Bridging Genetic Insights with Neuroimaging in Autism Spectrum Disorder—A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identification of the Research Question
2.2. Identification of Relevant Studies
2.3. Study Selection
- (1)
- Empirical research published in peer-reviewed journals;
- (2)
- Included patients with ASD diagnosis (when the study refers to diagnostic instruments, or uses a clinical cohort or known database of subjects with ASD), and an identified genetic alteration;
- (3)
- Described brain measures assessed by EEG, fMRI, MRI or MRS;
- (4)
- Were published in English.
- (1)
- The reported data were obtained by methods that were not MRI or EEG;
- (2)
- The sample included individuals without an ASD diagnosis (e.g., with autistic-like traits, children with ASD risk);
- (3)
- Case-report studies;
- (4)
- Review studies;
- (5)
- Studies in animal models.
2.4. Charting the Data: Structure of the Findings
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- American Psychiatric Association (Ed.) Diagnostic and Statistical Manual of Mental Disorders: DSM-5, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar]
- Rosenberg, R.E.; Law, J.K.; Yenokyan, G.; McGready, J.; Kaufmann, W.E.; Law, P.A. Characteristics and concordance of autism spectrum disorders among 277 twin pairs. Arch. Pediatr. Adolesc. Med. 2009, 163, 907–914. [Google Scholar] [CrossRef]
- Ozonoff, S.; Young, G.; Carter, A.; Messinger, D.; Yirmiya, N.; Zwaigenbaum, L.; Bryson, S.; Carver, L.; Constantino, J.; Dobkins, K.; et al. Recurrence Risk for Autism Spectrum Disorders: A Baby Siblings Research Consortium Study. Pediatrics 2011, 128, e488–e495. [Google Scholar] [CrossRef] [PubMed]
- Tick, B.; Bolton, P.; Happé, F.; Rutter, M.; Rijsdijk, F. Heritability of autism spectrum disorders: A meta-analysis of twin studies. J. Child Psychol. Psychiatry 2016, 57, 585–595. [Google Scholar] [CrossRef]
- Bai, D.; Yip, B.; Windham, G.; Sourander, A.; Francis, R.; Yoffe, R.; Glasson, E.; Mahjani, B.; Suominen, A.; Leonard, H.; et al. Association of Genetic and Environmental Factors with Autism in a 5-Country Cohort. JAMA Psychiatry 2019, 76, 1035–1043. [Google Scholar] [CrossRef]
- O’Roak, B.J.; Vives, L.; Girirajan, S.; Karakoc, E.; Krumm; Coe, B.; Levy, R.; Ko, A.; Lee, C.; Smith, J.; et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 2012, 485, 246–250. [Google Scholar] [CrossRef]
- O’Roak, B.J.; Stessman, H.; Boyle, E.; Witherspoon, K.; Martin, B.; Lee, C.; Vives, L.; Baker, C.; Hiatt, J.; Nickerson, D.; et al. Recurrent de novo mutations implicate novel genes underlying simplex autism risk. Nat. Commun. 2014, 5, 5595. [Google Scholar] [CrossRef]
- Ramaswami, G.; Geschwind, D.H. Genetics of autism spectrum disorder. Handb. Clin. Neurol. 2018, 147, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Satterstrom, F.K.; Kosmicki, J.; Wang, J.; Breen, M.; De Rubeis, S.; An, J.; Peng, M.; Collins, R.; Grove, J.; Klei, L.; et al. Large-Scale Exome Sequencing Study Implicates Both Developmental and Functional Changes in the Neurobiology of Autism. Cell 2020, 180, 568–584.e23. [Google Scholar] [CrossRef]
- Cirnigliaro, M.; Chang, T.S.; Arteaga, S.A.; Pérez-Cano, L.; Ruzzo, E.K.; Gordon, A.; Bicks, L.K.; Jung, J.Y.; Lowe, J.K.; Wall, D.P.; et al. The contributions of rare inherited and polygenic risk to ASD in multiplex families. Proc. Natl. Acad. Sci. USA 2023, 120, e2215632120. [Google Scholar] [CrossRef] [PubMed]
- Montanari, M.; Martella, G.; Bonsi, P.; Meringolo, M. Autism Spectrum Disorder: Focus on Glutamatergic Neurotransmission. Int. J. Mol. Sci. 2022, 23, 3861. [Google Scholar] [CrossRef] [PubMed]
- De Rubeis, S.; He, X.; Goldberg, A.; Poultney, C.; Samocha, K.; Cicek, A.; Kou, Y.; Liu, L.; Fromer, M.; walker, S.; et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 2014, 515, 209–215. [Google Scholar] [CrossRef]
- Geschwind, D.H.; State, M.W. Gene hunting in autism spectrum disorder: On the path to precision medicine. Lancet Neurol. 2015, 14, 1109–1120. [Google Scholar] [CrossRef]
- Hashem, S.; Nisar, S.; Bhat, A.; Yadav, S.; Azeem, M.; Bagga, P.; Fakhro, K.; Reddy, R.; Frenneaux, M.; Haris, M. Genetics of structural and functional brain changes in autism spectrum disorder. Transl. Psychiatry 2020, 10, 229. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Zhang, X.; Liu, F.; Qin, W.; Fu, J.; Xue, K.; Yu, C. Brain mRNA Expression Associated with Cortical Volume Alterations in Autism Spectrum Disorder. Cell Rep. 2020, 32, 108137. [Google Scholar] [CrossRef]
- Mahajan, R.; Mostofsky, S.H. Neuroimaging endophenotypes in autism spectrum disorder. CNS Spectr. 2015, 20, 412–426. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.T.; ElNakieb, Y.; ElNakieb, A.; Shalaby, A.; Mahmoud, A.; Ghazal, M.; Yousaf, J.; Khalifeh, H.; Casanova, M.; Barnes, G. The Role of Structure MRI in Diagnosing Autism. Diagnostics 2022, 12, 165. [Google Scholar] [CrossRef]
- Amaral, D.G.; Schumann, C.M.; Nordahl, C.W. Neuroanatomy of autism. Trends Neurosci. 2008, 31, 137–145. [Google Scholar] [CrossRef]
- Panizzon, M.S.; Fennema-Notestine, C.; Eyler, L.; Jernigan, T.; Prom-Wormley, E.; Neale, M.; Jacobson, K.; Lyons, M.; Grant, M.; Franz, C.; et al. Distinct genetic influences on cortical surface area and cortical thickness. Cereb. Cortex 2009, 19, 2728–2735. [Google Scholar] [CrossRef] [PubMed]
- Webb, S.J.; Sparks, B.; Friedman, S.; Shaw, D.; Giedd, J.; Dawson, G.; Dager, S. Cerebellar vermal volumes and behavioral correlates in children with autism spectrum disorder. Psychiatry Res. Neuroimaging 2009, 172, 61–67. [Google Scholar] [CrossRef]
- Geschwind, D.H.; Levitt, P. Autism spectrum disorders: Developmental disconnection syndromes. Curr. Opin. Neurobiol. 2007, 17, 103–111. [Google Scholar] [CrossRef]
- Cantor, D.S.; Thatcher, R.W.; Hrybyk, M.; Kaye, H. Computerized EEG analyses of autistic children. J. Autism Dev. Disord. 1986, 16, 169–187. [Google Scholar] [CrossRef] [PubMed]
- Minshew, N.J.; Williams, D.L. The new neurobiology of autism: Cortex, connectivity, and neuronal organization. Arch. Neurol. 2007, 64, 945–950. [Google Scholar] [CrossRef]
- Wass, S. Distortions and disconnections: Disrupted brain connectivity in autism. Brain Cogn. 2011, 75, 18–28. [Google Scholar] [CrossRef] [PubMed]
- Mak-Fan, K.M.; Morris, D.; Vidal, J.; Anagnostou, E.; Roberts, W.; Taylor, M.J. White matter and development in children with an autism spectrum disorder. Autism 2013, 17, 541–557. [Google Scholar] [CrossRef] [PubMed]
- Olejniczak, P. Neurophysiologic basis of EEG. J. Clin. Neurophysiol. 2006, 23, 186–189. [Google Scholar] [CrossRef] [PubMed]
- Milovanovic, M.; Grujicic, R. Electroencephalography in Assessment of Autism Spectrum Disorders: A Review. Front. Psychiatry 2021, 12, 686021. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Int. J. Surg. 2020, 8, 336–341. [Google Scholar] [CrossRef] [PubMed]
- McLoughlin, G.; Palmer, J.A.; Rijsdijk, F.; Makeig, S. Genetic Overlap between Evoked Frontocentral Theta-Band Phase Variability, Reaction Time Variability, and Attention-Deficit/Hyperactivity Disorder Symptoms in a Twin Study. Biol. Psychiatry 2014, 75, 238–247. [Google Scholar] [CrossRef]
- FChance, S.; Abbott, L.F.; Reyes, A.D. Gain Modulation from Background Synaptic Input. Neuron 2002, 35, 773–782. [Google Scholar] [CrossRef]
- Bonnet-Brilhault, F.; Alirol, S.; Blanc, R.; Bazaud, S.; Marouillat, S.; Thépault, R.; Andres, C.; Lemmonier, É.; Barthélémy, C.; Raynaud, M.; et al. GABA/Glutamate synaptic pathways targeted by integrative genomic and electrophysiological explorations distinguish autism from intellectual disability. Mol. Psychiatry 2016, 21, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Berto, S.; Treacher, A.; Caglayan, E.; Luo, D.; Haney, J.; Gandal, M.; Geschwind, D.; Montillo, A.; Konopka, G. Association between resting-state functional brain connectivity and gene expression is altered in autism spectrum disorder. Nat. Commun. 2022, 13, 3328. [Google Scholar] [CrossRef] [PubMed]
- Haghighatfard, A.; Asl, E.; Bahadori, R.; Aliabadian, R.; farhadi, M.; Mohammadpour, F.; Tabrizi, Z. FOXP2 down expression is associated with executive dysfunctions and electrophysiological abnormalities of brain in Autism spectrum disorder; a neuroimaging genetic study. Autism. Dev. Lang Impair. 2022, 7, 23969415221126390. [Google Scholar] [CrossRef] [PubMed]
- Cucchiara, F.; Frumento, P.; Banfi, T.; Sesso, G.; Galante, M.; D’Ascanio, P.; Valvo, G.; Sicca, F.; Faraguna, U. Electrophysiological features of sleep in children with Kir4.1 channel mutations and Autism-Epilepsy phenotype: A preliminary study. Sleep 2020, 43, zsz255. [Google Scholar] [CrossRef] [PubMed]
- Sjaarda, C.P.; Sabbagh, M.; Wood, D.; Ward-King, J.; McNaughton, A.; Hudson, M.; Tao, M.; Ayub, M.; Liu, X. Homozygosity for the 10-repeat dopamine transporter (DAT1) allele is associated with reduced EEG response in males with ASD. Res. Autism Spectr. Disord. 2019, 60, 25–35. [Google Scholar] [CrossRef]
- Chien, Y.-L.; Chen, Y.-C.; Gau, S.S.-F. Altered cingulate structures and the associations with social awareness deficits and CNTNAP2 gene in autism spectrum disorder. NeuroImage Clin. 2021, 31, 102729. [Google Scholar] [CrossRef]
- Li, D.; Liu, C.; Huang, Z.; Li, H.; Xu, Q.; Zhou, B.; Hu, C.; Zhang, Y.; Wang, Y.; Nie, J.; et al. Common and Distinct Disruptions of Cortical Surface Morphology between Autism Spectrum Disorder Children with and without SHANK3 Deficiency. Front. Neurosci. 2021, 15, 751364. [Google Scholar] [CrossRef] [PubMed]
- Yeung, K.S.; Tso, W.; Ip, J.; Mak, C.; Leung, G.; Tsang, M.; Ying, D.; Pei, S.; Lee, S.; Yang, W.; et al. Identification of mutations in the PI3K-AKT-mTOR signalling pathway in patients with macrocephaly and developmental delay and/or autism. Mol. Autism 2017, 8, 66. [Google Scholar] [CrossRef]
- Wassink, T.H.; Hazlett, H.C.; Epping, E.A.; Arndt, S.; Dager, S.R.; Schellenberg, G.D.; Dawson, G.; Piven, J. Cerebral cortical gray matter overgrowth and functional variation of the serotonin transporter gene in autism. Arch. Gen. Psychiatry 2007, 64, 709–717. [Google Scholar] [CrossRef]
- Uzefovsky, F.; Bethlehem, R.A.I.; Shamay-Tsoory, S.; Ruigrok, A.; Holt, R.; Spencer, M.; Chura, L.; Warrier, V.; Chakrabarti, B.; Bullmore, E.; et al. The oxytocin receptor gene predicts brain activity during an emotion recognition task in autism. Mol. Autism 2019, 10, 12. [Google Scholar] [CrossRef]
- Velasquez, F.; Wiggins, J.L.; Mattson, W.I.; Martin, D.M.; Lord, C.; Monk, C.S. The influence of 5-HTTLPR transporter genotype on amygdala-subgenual anterior cingulate cortex connectivity in autism spectrum disorder. Dev. Cogn. Neurosci. 2017, 24, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Wiggins, J.L.; Peltier, S.J.; Bedoyan, J.K.; Carrasco, M.; Welsh, R.C.; Martin, D.M.; Lord, C.; Monk, C.S. The impact of serotonin transporter genotype on default network connectivity in children and adolescents with autism spectrum disorders. NeuroImage Clin. 2013, 2, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Wiggins, J.L.; Swartz, J.R.; Martin, D.M.; Lord, C.; Monk, C.S. Serotonin transporter genotype impacts amygdala habituation in youth with autism spectrum disorders. Soc. Cogn. Affect. Neurosci. 2014, 9, 832–838. [Google Scholar] [CrossRef] [PubMed]
- Swartz, J.R.; Wiggins, J.L.; Carrasco, M.; Lord, C.; Monk, C.S. Amygdala Habituation and Prefrontal Functional Connectivity in Youth with Autism Spectrum Disorders. J. Am. Acad. Child Adolesc. Psychiatry 2013, 52, 84–93. [Google Scholar] [CrossRef]
- Hobson, J.A.; Stickgold, R.; Pace-Schott, E.F. The neuropsychology of REM sleep dreaming. NeuroReport 1998, 9, R1. [Google Scholar] [CrossRef] [PubMed]
- Bird, G.; Catmur, C.; Silani, G.; Frith, C.; Frith, U. Attention does not modulate neural responses to social stimuli in autism spectrum disorders. NeuroImage 2006, 31, 1614–1624. [Google Scholar] [CrossRef] [PubMed]
- Black, M.H.; Chen, N.T.M.; Iyer, K.K.; Lipp, O.V.; Bölte, S.; Falkmer, M.; Tan, T.; Girdler, S. Mechanisms of facial emotion recognition in autism spectrum disorders: Insights from eye tracking and electroencephalography. Neurosci. Biobehav. Rev. 2017, 80, 488–515. [Google Scholar] [CrossRef] [PubMed]
- Yumoto, T.; Kimura, M.; Nagatomo, R.; Sato, T.; Utsunomiya, S.; Aoki, N.; Kitaura, M.; Takahashi, K.; Takemoto, H.; Watanabe, H.; et al. Autism-associated variants of neuroligin 4X impair synaptogenic activity by various molecular mechanisms. Mol. Autism 2020, 11, 68. [Google Scholar] [CrossRef] [PubMed]
- Cast, T.P.; Boesch, D.J.; Smyth, K.; Shaw, A.E.; Ghebrial, M.; Chanda, S. An Autism-Associated Mutation Impairs Neuroligin-4 Glycosylation and Enhances Excitatory Synaptic Transmission in Human Neurons. J. Neurosci. 2021, 41, 392–407. [Google Scholar] [CrossRef]
- Voutsadakis, I.A. PI3KCA Mutations in Uterine Cervix Carcinoma. J. Clin. Med. 2021, 10, 220. [Google Scholar] [CrossRef]
- Cauda, F.; D’Agata, F.; Sacco, K.; Duca, S.; Geminiani, G.; Vercelli, A. Functional connectivity of the insula in the resting brain. NeuroImage 2011, 55, 8–23. [Google Scholar] [CrossRef] [PubMed]
- Heinrichs, M.; Domes, G. Neuropeptides and social behaviour: Effects of oxytocin and vasopressin in humans. In Progress in Brain Research; Neumann, I.D., Landgraf, R., Eds.; em Advances in Vasopressin and Oxytocin—From Genes to Behaviour to Disease; Elsevier: Amsterdam, The Netherlands, 2008; Volume 170, pp. 337–350. [Google Scholar] [CrossRef]
- Wu, S.; Jia, M.; Ruan, Y.; Liu, J.; Guo, Y.; Shuang, M.; Gong, X.; Zhang, Y.; Yang, X.; Zhang, D. Positive association of the oxytocin receptor gene (OXTR) with autism in the Chinese Han population. Biol. Psychiatry 2005, 58, 74–77. [Google Scholar] [CrossRef] [PubMed]
- Campbell, D.B.; Datta, D.; Jones, S.T.; Batey Lee, E.; Sutcliffe, J.S.; Hammock, E.A.; Levitt, P. Association of oxytocin receptor (OXTR) gene variants with multiple phenotype domains of autism spectrum disorder. J. Neurodevelop. Disord. 2011, 3, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Kawashima, M.; Miyagawa, T.; Otowa, T.; Latt, K.Z.; Thiri, M.; Nishida, H.; Sugiyama, T.; Tsurusaki, Y.; Matsumoto, N.; et al. Novel rare variations of the oxytocin receptor (OXTR) gene in autism spectrum disorder individuals. Hum. Genome Var. 2015, 2, 15024. [Google Scholar] [CrossRef]
- Al-Ali, Z.; Yasseen, A.A.; Al-Dujailli, A.; Al-Karaqully, A.J.; McAllister, K.A.; Jumaah, A.S. The oxytocin receptor gene polymorphism rs2268491 and serum oxytocin alterations are indicative of autism spectrum disorder: A case-control paediatric study in Iraq with personalized medicine implications. PLoS ONE 2022, 17, e0265217. [Google Scholar] [CrossRef] [PubMed]
- Alcaro, A.; Huber, R.; Panksepp, J. Behavioral functions of the mesolimbic dopaminergic system: An affective neuroethological perspective. Brain Res. Rev. 2007, 56, 283–321. [Google Scholar] [CrossRef] [PubMed]
- Lewis, R.G.; Florio, E.; Punzo, D.; Borrelli, E. The Brain’s Reward System in Health and Disease. In Circadian Clock in Brain Health and Disease; Engmann, O., Brancaccio, M., Eds.; em Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, Switzerland, 2021; pp. 57–69. [Google Scholar] [CrossRef]
- Dawson, G.; Webb, S.J.; Wijsman, E.; Schellenberg, G.; Estes, A.; Munson, J.; Faja, S. Neurocognitive and electrophysiological evidence of altered face processing in parents of children with autism: Implications for a model of abnormal development of social brain circuitry in autism. Dev. Psychopathol. 2005, 17, 679–697. [Google Scholar] [CrossRef] [PubMed]
- Azzam, A.A.A.; Bahgat, D.M.R.; Shahin, R.M.H.; Nasralla, R.M.A. Association study between polymorphisms of dopamine transporter gene (SLC6A3), dopamine D1 receptor gene (DRD1), and autism. J. Med. Sci. Res. 2018, 1, 59. [Google Scholar] [CrossRef]
- Lesch, K.P.; Bengel, D.; Heils, A.; Sabol, S.Z.; Greenberg, B.D.; Petri, S.; Benjamin, J.; Müller, C.R.; Hamer, D.H.; Murphy, D.L. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 1996, 274, 1527–1531. [Google Scholar] [CrossRef]
- Canli, T.; Omura, K.; Haas, B.W.; Fallgatter, A.; Constable, R.T.; Lesch, K.P. Beyond affect: A role for genetic variation of the serotonin transporter in neural activation during a cognitive attention task. Proc. Natl. Acad. Sci. USA 2005, 102, 12224–12229. [Google Scholar] [CrossRef]
- Coutinho, A.M.; Oliveira, G.; Morgadinho, T.; Fesel, C.; Macedo, T.R.; Bento, C.; Marques, C.; Ataíde, A.; Miguel, T.; Borges, L.; et al. Variants of the serotonin transporter gene (SLC6A4) significantly contribute to hyperserotonemia in autism. Mol. Psychiatry 2004, 9, 264–271. [Google Scholar] [CrossRef] [PubMed]
- Canli, T.; Lesch, K.-P. Long story short: The serotonin transporter in emotion regulation and social cognition. Nat. Neurosci. 2007, 10, 1103–1109. [Google Scholar] [CrossRef] [PubMed]
- Etchell, A.; Adhikari, A.; Weinberg, L.S.; Choo, A.L.; Garnett, E.O.; Chow, H.M.; Chang, S.E. A systematic literature review of sex differences in childhood language and brain development. Neuropsychologia 2018, 114, 19–31. [Google Scholar] [CrossRef] [PubMed]
Summary of Findings of EEG Studies | |||||
---|---|---|---|---|---|
Sample Size (Cases) | Brain Area Analyzed | Gene/Genomic Region | Main Results | Genetic Analysis | Study |
n = 2 | Whole brain analysis | NLGN4X, GLRB and ANK3 | Gene variants implicated in atypical electrophysiological pattern targeting glutamate/GABA neurotransmission. | Gene variants | Bonnet-Brilhault et al., 2016 [32] |
n = 450 | Frontal and occipital lobe | FOXP2 | Significant correlation between decreased FOXP2 expression and alpha, gamma and theta bands. | Gene expression | Haghighatfard et al., 2022 [34] |
n = 14 | Fronto-central bipolar EEG derivations | KCNJ10 | Period-amplitude slow wave features are modified in subjects carrying variants in the KCNJ10 gene. | Gene variants | Cucchiara et al., 2020 [35] |
n = 50 | Mean amplitude and latency of the P1 and N170 components | COMT, OXTR, SLC6A4 and SLC6A3 | SLC6A4 polymorphisms were associated with increased P1 latency. SLC6A3 polymorphisms associated with reduced N170 amplitude. | Polymorphisms | Sjaarda et al., 2019 [36] |
Summary of findings of MRI studies | |||||
Sample size (cases) | Brain area analyzed | Gene/genomic region | Main results | Genetic Analysis | Study |
n = 118 | Cortex | CNTNAP2 | Thinner cortical thickness in bilateral cingulate subregions. Polymorphisms associated with the white matter volume of the right caudal anterior cingulate gyrus. | Polymorphisms | Chien et al., 2021 [37] |
n = 36 | Cortex | SHANK3 | ASD individuals with SHANK3 mutations have significant increase in cortical thickness. | Mutations | Li et al., 2021 [38] |
n = 10 | Megalencephaly, polymicrogyria and periventricular white matter signal abnormalities. Ventriculomegaly. | PIK3CA, PTEN, MTOR and PPP2R5D | Macrocephaly and megalencephaly related with variants in genes from the PI3K-AKT-mTOR pathway. | Gene variants | Yeung et al., 2017 [39] |
n = 44 | Cerebral cortical and cerebellar gray and white matter volumes | SLC6A4 | SLC6A4 genotype is associated with cerebral cortical gray matter volumes. | Gene variants | Wassink et al., 2007 [40] |
Summary of findings of fMRI studies | |||||
Sample size (cases) | Brain area analyzed | Gene/genomic region | Main results | Genetic Analysis | Study |
n = 916 | Several | Brain transcriptome | Genes enriched in voltage-gated ion channels and inhibitory neurons are related with excitation–inhibition imbalance in ASD. The primary visual cortex is the most affected region. Genes with | Gene expression | Berto et al., 2022 [33] |
highest effect size: FILIP1 and GABRQ. | |||||
n = 38 | Whole brain analysis | OXTR | Genotypes associated with the right supramarginal gyrus (rSMG) and the right inferior parietal lobule (rIPL). | Polymorphisms | Uzefovsky et al., 2019 [41] |
n = 43 | Amygdala | SLC6A4 | Expression levels of different genotypes related with the amygdala and subgenual anterior cingulate cortex (amygdala-sACC) connectivity and with social dysfunction. | Gene expression | Velasquez et al., 2017 [42] |
n = 54 | Posterior-anterior default network | SLC6A4 | Stronger connectivity in low versus high expressing genotypes in ASD. | Gene expression | Wiggins et al., 2013 [43] |
n = 44 | Amygdala | SLC6A4 | Genotypes related with amygdala habituation to sad faces differs in the ASD group vs. controls. | Gene expression | Wiggins et al., 2014 [44] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vilela, J.; Rasga, C.; Santos, J.X.; Martiniano, H.; Marques, A.R.; Oliveira, G.; Vicente, A.M. Bridging Genetic Insights with Neuroimaging in Autism Spectrum Disorder—A Systematic Review. Int. J. Mol. Sci. 2024, 25, 4938. https://doi.org/10.3390/ijms25094938
Vilela J, Rasga C, Santos JX, Martiniano H, Marques AR, Oliveira G, Vicente AM. Bridging Genetic Insights with Neuroimaging in Autism Spectrum Disorder—A Systematic Review. International Journal of Molecular Sciences. 2024; 25(9):4938. https://doi.org/10.3390/ijms25094938
Chicago/Turabian StyleVilela, Joana, Célia Rasga, João Xavier Santos, Hugo Martiniano, Ana Rita Marques, Guiomar Oliveira, and Astrid Moura Vicente. 2024. "Bridging Genetic Insights with Neuroimaging in Autism Spectrum Disorder—A Systematic Review" International Journal of Molecular Sciences 25, no. 9: 4938. https://doi.org/10.3390/ijms25094938
APA StyleVilela, J., Rasga, C., Santos, J. X., Martiniano, H., Marques, A. R., Oliveira, G., & Vicente, A. M. (2024). Bridging Genetic Insights with Neuroimaging in Autism Spectrum Disorder—A Systematic Review. International Journal of Molecular Sciences, 25(9), 4938. https://doi.org/10.3390/ijms25094938