normoxic and hypoxic tumors [37]. MitoQ’s intramitochondrial storage
and activity stem from continuous recycling of ubiquinol moieties from the respiratory
chain into active antioxidants [41], capable of repairing or mitigating cellular damage
inflicted by oxidative stress during in vitro culture [42–44]. MitoQ’s antioxidant properties
have spurred extensive research in cancer [34], muscular atrophy [45], cardiovascular
diseases [46], and neurodegeneration [47]. In dogs, changes in estrogen receptors primarily
contribute to mammary cancer, alleviated via female spaying. However, mammary cancer
remains prevalent in intact female dogs [48].

This study explores MitoQ’s impact on cancer cell death, migration, and signaling
pathways in canine mammary tumor cells, specifically the CMT-U27 and CF41.Mg cell
lines characterized as mammary cancer cells [49,50]. Our findings suggest MitoQ’s po-
tential as a safe and effective treatment for canine mammary tumors, significantly re-
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ducing tumor cell viability and migration capabilities while modulating various cellular
signaling mechanisms.

2. Results
2.1. Effects of MitoQ on Cell Viability and Proliferation in Canine Mammary Tumor Cells

Initially, to evaluate the cytotoxic potential of MitoQ, we examined the viability of
CF41.Mg and CMT-U27 cells using a cell viability assay. As depicted in Figure 1A, MitoQ
concentrations of 1, 5, 10, and 20 µM hindered CMT-U27 cell viability significantly, by 75%,
60%, 54%, 43%, and 30%, respectively. Similarly, assessment of MitoQ’s cytotoxic impact
on CF41.Mg cells demonstrated significant viability reduction, with concentrations of 1,
5, 10, and 20 µM leading to viability decreases of 81%, 76%, 48%, and 27%, respectively
(Figure 1A). Furthermore, we investigated the effects of MitoQ on the proliferation of CMT-
U27 and CF41.Mg cells. Based on the initial viability results (Figure 1A), MitoQ treatment
concentrations ranging from 0 to 10 µM were selected for subsequent experiments. Utilizing
Ki67 staining to confirm cell proliferation, immunofluorescence imaging revealed a notable
reduction in proliferation in both cancer cell cultures following 24 h of MitoQ treatment.
The graph illustrates the percentage of Ki67/DAPI in MitoQ-treated cells, demonstrating
a dose-dependent decrease in Ki67-positive cells in both cell types after MitoQ treatment.
Particularly, concentrations of 5–10 µM of MitoQ led to a reduction in cell proliferation of
40% or less compared to untreated cells in both cell types (Figure 1B,C).
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to controls. Scale bar = 50 µm. 
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Figure 1. MitoQ inhibits viability of canine mammary gland tumor cells, CMT-U27, and CF41 Mg.
cells. (A) Cell viability was assessed in CMT-U27 and CF41. Mg cells following treatment with MitoQ
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(0–20 µM) or DMSO (vehicle) as a control after 24 h of culture. The graph presents the mean ± SEM
of three independent experiments. Microscopic images of Ki67-positive cells in (B) CMT-U27 and
(C) CF41. Mg cells were obtained after 24 h of exposure to different concentrations of MitoQ (0, 1, 5,
and 10 µM). The relative percentage of Ki67-positive cells is depicted on the graph. The data represent
the mean ± SEM of three different experiments. * p < 0.05; ** p < 0.01; *** p < 0.001, compared to
controls. Scale bar = 50 µm.

2.2. Apoptotic Effects of MitoQ on Canine Mammary Gland Tumor Cell Culture

Flow cytometry analysis using annexin-V and PI staining was conducted to assess
cell death induced by MitoQ treatment. As illustrated in Figure 2B, the proportion of
apoptotic cells increased 24 h after MitoQ treatment in CMT-U27 and CF41.Mg cultures.
MitoQ concentrations of 1–10 µM elevated the apoptotic rate of CMT-U27 cells signifi-
cantly, by 8.4%, 15.6%, and 20.3%, respectively. Similarly, the apoptosis rates of MitoQ
(1–10 µM) in CF41.Mg cells were 4.6%, 10.3%, and 28.6%, respectively, in a concentration-
dependent manner.
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CF41.Mg cells after 24 h of MitoQ treatment using flow cytometry (Figure 3). The results 
demonstrated a significant dose-dependent decrease in the proportion of cells in the G0 
and G1 phases in both CMT U27 and CF41.Mg cells compared to the control group fol-
lowing MitoQ treatment. Moreover, the proportion of cells in the G2/M phase significantly 
decreased in both cell types after 24 h of MitoQ treatment (Figure 3A,B). Subsequently, to 
understand the mechanism underlying MitoQ-induced cell cycle arrest in canine mam-
mary tumor cells, we evaluated the expression levels of cell cycle regulatory proteins 
through immunoblotting. Compared to the control group, MitoQ treatment markedly 

Figure 2. Apoptotic response to MitoQ in canine mammary gland tumor cells. (A) Apoptosis in
CMT-U27 and CF41. Mg cells was detected after 24 h of treatment with 0, 1, 5, and 10 µM of MitoQ
using Annexin V-FITC/PI staining and analyzed using flow cytometry. (B) The graph illustrates
the apoptosis rate of CMT-U27 and CF41. Mg cells as mean ± SEM. Immunoblot results of cleaved
caspase-3, caspase-3, BAX, pp53, p53, and β-actin from (C) CMT-U27 and (D) CF41. Mg cell lysates.
The graph represents the relative protein expression levels normalized to the inactive form or β-actin
as mean ± SEM. N = 4, * p < 0.05, ** p < 0.01; *** p < 0.001.
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Additionally, compared to the control group, the expression levels of pro-apoptotic
proteins, including cleaved caspase-3, BAX, and phosphorylated p53, were analyzed via
immunoblotting. All these protein levels were significantly upregulated, reaching their
peak at a 10 µM concentration of MitoQ in CMT-U27 and CF41.Mg cells (Figure 2C,D).

2.3. Effects of MitoQ on Cell Cycle Arrest and Expression of Cell Cycle Regulatory Proteins in
Canine Mammary Gland Tumor Cells

To assess the influence of MitoQ on the cell cycle and apoptosis profiles of canine
mammary gland tumor cells, we analyzed the cell cycle distribution of CMT U27 and
CF41.Mg cells after 24 h of MitoQ treatment using flow cytometry (Figure 3). The results
demonstrated a significant dose-dependent decrease in the proportion of cells in the G0 and
G1 phases in both CMT U27 and CF41.Mg cells compared to the control group following
MitoQ treatment. Moreover, the proportion of cells in the G2/M phase significantly
decreased in both cell types after 24 h of MitoQ treatment (Figure 3A,B). Subsequently, to
understand the mechanism underlying MitoQ-induced cell cycle arrest in canine mammary
tumor cells, we evaluated the expression levels of cell cycle regulatory proteins through
immunoblotting. Compared to the control group, MitoQ treatment markedly reduced
the protein levels of CDK4, CDK2, cyclin D1, and cyclin E1, key regulators of the G1/S
transition, in both CMT U27 and CF41.Mg cells (Figure 3C,D).
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Figure 3. Cell cycle arrest induced by MitoQ in canine mammary gland tumor cell culture. The cell
cycle profiles of (A) CMT-U27 and (B) CF41. Mg cells following exposure to MitoQ were analyzed
using flow cytometry after PI staining, and the statistical analysis of cell cycle distribution in both cell
lines treated with MitoQ is depicted in the graph. Protein expression levels of CDK4, CDK2, Cyclin
D1, Cyclin E1, and β-actin from (C) CMT-U27 cells and (D) CF41. Mg cells are presented. The graph
shows the relative protein expression levels as mean ± SEM. n = 4, * p < 0.05; ** p < 0.01; *** p < 0.001.
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2.4. Effects of MitoQ on Canine Mammary Cancer Cell Migration

To evaluate the inhibitory effect of MitoQ on the migration and invasion abilities
of canine cancer cells, a scratch migration assay was conducted (Figure 4). The results
demonstrated that MitoQ treatment significantly reduced the migration of CMT-U27 and
CF41. Mg cells, as observed in the scratch wound assay (Figure 4A,C). The graph illustrates
the percentage of wound healing (Figure 4B,D), showing a substantial reduction in wound
closure for both CMT-U27 and CF41. Mg cells after 12 h of culture with MitoQ, particularly
at concentrations ranging from 5 to 10 µM (Figure 4). Furthermore, the inhibitory effect
on cell migration was evident in cells treated with 5–10 µM MitoQ, as evidenced by a
distinct decrease in wound closure at 12 h. Although precise delineation of cell movement
boundaries in all experimental groups after 24 h of culture with MitoQ proved challenging,
it was apparent that cell migration was hindered in cells treated with 5–10 µM MitoQ
(Figure 4A,C).
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Figure 4. Inhibition of growth and migration of canine mammary gland tumor cells by MitoQ.
(A) Microscopic images illustrating migration of CMT-U27 cells treated with 0, 1, 5, and 10µM
of MitoQ. Scale bar = 100µm. (B) The graph assesses the wound-healing area of CMT-U27 cells.
(C) Microscopic images demonstrating invasion of CF41. Mg cells treated with 0, 1, 5, and 10µM
of MitoQ. Scale bar = 100µm. (D) The graph evaluates the wound-healing area of CF41. Mg cells.
*** p < 0.001, scale bar = 100 µm.
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2.5. Effects of MitoQ on Canine Mammary Cancer Cell Death Involving Extracellular
Signal-Regulated Kinase and Protein Kinase B Signaling

This study investigated the regulation of the AKT and ERK signaling pathways in
CMT-U27 and CF41.Mg cell death induced by MitoQ, as these pathways play crucial
roles in cell survival, proliferation, and apoptosis. After 24 h of MitoQ treatment in
both cell lines, phosphorylation of AKT and ERK1/2 was significantly decreased in CMT-
U27 and CF41.Mg cells (Figure 5A,B). Notably, these expression patterns were distinctly
observed in the 5–10 µM treatment groups from both cell lines. Additionally, we examined
the expression patterns of the antioxidant-related genes, Nqo1 and Ho-1, using qPCR
(Figure 5C). The expression levels of both genes were significantly higher in MitoQ-treated
samples than in the controls in both cell types. Furthermore, since AKT inhibition promotes
autophagy during cancer cell death, we investigated whether the genes associated with
autophagy, including Atg3, Becn1, and Atf4, were upregulated or downregulated using
qPCR (Figure 5D). The results showed that the expression levels of these genes were not
statistically significant.
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AKT, Total-AKT, phosphorylated ERK1/2, Total ERK1/2, and β-actin from (A) CMT-U27 and (B) CF41.
Mg cells after MitoQ treatment. The graph represents the quantified protein levels normalized to
the total protein form. β-actin is shown as a loading control. The graph presents the relative protein
expression levels as mean ± SEM. n = 4, ** p < 0.01; *** p < 0.001. (C) Gene expression levels of
Nqo1 and Ho-1 in CMT-U27 and CF41. Mg cells. (D) Gene expression levels of Atg3, Becn1, and
Atf4 in CMT-U27 and CF41. Mg cells. Data show mean ± SD. ** p < 0.01; *** p < 0.001 compared to
the control.

3. Discussion

Reactive oxygen species (ROSs), highly reactive molecules, have garnered attention in
diverse cancer therapies. ROSs are natural byproducts of numerous cellular processes [35].
Typically, cancer cells exhibit elevated basal ROS levels compared to healthy cells due to an
imbalance between oxidants and antioxidants. ROSs play a dual role in cell metabolism.
At low to moderate levels, they act as signal transducers, stimulating cell proliferation,
migration, invasion, and angiogenesis [51,52]. However, high ROS levels can inflict damage
on proteins, nucleic acids, lipids, membranes, and organelles, ultimately leading to cell
death. Extensive research has highlighted promising results of anticancer therapies that
modulate ROS levels, such as immunotherapy, both in vitro and in vivo [53]. Mitochondria
play crucial roles in regulating metabolic redox alterations within cancer cells, and MitoQ
operates differently in cancer cells compared to healthy cells [52].

Our findings unequivocally demonstrate a significant reduction in both CMT-U27 and
CF41.Mg cell numbers in MitoQ-containing medium after 24 h of culture, primarily via the
apoptotic cell death pathway. Recent evidence supports the anticancer effects of MitoQ.
Cheng et al. reported the effective suppression of human breast cancer (MDA-MB-231)
and glioma (U87MG) cell proliferation by MitoQ through antioxidation mechanisms [35].
Moreover, both in vitro and in vivo studies have revealed MitoQ’s inhibition of pancreatic
and breast cancer metastasis by regulating mitochondrial superoxide. Notably, MitoQ
administration successfully prevented the recurrence of human breast cancer in mice
xenografted with this cell line [53,54].

In studies involving pancreatic cancer cells, MitoQ concentrations ranging from 100
to 500 nM were deemed clinically relevant. However, for our experiments, we selected
a MitoQ concentration range of 1–10 µM, slightly higher than the dosage used in the
aforementioned study [54]. This suggests that the effective concentration of MitoQ may
vary depending on cell type and species. For instance, Ashutosh Rao et al. reported greater
susceptibility of breast cancer cell lines to MitoQ compared to normal mammary cells, as
evidenced by lower GI50 values. Specifically, MDA-MB-231, MCF-7, and MCF12A cell
lines exhibited GI50 values of 296 nM, 113 nM, and >10 µM for MitoQ, respectively [55].

Oxidative stress (OS) involves highly reactive compounds like ROSs and RNSs, byprod-
ucts of oxygen and nitrogen metabolism. These include free radicals such as superoxide
(O2

−) and hydroxyl (OH) radicals, as well as non-radicals like hydrogen peroxide (H2O2)
and peroxynitrite (ONOO). They damage cellular components like proteins, lipids, DNA,
and carbohydrates, contributing to various diseases [56,57].

In cancer, Ashutosh Rao et al. reported that MitoQ, an antioxidant, induced oxidative
stress by increasing oxidation markers and activating the Keap1-Nrf2 pathway. This
resulted in heightened Nrf2 activity, leading to autophagy and cell cycle arrest [55].

Both antioxidant and ROS induction have been explored in cancer treatment, albeit
through different mechanisms. Cancer cells often harbor higher ROS levels than healthy
cells. Inducing additional ROSs can surpass cancer cells’ capacity to manage oxidative
stress, inducing cell damage and death. This selective toxicity towards cancer cells has
been exploited in various cancer treatment modalities [58,59].

In contrast, antioxidants like MitoQ are believed to safeguard healthy cells from
damage caused by excessive ROS, potentially reducing the risk of cancer initiation by
neutralizing harmful free radicals. Both strategies aim to manipulate the redox balance
within cells, either to shield healthy cells from harm or to selectively target cancer cells.
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Moreover, the impact of antioxidants varies depending on cancer type, specific treatment,
and disease stage [55,60]. Utilizing antioxidants and inducing ROSs in cancer treatment is
intricate and context dependent, with both strategies aiming to manipulate cellular redox
balance to either protect healthy cells or selectively target cancerous ones. The effectiveness
and appropriateness of these approaches hinge on the specific conditions and characteristics
of the cancer under treatment.

Our results demonstrated a significant increase in the antioxidant-related genes Nqo1
and Ho-1 in MitoQ-treated cancer cells, indicating that MitoQ induces cancer cell death by
reducing ROS levels within cancer cells. This likely involves a different mechanism than
that in healthy cells. While ROSs induce cell damage in healthy cells, as mentioned earlier,
antioxidants like MitoQ enhance cell survival. However, as evidenced by our findings, this
pattern did not hold true for CMT-U27 and CF41.Mg cancer cells.

Additionally, the phosphorylation levels of AKT and ERK1/2 markedly decreased
in CMT-U27 and CF41.Mg cells after MitoQ treatment. Similarly, Nazarewicz et al. have
reported that high mitochondrial ROS levels in cancer cells may contribute to a highly
proliferative phenotype [18–20]. Lowering ROS levels in cancer cells may dampen the
activity of redox-sensitive Akt and ERK [61]. The ERK1/2 and AKT cascades play pivotal
roles in triggering various cellular processes, including cell survival and death. It has
been noted that the ERK1/2 pathway can regulate BCL-2 protein activity to promote cell
survival, and inhibiting ERK1/2 signaling, either directly or indirectly, can induce cancer
cell death [62]. Moreover, AKT overexpression has been linked to the development and
metastasis of several cancers [63,64], and exposure to AKT inhibitors results in cancer-
related death in cervical [65], prostate [66], and pancreatic cancer [67]. Numerous studies
have shown that AKT inhibition promotes autophagy in cancer cells [68]; however, MitoQ
did not regulate the autophagy pathway in CMT-U27 and CF41. Mg cells in our study [69].

Building upon the favorable outcomes observed in human breast cancer treatment
using antioxidants, our research extends these findings to canine mammary gland cancer
cells. As mentioned earlier, MitoQ inhibits tumorigenesis and metastasis of human breast
cancer cells by effectively suppressing the proliferation of human triple-negative cancer and
glioma cells via an antioxidant mechanism [35]. These results suggest that MitoQ may exert
anticancer effects in canine models, mirroring observations in human breast cancer and
glioma cells. MitoQ has been shown to significantly inhibit both complex I-induced oxygen
consumption and proliferation of glioma cells. This inhibition of oxidative phosphorylation
(OXPHOS) by MitoQ primarily underlies its antiproliferative effects in cancer cells [35,70].
Consequently, OXPHOS emerges as a crucial molecular target in cancer therapy. Studies
have revealed that enhanced OXPHOS can reprogram mitochondrial energy, promoting
metastasis in triple-negative breast cancer [71,72].

Beyond cancer, the beneficial effects of MitoQ on various diseases have been previ-
ously documented, including the inhibition of prostatic hyperplasia via androgen receptor
and NOD-like receptor family pyrin domain-containing 3 inhibition [68–74]. Additionally,
MitoQ has successfully completed phase I safety and phase II clinical trials for diverse dis-
eases, including Parkinson’s disease and hepatitis C. Numerous studies have demonstrated
that MitoQ provides protection against oxidative stress-induced conditions in both cell
lines and animal disease models [39]. Here, we present, for the first time, the inhibitory
and apoptotic effects of MitoQ on canine mammary gland cancer growth. Our findings
suggest that MitoQ holds promise as a therapeutic agent in treating canine tumors.

In conclusion, our study delved into the potential therapeutic efficacy of MitoQ, a
mitochondria-targeted antioxidant, in canine mammary tumors (CMT). We observed that
MitoQ treatment effectively induced cancer cell death, inhibited cell migration, arrested
cell cycle progression, and modulated the expression of phosphorylated AKT, ERK, and
ROS-related genes in canine mammary tumor cells, specifically CMT-U27 and CF41.Mg
cells. These findings underscore MitoQ’s potential as a safe and effective treatment for
CMT, offering a novel approach to combating this prevalent canine cancer. Further research
is warranted to explore the clinical applicability of MitoQ in CMT treatment and elucidate
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the underlying mechanisms of its anticancer effects. Additionally, a more comprehensive
investigation into the molecular mechanisms of cancer cell death is imperative.

4. Materials and Methods
4.1. Cell Culture and Treatment

CMT-U27 and CF41.Mg, epithelial-like rounded cells derived from canine mammary
gland carcinoma, were procured from ATCC (Manassas, VA, USA). These cells were
cultured in Roswell Park Memorial Institute 1640 medium for CMT-U27 cells or Dulbecco’s
Modified Eagle’s Medium for CF41.Mg cells, supplemented with 10% fetal bovine serum
and 1% penicillin–streptomycin, in a humidified atmosphere containing 5% CO2 at 37 ◦C.
MitoQ was obtained from Selleck Chemicals LLC (Houston, TX, USA) and diluted in
dimethyl sulfoxide (Sigma Aldrich, Saint Louis, MO, USA) to prepare a 1 M stock solution.
This stock solution was further diluted to the desired concentration using cell culture
medium prior to cell treatment.

4.2. Cell Viability Assay

Cancer cell viability was assessed using a 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl
tetrazolium bromide (MTT) assay with the EZ-Cytox Viability Assay Kit (Daeil Lab Services
Co., Seoul, Republic of Korea, #EZ1000) following the manufacturer’s instructions. The
protocol described in previous studies [74,75] was followed. Briefly, both CMT-U27 and
CF41.Mg cells were seeded in 96-well plates at a density of 3 × 103 cells/well in culture
medium and incubated for 12 h. MitoQ (0–20 µM) was added to the cultured medium and
incubated for 24 h. The reagent was then added to the plate as per the manufacturer’s
protocol and our previous study [76]. Absorbance was measured at 490 nm using an Epoch
spectrophotometer (BioTek, Winooski, VT, USA). The half-maximal inhibitory concentration
(IC50) of MitoQ was calculated for each canine cancer cell line: CMT-U27 (IC50 = 5.36 µM)
and CF41.Mg (IC50 = 7.25 µM).

4.3. Immunostaining

CMT-U27 and CF41.Mg cells were seeded on 18 mm glass coverslips (BD Biosciences,
Franklin Lakes, NJ, USA) and cultured with MitoQ concentrations ranging from 0 to 10 µM
for 24 h. Subsequently, cells were fixed with 4% paraformaldehyde at 16 ◦C for 10 min.
After fixation, cells were permeabilized in 0.1% Triton X-100 (Sigma Aldrich, Saint Louis,
MO, USA) in PBS solution for 10 min at 16 ◦C. Following permeabilization, samples were
incubated with the primary antibody Ki67 (Abcam, Cambridge, UK), which is expressed
in the cell nucleus during active phases of the cell cycle, at 4 ◦C overnight, followed by
incubation with the secondary antibody, Alexa Fluor 594 (Thermo Fisher, Waltham, MA,
USA), at room temperature for 1 h. The proliferation index was defined as the ratio of the
number of Ki67-positive cells to the total number of cells in each field. Cells were analyzed
using a fluorescence microscope (Olympus IX73, Tokyo, Japan).

4.4. Flow Cytometry

Flow cytometry was employed to measure cell death, cell cycle progression, and
assess mitochondrial dysfunction. Annexin V-FITC staining was conducted using a Dead
Cell Apoptosis Kit (Thermo Fisher Scientific Inc., Waltham, MA, USA) as previously
described [77]. Each cell line was seeded in a six-well plate and cultured with MitoQ for
24 h. The cells were then harvested and stained with Annexin V-FITC and propidium iodide
(PI) in the dark. Annexin V-positive cells were detected using flow cytometry (CytoFLEX;
Beckman Coulter, Inc., Miami, FL, USA). For the assessment of mitochondrial dysfunction,
JC-1 staining (Biotium Inc, Fremont, CA, USA) was performed to measure mitochondrial
membrane potential (∆Ψm) of CMT-U27 and CF41.Mg cells. Cells were cultured with
MitoQ for 24 h, resuspended in 500 µL of 1X JC-1 reagent working solution, and incubated
at 37 ◦C for 15 min, before staining as previously described [76]. Cells were then analyzed
using flow cytometry (CytoFLEX, Beckman Coulter, Inc., CA, USA), and cell images were
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captured using a microscope (Nikon E−800; Nikon, Tokyo, Japan). For the analysis of cell
cycle progression, cells were labeled with PI only and analyzed using flow cytometry.

4.5. Wound-Healing Assay

CMT-U27 and CF41.Mg cells were seeded in a 24-well plate. Once confluent, cells were
manually scratched using a ScarTM Scratcher (SPL, Pocheon-si, Republic of Korea) and
rinsed with Dulbecco’s Phosphate Buffered Saline (DPBS, Wellgene, Gyeongsan, Republic
of Korea). Subsequently, fresh medium containing MitoQ (0–10 µM) was added. After
treatment, cell images were captured using a microscope (Nikon E−800; Nikon, Tokyo,
Japan) over 24 h.

4.6. Quantitative Polymerase Chain Reaction (qPCR)

Total RNA extraction from CMT-U27 and CF41.Mg cells was performed using the
RNeasy Mini Kit (Qiagen, Hilden, Germany) with DNase treatment [78]. Subsequently,
cDNA was synthesized using MMLV reverse transcriptase (Thermo Fisher Scientific,
Waltham, MA, USA), with the cDNA serving as a template for qPCR. The qPCR pro-
cedure and data analysis methods were consistent with our previous study [74]. The
specific qPCR primer sequences are provided in Table 1.

Table 1. Primers Designed for qPCR Using Canine cDNA.

Gene Forward Primer Reverse Primer

NQO1 5′-GAAGCCGCAGACCTGGTGAT-3′ 5′-GCACTCGCTCGAACCAGCCT-3′

HMOX1 5′-CTTTCAGAAGGGCCAGGTGAC-3′ 5′-TGCTCGATCTCCTCCTCCAG-3′

ATG3 5′-TACCAGACACCACGGCTATG-3′ 5′-CCTGCATGGGTGAACTGAAC-3′

BECN1 5′-GGCTGAGAGACTGGATCAGG-3′ 5′-TGTGCCAGATGTGAAAGGTC-3′

ATF4 5′-ACCTTTCTGCAACCACTTCC-3′ 5′-TTATGCACTGAGGGATCACG-3′

GAPDH 5′-AATTCCACGGCACAGTCAAG-3′ 5′-TACTCAGCACCAGCATCACC-3′

4.7. Western Blotting

CMT-U27 and CF41.Mg cells were collected after 24 h of culture with MitoQ treatment
and lysed using RIPA lysis buffer (Thermo Fisher Scientific, Waltham, MA, USA) sup-
plemented with protease inhibitor mixture (Roche, Rotkreuz, Switzerland). Total protein
quantification was performed using the BCA assay kit (Thermo Fisher Scientific, Waltham,
MA, USA). Subsequently, 30 µg of total protein was loaded into the wells of 4–16% gradient
SDS-PAGE gels (Bio-Rad, Hercules, CA, USA), and proteins were transferred onto PVDF
membranes. The membranes were blocked with 5% skim milk and then incubated with pri-
mary antibodies in blocking solution (TBS with 0.1% tween-20 + 1% bovine serum albumin)
at 4 ◦C overnight. Following primary antibody incubation, the membranes were incu-
bated with horseradish peroxidase-conjugated secondary antibodies (anti-mouse/rabbit
antibodies) for 1 h and then washed with TBS. Band visualization was achieved using
Amersham ECL Prime solution (GE Healthcare, Houston, TX, USA) and an iBright Imaging
System (Thermo Fisher Scientific, Waltham, MA, USA). β-actin or an inactive form protein
served as the normalization control. The antibodies used for immunoblotting are detailed
in Table 2.

Table 2. List of primary antibodies used.

Antibody Manufacturer Catalog Number Dilution (Usage)

Cleaved-caspase3 Cell Signaling
(Danvers, MA, USA) #9661 1:2000

Caspase3 Cell Signaling #9662 1:2000
BAX Cell Signaling #5023 1:2000
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Table 2. Cont.

Antibody Manufacturer Catalog Number Dilution (Usage)

p-p53 Cell Signaling #9284 1:2000
p53 Cell Signaling #2524 1:2000

CDK4 Cell Signaling #12790 1:2000
CDK2 Cell Signaling #2546 1:2000

Cyclin D1 Cell Signaling #2978 1:2000
Cyclin E1 Cell Signaling #55506 1:2000

P-AKT Cell Signaling #4060 1:2000
T-AKT Cell Signaling #9272 1:2000
P-erk Cell Signaling #9101 1:2000
T-erk Cell Signaling #4695 1:2000
Ki-67 Abcam ab15580 1:200

β-actin Santa Cruz Biotech (Dallas,
TX, USA) sc47778 1:2000

4.8. Statistical Analysis

All data are presented as mean ± standard error of at least three independent exper-
iments conducted in triplicate. Mean differences were assessed using one-way analysis
of variance, followed by Tukey’s post hoc test. Statistical analyses were performed using
the SPSS statistical package, version 15.0 for Windows (IBM Corp., Somers, NY, USA).
Comparisons were considered statistically significant at p < 0.05.
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