Disuse-Induced Muscle Fatigue: Facts and Assumptions
Abstract
:1. Introduction
2. Muscle Unloading-Induced Fatigue
3. Myosin Phenotype
4. Oxidative Potential
5. Calcium
6. Metabolites
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Sharlo, K.; Tyganov, S.A.; Tomilovskaya, E.; Popov, D.V.; Saveko, A.A.; Shenkman, B.S. Effects of Various Muscle Disuse States and Countermeasures on Muscle Molecular Signaling. Int. J. Mol. Sci. 2021, 23, 468. [Google Scholar] [CrossRef]
- Shenkman, B.S.; Kozlovskaya, I.B. Cellular Responses of Human Postural Muscle to Dry Immersion. Front. Physiol. 2019, 10, 187. [Google Scholar] [CrossRef]
- Edwards, R.H. Human muscle function and fatigue. Ciba Found. Symp. 1981, 82, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Fitts, R.H. Cellular mechanisms of muscle fatigue. Physiol. Rev. 1994, 74, 49–94. [Google Scholar] [CrossRef]
- Potvin, J.R.; Fuglevand, A.J. A motor unit-based model of muscle fatigue. PLoS Comput. Biol. 2017, 13, e1005581. [Google Scholar] [CrossRef]
- Bogdanis, G.C. Effects of physical activity and inactivity on muscle fatigue. Front. Physiol. 2012, 3, 142. [Google Scholar] [CrossRef] [PubMed]
- Tornero-Aguilera, J.F.; Jimenez-Morcillo, J.; Rubio-Zarapuz, A.; Clemente-Suarez, V.J. Central and Peripheral Fatigue in Physical Exercise Explained: A Narrative Review. Int. J. Environ. Res. Public Health 2022, 19, 3909. [Google Scholar] [CrossRef]
- Labeit, S.; Kohl, C.H.; Witt, C.C.; Labeit, D.; Jung, J.; Granzier, H. Modulation of muscle atrophy, fatigue and MLC phosphorylation by MuRF1 as indicated by hindlimb suspension studies on MuRF1-KO mice. J. Biomed. Biotechnol. 2010, 2010, 693741. [Google Scholar] [CrossRef] [PubMed]
- Caiozzo, V.J.; Baker, M.J.; Herrick, R.E.; Tao, M.; Baldwin, K.M. Effect of spaceflight on skeletal muscle: Mechanical properties and myosin isoform content of a slow muscle. J. Appl. Physiol. 1994, 76, 1764–1773. [Google Scholar] [CrossRef]
- Koryak, Y.A. Isokinetic Force and Work Capacity After Long-Duration Space Station Mir and Short-Term International Space Station Missions. Aerosp. Med. Hum. Perform. 2020, 91, 422–431. [Google Scholar] [CrossRef]
- Gopalakrishnan, R.; Genc, K.O.; Rice, A.J.; Lee, S.M.; Evans, H.J.; Maender, C.C.; Ilaslan, H.; Cavanagh, P.R. Muscle volume, strength, endurance, and exercise loads during 6-month missions in space. Aviat. Space Environ. Med. 2010, 81, 91–102. [Google Scholar] [CrossRef]
- Koryak, Y. Changes in the action potential and contractile properties of skeletal muscle in human’s with repetitive stimulation after long-term dry immersion. Eur. J. Appl. Physiol. Occup. Physiol. 1996, 74, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Netreba, A.I.; Khusnutdinova, D.R.; Vinogradova, O.L.; Kozlovskaya, I.B. Effect of dry immersion in combination with stimulation of foot support zones upon muscle force-velocity characteristics. J. Gravitational Physiol. A J. Int. Soc. Gravitational Physiol. 2004, 11, P129–P130. [Google Scholar]
- Mulder, E.R.; Kuebler, W.M.; Gerrits, K.H.; Rittweger, J.; Felsenberg, D.; Stegeman, D.F.; de Haan, A. Knee extensor fatigability after bedrest for 8 weeks with and without countermeasure. Muscle Nerve 2007, 36, 798–806. [Google Scholar] [CrossRef] [PubMed]
- Convertino, V.A.; Bloomfield, S.A.; Greenleaf, J.E. An overview of the issues: Physiological effects of bed rest and restricted physical activity. Med. Sci. Sports Exerc. 1997, 29, 187–190. [Google Scholar] [CrossRef] [PubMed]
- Bosutti, A.; Mulder, E.; Zange, J.; Buhlmeier, J.; Ganse, B.; Degens, H. Effects of 21 days of bed rest and whey protein supplementation on plantar flexor muscle fatigue resistance during repeated shortening contractions. Eur. J. Appl. Physiol. 2020, 120, 969–983. [Google Scholar] [CrossRef] [PubMed]
- Yue, G.H.; Bilodeau, M.; Hardy, P.A.; Enoka, R.M. Task-dependent effect of limb immobilization on the fatigability of the elbow flexor muscles in humans. Exp. Physiol. 1997, 82, 567–592. [Google Scholar] [CrossRef] [PubMed]
- Clark, B.C.; Hoffman, R.L.; Russ, D.W. Immobilization-induced increase in fatigue resistance is not explained by changes in the muscle metaboreflex. Muscle Nerve 2008, 38, 1466–1473. [Google Scholar] [CrossRef] [PubMed]
- Shaffer, M.A.; Okereke, E.; Esterhai, J.L., Jr.; Elliott, M.A.; Walker, G.A.; Yim, S.H.; Vandenborne, K. Effects of immobilization on plantar-flexion torque, fatigue resistance, and functional ability following an ankle fracture. Phys. Ther. 2000, 80, 769–780. [Google Scholar] [CrossRef]
- McDonald, K.S.; Delp, M.D.; Fitts, R.H. Fatigability and blood flow in the rat gastrocnemius-plantaris-soleus after hindlimb suspension. J. Appl. Physiol. 1992, 73, 1135–1140. [Google Scholar] [CrossRef]
- Sharlo, K.; Lvova, I.; Turtikova, O.; Tyganov, S.; Kalashnikov, V.; Shenkman, B. Plantar stimulation prevents the decrease in fatigue resistance in rat soleus muscle under one week of hindlimb suspension. Arch. Biochem. Biophys. 2022, 718, 109150. [Google Scholar] [CrossRef]
- Genin, A.M.; Baranov, V.M.; Shabel’nikov, V.G.; Asiamolova, N.M.; Kotov, A.N. Effect of short-term head-down tilt hypokinesia on the dynamics of the cardiorespiratory indices during graduated physical loading. Kosm. Biol. Aviakosm Med. 1985, 19, 43–46. [Google Scholar] [PubMed]
- Dorfman, T.A.; Levine, B.D.; Tillery, T.; Peshock, R.M.; Hastings, J.L.; Schneider, S.M.; Macias, B.R.; Biolo, G.; Hargens, A.R. Cardiac atrophy in women following bed rest. J. Appl. Physiol. (1985) 2007, 103, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, R. Physical Medicine and Rehabilitation Review: Pearls of Wisdom, Second Edition: Pearls of Wisdom; McGraw-Hill Education: Berkshire, UK, 2005. [Google Scholar]
- Trappe, T.; Trappe, S.; Lee, G.; Widrick, J.; Fitts, R.; Costill, D. Cardiorespiratory responses to physical work during and following 17 days of bed rest and spaceflight. J. Appl. Physiol. (1985) 2006, 100, 951–957. [Google Scholar] [CrossRef] [PubMed]
- Corcoran, P.J. Use it or lose it—The hazards of bed rest and inactivity. West. J. Med. 1991, 154, 536–538. [Google Scholar]
- Taylor, J.L.; Amann, M.; Duchateau, J.; Meeusen, R.; Rice, C.L. Neural Contributions to Muscle Fatigue: From the Brain to the Muscle and Back Again. Med. Sci. Sports Exerc. 2016, 48, 2294–2306. [Google Scholar] [CrossRef] [PubMed]
- Foley, R.C.A.; Kalmar, J.M. Estimates of persistent inward current in human motor neurons during postural sway. J. Neurophysiol. 2019, 122, 2095–2110. [Google Scholar] [CrossRef]
- Mendes, K. Estimates of Persistent Inward Current Decline in Human Soleus Motor Units during Fatigue. Master’s Thesis, Wilfrid Laurier University, Waterloo, ON, Canada, 2016. [Google Scholar]
- Gandevia, S.C.; Allen, G.M.; Butler, J.E.; Taylor, J.L. Supraspinal factors in human muscle fatigue: Evidence for suboptimal output from the motor cortex. J. Physiol. 1996, 490 Pt 2, 529–536. [Google Scholar] [CrossRef]
- Button, D.C.; Kalmar, J.M.; Gardiner, K.; Cahill, F.; Gardiner, P.F. Spike frequency adaptation of rat hindlimb motoneurons. J. Appl. Physiol. (1985) 2007, 102, 1041–1050. [Google Scholar] [CrossRef]
- Kiss, T. Persistent Na-channels: Origin and function. A review. Acta Biol. Hung. 2008, 59, 1–12. [Google Scholar] [CrossRef]
- Johnson, M.D.; Thompson, C.K.; Tysseling, V.M.; Powers, R.K.; Heckman, C.J. The potential for understanding the synaptic organization of human motor commands via the firing patterns of motoneurons. J. Neurophysiol. 2017, 118, 520–531. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.H.; Baines, R.A. Regulation of membrane excitability: A convergence on voltage-gated sodium conductance. Mol. Neurobiol. 2015, 51, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Wetzel, A.; Jablonka, S.; Blum, R. Cell-autonomous axon growth of young motoneurons is triggered by a voltage-gated sodium channel. Channels 2013, 7, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Cormery, B.; Beaumont, E.; Csukly, K.; Gardiner, P. Hindlimb unweighting for 2 weeks alters physiological properties of rat hindlimb motoneurones. J. Physiol. 2005, 568, 841–850. [Google Scholar] [CrossRef] [PubMed]
- Clark, B.C.; Manini, T.M.; Bolanowski, S.J.; Ploutz-Snyder, L.L. Adaptations in human neuromuscular function following prolonged unweighting: II. Neurological properties and motor imagery efficacy. J. Appl. Physiol. (1985) 2006, 101, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Rosenkranz, K.; Seibel, J.; Kacar, A.; Rothwell, J. Sensorimotor deprivation induces interdependent changes in excitability and plasticity of the human hand motor cortex. J. Neurosci. 2014, 34, 7375–7382. [Google Scholar] [CrossRef] [PubMed]
- Roberts, D.R.; Ramsey, D.; Johnson, K.; Kola, J.; Ricci, R.; Hicks, C.; Borckardt, J.J.; Bloomberg, J.J.; Epstein, C.; George, M.S. Cerebral cortex plasticity after 90 days of bed rest: Data from TMS and fMRI. Aviat. Space Environ. Med. 2010, 81, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Langlet, C.; Bastide, B.; Canu, M.H. Hindlimb unloading affects cortical motor maps and decreases corticospinal excitability. Exp. Neurol. 2012, 237, 211–217. [Google Scholar] [CrossRef]
- Davis, L.A.; Fogarty, M.J.; Brown, A.; Sieck, G.C. Structure and Function of the Mammalian Neuromuscular Junction. Compr. Physiol. 2022, 12, 3731–3766. [Google Scholar] [CrossRef]
- Chibalin, A.V.; Benziane, B.; Zakyrjanova, G.F.; Kravtsova, V.V.; Krivoi, I.I. Early endplate remodeling and skeletal muscle signaling events following rat hindlimb suspension. J. Cell. Physiol. 2018, 233, 6329–6336. [Google Scholar] [CrossRef]
- Demangel, R.; Treffel, L.; Py, G.; Brioche, T.; Pagano, A.F.; Bareille, M.P.; Beck, A.; Pessemesse, L.; Candau, R.; Gharib, C.; et al. Early structural and functional signature of 3-day human skeletal muscle disuse using the dry immersion model. J. Physiol. 2017, 595, 4301–4315. [Google Scholar] [CrossRef] [PubMed]
- Monti, E.; Reggiani, C.; Franchi, M.V.; Toniolo, L.; Sandri, M.; Armani, A.; Zampieri, S.; Giacomello, E.; Sarto, F.; Sirago, G.; et al. Neuromuscular junction instability and altered intracellular calcium handling as early determinants of force loss during unloading in humans. J. Physiol. 2021, 599, 3037–3061. [Google Scholar] [CrossRef] [PubMed]
- Deschenes, M.R.; Adan, M.A.; Kapral, M.C.; Kressin, K.A.; Leathrum, C.M.; Seo, A.; Li, S.; Schaffrey, E.C. Neuromuscular adaptability of male and female rats to muscle unloading. J. Neurosci. Res. 2018, 96, 284–296. [Google Scholar] [CrossRef] [PubMed]
- Ganse, B.; Bosutti, A.; Drey, M.; Degens, H. Sixty days of head-down tilt bed rest with or without artificial gravity do not affect the neuromuscular secretome. Exp. Cell Res. 2021, 399, 112463. [Google Scholar] [CrossRef] [PubMed]
- Shenkman, B.S.; Tsaturyan, A.K.; Vikhlyantsev, I.M.; Kozlovskaya, I.B.; Grigoriev, A.I. Molecular Mechanisms of Muscle Tone Impairment under Conditions of Real and Simulated Space Flight. Acta Naturae 2021, 13, 85–97. [Google Scholar] [CrossRef]
- Lomonosova, Y.N.; Kalamkarov, G.R.; Bugrova, A.E.; Shevchenko, T.F.; Kartashkina, N.L.; Lysenko, E.A.; Shvets, V.I.; Nemirovskaya, T.L. Protective effect of L-Arginine administration on proteins of unloaded m. soleus. Biochem. Biokhimiia 2011, 76, 571–580. [Google Scholar] [CrossRef] [PubMed]
- Zaripova, K.A.; Kalashnikova, E.P.; Belova, S.P.; Kostrominova, T.Y.; Shenkman, B.S.; Nemirovskaya, T.L. Role of Pannexin 1 ATP-permeable channels in the regulation of signaling pathways during skeletal muscle unloading. Int. J. Mol. Sci. 2021, 22, 10444. [Google Scholar] [CrossRef] [PubMed]
- Lechado, I.T.A.; Vitadello, M.; Traini, L.; Namuduri, A.V.; Gastaldello, S.; Gorza, L. Sarcolemmal loss of active nNOS (Nos1) is an oxidative stress-dependent, early event driving disuse atrophy. J. Pathol. 2018, 246, 433–446. [Google Scholar] [CrossRef] [PubMed]
- Ingalls, C.P.; Warren, G.L.; Armstrong, R.B. Intracellular Ca2+ transients in mouse soleus muscle after hindlimb unloading and reloading. J. Appl. Physiol. 1999, 87, 386–390. [Google Scholar] [CrossRef]
- Henriksen, E.J.; Tischler, M.E. Time course of the response of carbohydrate metabolism to unloading of the soleus. Metabolism 1988, 37, 201–208. [Google Scholar] [CrossRef]
- Vilchinskaya, N.A.; Mochalova, E.P.; Nemirovskaya, T.L.; Mirzoev, T.M.; Turtikova, O.V.; Shenkman, B.S. Rapid decline in MyHC I(beta) mRNA expression in rat soleus during hindlimb unloading is associated with AMPK dephosphorylation. J. Physiol. 2017, 595, 7123–7134. [Google Scholar] [CrossRef] [PubMed]
- Lvova, I.D.; Sharlo, K.A.; Vilchinskaya, N.A.; Sidorenko, D.A.; Sharlo, D.T.; Shenkman, B.S. Accumulation of high-energy phosphates blocks the expression of mitochondrial biogenesis markers and slow-type myosin in soleus muscle under 24 hours of rat hindlimb suspension. Life Sci. Space Res. 2023, 38, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.C.; Misulis, K.E.; Dettbarn, W.D. Activity dependent characteristics of fast and slow muscle: Biochemical and histochemical considerations. Neurochem. Res. 1989, 14, 647–655. [Google Scholar] [CrossRef] [PubMed]
- Schiaffino, S.; Reggiani, C. Myosin isoforms in mammalian skeletal muscle. J. Appl. Physiol. 1994, 77, 493–501. [Google Scholar] [CrossRef] [PubMed]
- Schiaffino, S.; Reggiani, C. Fiber types in mammalian skeletal muscles. Physiol. Rev. 2011, 91, 1447–1531. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.M.; Brameld, J.M.; Parr, T. Expression of the myosin heavy chain IIB gene in porcine skeletal muscle: The role of the CArG-Box promoter response element. PLoS ONE 2014, 9, e114365. [Google Scholar] [CrossRef] [PubMed]
- Wakeling, J.M.; Uehli, K.; Rozitis, A.I. Muscle fibre recruitment can respond to the mechanics of the muscle contraction. J. R. Soc. Interface 2006, 3, 533–544. [Google Scholar] [CrossRef] [PubMed]
- Widrick, J.J.; Trappe, S.W.; Costill, D.L.; Fitts, R.H. Force-velocity and force-power properties of single muscle fibers from elite master runners and sedentary men. Am. J. Physiol. 1996, 271, C676–C683. [Google Scholar] [CrossRef] [PubMed]
- Pinniger, G.J.; Bruton, J.D.; Westerblad, H.; Ranatunga, K.W. Effects of a myosin-II inhibitor (N-benzyl-p-toluene sulphonamide, BTS) on contractile characteristics of intact fast-twitch mammalian muscle fibres. J. Muscle Res. Cell Motil. 2005, 26, 135–141. [Google Scholar] [CrossRef]
- Bruton, J.; Pinniger, G.J.; Lannergren, J.; Westerblad, H. The effects of the myosin-II inhibitor N-benzyl-p-toluene sulphonamide on fatigue in mouse single intact toe muscle fibres. Acta Physiol. 2006, 186, 59–66. [Google Scholar] [CrossRef]
- He, Z.H.; Bottinelli, R.; Pellegrino, M.A.; Ferenczi, M.A.; Reggiani, C. ATP consumption and efficiency of human single muscle fibers with different myosin isoform composition. Biophys. J. 2000, 79, 945–961. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Son, J.M.; Benayoun, B.A.; Lee, C. The Mitochondrial-Encoded Peptide MOTS-c Translocates to the Nucleus to Regulate Nuclear Gene Expression in Response to Metabolic Stress. Cell Metab. 2018, 28, 516–524. [Google Scholar] [CrossRef] [PubMed]
- Desplanches, D.; Mayet, M.H.; Ilyina-Kakueva, E.I.; Frutoso, J.; Flandrois, R. Structural and metabolic properties of rat muscle exposed to weightlessness aboard Cosmos 1887. Eur. J. Appl. Physiol. Occup. Physiol. 1991, 63, 288–292. [Google Scholar] [CrossRef] [PubMed]
- Martin, T.P.; Edgerton, V.R.; Grindeland, R.E. Influence of spaceflight on rat skeletal muscle. J. Appl. Physiol. 1988, 65, 2318–2325. [Google Scholar] [CrossRef] [PubMed]
- Stevens, L.; Gohlsch, B.; Mounier, Y.; Pette, D. Changes in myosin heavy chain mRNA and protein isoforms in single fibers of unloaded rat soleus muscle. FEBS Lett. 1999, 463, 15–18. [Google Scholar] [CrossRef] [PubMed]
- Caiozzo, V.J.; Baker, M.J.; Baldwin, K.M. Novel transitions in MHC isoforms: Separate and combined effects of thyroid hormone and mechanical unloading. J. Appl. Physiol. 1998, 85, 2237–2248. [Google Scholar] [CrossRef] [PubMed]
- Shenkman, B.S.; Kozlovskaya, I.B.; Kuznetsov, S.L.; Nemirovskaya, T.L.; Desplanches, D. Plasticity of skeletal muscle fibres in space-flown primates. J. Gravitational Physiol. A J. Int. Soc. Gravitational Physiol. 1994, 1, P64–P66. [Google Scholar]
- Trappe, S.; Costill, D.; Gallagher, P.; Creer, A.; Peters, J.R.; Evans, H.; Riley, D.A.; Fitts, R.H. Exercise in space: Human skeletal muscle after 6 months aboard the International Space Station. J. Appl. Physiol. 2009, 106, 1159–1168. [Google Scholar] [CrossRef]
- Borina, E.; Pellegrino, M.A.; D’Antona, G.; Bottinelli, R. Myosin and actin content of human skeletal muscle fibers following 35 days bed rest. Scand. J. Med. Sci. Sports 2010, 20, 65–73. [Google Scholar] [CrossRef]
- Sharlo, K.A.; Paramonova, II; Lvova, I.D.; Vilchinskaya, N.A.; Bugrova, A.E.; Shevchenko, T.F.; Kalamkarov, G.R.; Shenkman, B.S. NO-Dependent Mechanisms of Myosin Heavy Chain Transcription Regulation in Rat Soleus Muscle After 7-Days Hindlimb Unloading. Front. Physiol. 2020, 11, 814. [Google Scholar] [CrossRef]
- Giger, J.M.; Bodell, P.W.; Zeng, M.; Baldwin, K.M.; Haddad, F. Rapid muscle atrophy response to unloading: Pretranslational processes involving MHC and actin. J. Appl. Physiol. 2009, 107, 1204–1212. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, K.M.; Haddad, F.; Pandorf, C.E.; Roy, R.R.; Edgerton, V.R. Alterations in muscle mass and contractile phenotype in response to unloading models: Role of transcriptional/pretranslational mechanisms. Front. Physiol. 2013, 4, 284. [Google Scholar] [CrossRef] [PubMed]
- Lomonosova, Y.N.; Turtikova, O.V.; Shenkman, B.S. Reduced expression of MyHC slow isoform in rat soleus during unloading is accompanied by alterations of endogenous inhibitors of calcineurin/NFAT signaling pathway. J. Muscle Res. Cell Motil. 2016, 37, 7–16. [Google Scholar] [CrossRef]
- Shen, T.; Liu, Y.; Randall, W.R.; Schneider, M.F. Parallel mechanisms for resting nucleo-cytoplasmic shuttling and activity dependent translocation provide dual control of transcriptional regulators HDAC and NFAT in skeletal muscle fiber type plasticity. J. Muscle Res. Cell Motil. 2006, 27, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Salanova, M.; Schiffl, G.; Puttmann, B.; Schoser, B.G.; Blottner, D. Molecular biomarkers monitoring human skeletal muscle fibres and microvasculature following long-term bed rest with and without countermeasures. J. Anat. 2008, 212, 306–318. [Google Scholar] [CrossRef]
- Sharlo, K.; Paramonova, I.; Turtikova, O.; Tyganov, S.; Shenkman, B. Plantar mechanical stimulation prevents calcineurin-NFATc1 inactivation and slow-to-fast fiber type shift in rat soleus muscle under hindlimb unloading. J. Appl. Physiol. 2019, 126, 1769–1781. [Google Scholar] [CrossRef]
- Sharlo, K.A.; Mochalova, E.P.; Belova, S.P.; Lvova, I.D.; Nemirovskaya, T.L.; Shenkman, B.S. The role of MAP-kinase p38 in the m. soleus slow myosin mRNA transcription regulation during short-term functional unloading. Arch. Biochem. Biophys. 2020, 695, 108622. [Google Scholar] [CrossRef]
- Wright, D.C.; Geiger, P.C.; Han, D.H.; Jones, T.E.; Holloszy, J.O. Calcium induces increases in peroxisome proliferator-activated receptor gamma coactivator-1alpha and mitochondrial biogenesis by a pathway leading to p38 mitogen-activated protein kinase activation. J. Biol. Chem. 2007, 282, 18793–18799. [Google Scholar] [CrossRef]
- Sharlo, K.A.; Lvova, I.D.; Tyganov, S.A.; Zaripova, K.A.; Belova, S.P.; Kostrominova, T.Y.; Shenkman, B.S.; Nemirovskaya, T.L. The Effect of SERCA Activation on Functional Characteristics and Signaling of Rat Soleus Muscle upon 7 Days of Unloading. Biomolecules 2023, 13, 1354. [Google Scholar] [CrossRef]
- Lin, J.; Wu, H.; Tarr, P.T.; Zhang, C.Y.; Wu, Z.; Boss, O.; Michael, L.F.; Puigserver, P.; Isotani, E.; Olson, E.N.; et al. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature 2002, 418, 797–801. [Google Scholar] [CrossRef]
- van Rooij, E.; Quiat, D.; Johnson, B.A.; Sutherland, L.B.; Qi, X.; Richardson, J.A.; Kelm, R.J., Jr.; Olson, E.N. A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev. Cell 2009, 17, 662–673. [Google Scholar] [CrossRef]
- McCarthy, J.J.; Esser, K.A.; Peterson, C.A.; Dupont-Versteegden, E.E. Evidence of MyomiR network regulation of beta-myosin heavy chain gene expression during skeletal muscle atrophy. Physiol. Genom. 2009, 39, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liang, X.; Zhou, D.; Lai, L.; Xiao, L.; Liu, L.; Fu, T.; Kong, Y.; Zhou, Q.; Vega, R.B.; et al. Coupling of mitochondrial function and skeletal muscle fiber type by a miR-499/Fnip1/AMPK circuit. EMBO Mol. Med. 2016, 8, 1212–1228. [Google Scholar] [CrossRef]
- Reyes, N.L.; Banks, G.B.; Tsang, M.; Margineantu, D.; Gu, H.; Djukovic, D.; Chan, J.; Torres, M.; Liggitt, H.D.; Hirenallur, S.D.; et al. Fnip1 regulates skeletal muscle fiber type specification, fatigue resistance, and susceptibility to muscular dystrophy. Proc. Natl. Acad. Sci. USA 2015, 112, 424–429. [Google Scholar] [CrossRef]
- Sharlo, K.A.; Vilchinskaya, N.A.; Tyganov, S.A.; Turtikova, O.V.; Lvova, I.D.; Sergeeva, K.V.; Rukavishnikov, I.V.; Shenkman, B.S.; Tomilovskaya, E.S.; Orlov, O.I. 6-day Dry Immersion leads to downregulation of slow-fiber type and mitochondria-related genes expression. Am. J. Physiol. Endocrinol. Metab. 2023, 325, E734–E743. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Zeng, J.; Drew, B.G.; Sallam, T.; Martin-Montalvo, A.; Wan, J.; Kim, S.J.; Mehta, H.; Hevener, A.L.; de Cabo, R.; et al. The mitochondrial-derived peptide MOTS-c promotes metabolic homeostasis and reduces obesity and insulin resistance. Cell Metab. 2015, 21, 443–454. [Google Scholar] [CrossRef] [PubMed]
- Vila, M.R.; Segovia-Silvestre, T.; Gamez, J.; Marina, A.; Naini, A.B.; Meseguer, A.; Lombes, A.; Bonilla, E.; DiMauro, S.; Hirano, M.; et al. Reversion of mtDNA depletion in a patient with TK2 deficiency. Neurology 2003, 60, 1203–1205. [Google Scholar] [CrossRef]
- Sharlo, K.A.; Lvova, I.D.; Tyganov, S.A.; Sidorenko, D.A.; Shenkman, B.S. Role of L-Type Calcium Channels in Increased Fatigue of the Rat Soleus Muscle under Functional Unloading. J. Evol. Biochem. Physiol. 2023, 59, 620–629. [Google Scholar] [CrossRef]
- Sharlo, K.A.; Lvova, I.D.; Sidorenko, D.A.; Tyganov, S.A.; Sharlo, D.T.; Shenkman, B.S. Beta-GPA administration activates slow oxidative muscle signaling pathways and protects soleus muscle against the increased fatigue under 7-days of rat hindlimb suspension. Arch. Biochem. Biophys. 2023, 743, 109647. [Google Scholar] [CrossRef]
- Popov, D.V.; Vinogradova, O.L.; Grygiriev, A.I. Human Aerobic Performance; FGBU “Nauka”: Moscow, Russia, 2012; ISBN 978-5-02-038465-1. (In Russian) [Google Scholar]
- Berg, H.E.; Dudley, G.A.; Hather, B.; Tesch, P.A. Work capacity and metabolic and morphologic characteristics of the human quadriceps muscle in response to unloading. Clin. Physiol. 1993, 13, 337–347. [Google Scholar] [CrossRef]
- Vigelso, A.; Gram, M.; Wiuff, C.; Andersen, J.L.; Helge, J.W.; Dela, F. Six weeks’ aerobic retraining after two weeks’ immobilization restores leg lean mass and aerobic capacity but does not fully rehabilitate leg strength in young and older men. J. Rehabil. Med. 2015, 47, 552–560. [Google Scholar] [CrossRef] [PubMed]
- Roudier, E.; Gineste, C.; Wazna, A.; Dehghan, K.; Desplanches, D.; Birot, O. Angio-adaptation in unloaded skeletal muscle: New insights into an early and muscle type-specific dynamic process. J. Physiol. 2010, 588, 4579–4591. [Google Scholar] [CrossRef] [PubMed]
- Inaoka, P.T.; Amano, R.; Tanaka, S.; Tachino, K. Assessment by Thallium-201 of Hindlimb Muscle Blood Flow in Rats during Recovery after Hindlimb Unloading. J. Phys. Ther. Sci. 2009, 21, 163–167. [Google Scholar] [CrossRef]
- Bird, A.D. The Effect of Surgery, Injury, and Prolonged Bed Rest on Calf Blood Flow. Aust. N. Z. J. Surg. 1969, 41, 374–379. [Google Scholar] [CrossRef] [PubMed]
- Aboudrar, S.; Desplanches, D.; Graber-von Bergen, F.; Favier, R.; Okyayuz-Baklouti, I.; Hoppeler, H. Effects of torbafylline on muscle atrophy: Prevention and recovery. Can. J. Physiol. Pharmacol. 1992, 70, 814–820. [Google Scholar] [CrossRef] [PubMed]
- Conceicao, M.S.; Ugrinowitsch, C. Exercise with blood flow restriction: An effective alternative for the non-pharmaceutical treatment for muscle wasting. J. Cachexia Sarcopenia Muscle 2019, 10, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Hackney, K.J.; Ploutz-Snyder, L.L. Unilateral lower limb suspension: Integrative physiological knowledge from the past 20 years (1991-2011). Eur. J. Appl. Physiol. 2012, 112, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Hyatt, H.; Deminice, R.; Yoshihara, T.; Powers, S.K. Mitochondrial dysfunction induces muscle atrophy during prolonged inactivity: A review of the causes and effects. Arch. Biochem. Biophys. 2019, 662, 49–60. [Google Scholar] [CrossRef]
- Moriggi, M.; Vasso, M.; Fania, C.; Capitanio, D.; Bonifacio, G.; Salanova, M.; Blottner, D.; Rittweger, J.; Felsenberg, D.; Cerretelli, P.; et al. Long term bed rest with and without vibration exercise countermeasures: Effects on human muscle protein dysregulation. Proteomics 2010, 10, 3756–3774. [Google Scholar] [CrossRef]
- Dillon, E.L.; Soman, K.V.; Wiktorowicz, J.E.; Sur, R.; Jupiter, D.; Danesi, C.P.; Randolph, K.M.; Gilkison, C.R.; Durham, W.J.; Urban, R.J.; et al. Proteomic investigation of human skeletal muscle before and after 70 days of head down bed rest with or without exercise and testosterone countermeasures. PLoS ONE 2019, 14, e0217690. [Google Scholar] [CrossRef]
- Abadi, A.; Glover, E.I.; Isfort, R.J.; Raha, S.; Safdar, A.; Yasuda, N.; Kaczor, J.J.; Melov, S.; Hubbard, A.; Qu, X.; et al. Limb immobilization induces a coordinate down-regulation of mitochondrial and other metabolic pathways in men and women. PLoS ONE 2009, 4, e6518. [Google Scholar] [CrossRef] [PubMed]
- Chopard, A.; Lecunff, M.; Danger, R.; Lamirault, G.; Bihouee, A.; Teusan, R.; Jasmin, B.J.; Marini, J.F.; Leger, J.J. Large-scale mRNA analysis of female skeletal muscles during 60 days of bed rest with and without exercise or dietary protein supplementation as countermeasures. Physiol. Genom. 2009, 38, 291–302. [Google Scholar] [CrossRef] [PubMed]
- Alibegovic, A.C.; Sonne, M.P.; Hojbjerre, L.; Bork-Jensen, J.; Jacobsen, S.; Nilsson, E.; Faerch, K.; Hiscock, N.; Mortensen, B.; Friedrichsen, M.; et al. Insulin resistance induced by physical inactivity is associated with multiple transcriptional changes in skeletal muscle in young men. Am. J. Physiol. Endocrinol. Metab. 2010, 299, E752–E763. [Google Scholar] [CrossRef] [PubMed]
- Rullman, E.; Fernandez-Gonzalo, R.; Mekjavic, I.B.; Gustafsson, T.; Eiken, O. MEF2 as upstream regulator of the transcriptome signature in human skeletal muscle during unloading. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2018, 315, R799–R809. [Google Scholar] [CrossRef] [PubMed]
- Trevino, M.B.; Zhang, X.; Standley, R.A.; Wang, M.; Han, X.; Reis, F.C.G.; Periasamy, M.; Yu, G.; Kelly, D.P.; Goodpaster, B.H.; et al. Loss of mitochondrial energetics is associated with poor recovery of muscle function but not mass following disuse atrophy. Am. J. Physiol. Endocrinol. Metab. 2019, 317, E899–E910. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Gonzalo, R.; Tesch, P.A.; Lundberg, T.R.; Alkner, B.A.; Rullman, E.; Gustafsson, T. Three months of bed rest induce a residual transcriptomic signature resilient to resistance exercise countermeasures. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2020, 34, 7958–7969. [Google Scholar] [CrossRef] [PubMed]
- Mahmassani, Z.S.; Reidy, P.T.; McKenzie, A.I.; Stubben, C.; Howard, M.T.; Drummond, M.J. Age-dependent skeletal muscle transcriptome response to bed rest-induced atrophy. J. Appl. Physiol. (1985) 2019, 126, 894–902. [Google Scholar] [CrossRef] [PubMed]
- Brocca, L.; Cannavino, J.; Coletto, L.; Biolo, G.; Sandri, M.; Bottinelli, R.; Pellegrino, M.A. The time course of the adaptations of human muscle proteome to bed rest and the underlying mechanisms. J. Physiol. 2012, 590, 5211–5230. [Google Scholar] [CrossRef] [PubMed]
- Popov, D.V.; Makhnovskii, P.A.; Zgoda, V.G.; Gazizova, G.R.; Vepkhvadze, T.F.; Lednev, E.M.; Motanova, E.S.; Lysenko, E.A.; Orlov, O.I.; Tomilovskaya, E.S. Rapid changes in transcriptomic profile and mitochondrial function in human soleus muscle after 3-day dry immersion. J. Appl. Physiol. 2023, 134, 1256–1264. [Google Scholar] [CrossRef]
- Mazin, M.G.; Kiselyova, E.V.; Nemirovskaya, T.L.; Shenkman, B.S. Ultrastructure of skeletal muscles of rhesus monkeys after spaceflight. J. Gravitational Physiol. A J. Int. Soc. Gravitational Physiol. 2000, 7, S59–S62. [Google Scholar]
- Shenkman, B.S.; Nemirovskaya, T.L.; Belozerova, I.N.; Mazin, M.G.; Matveeva, O.A. Mitochondrial adaptations in skeletal muscle cells in mammals exposed to gravitational unloading. J. Gravitational Physiol. A J. Int. Soc. Gravitational Physiol. 2002, 9, P159–P162. [Google Scholar]
- Shenkman, B.S.; Matveyeva, O.A.; Mazin, M.G.; Nemirovskaya, T.L.; Kiseleva, E.V.; Kozlovskaya, I.B. Plasticity of cell and tissue structures of human m. soleus in conditions of prolonged hypokinesia. Biol. Membr. 2003, 20, 77–87. (In Bulgarian) [Google Scholar]
- Desplanches, D.; Kayar, S.R.; Sempore, B.; Flandrois, R.; Hoppeler, H. Rat soleus muscle ultrastructure after hindlimb suspension. J. Appl. Physiol. 1990, 69, 504–508. [Google Scholar] [CrossRef] [PubMed]
- Theeuwes, W.F.; Gosker, H.R.; Langen, R.C.J.; Verhees, K.J.P.; Pansters, N.A.M.; Schols, A.; Remels, A.H.V. Inactivation of glycogen synthase kinase-3beta (GSK-3beta) enhances skeletal muscle oxidative metabolism. Biochim. Et Biophys. Acta. Mol. Basis Dis. 2017, 1863, 3075–3086. [Google Scholar] [CrossRef] [PubMed]
- Mirzoev, T.; Tyganov, S.; Vilchinskaya, N.; Lomonosova, Y.; Shenkman, B. Key Markers of mTORC1-Dependent and mTORC1-Independent Signaling Pathways Regulating Protein Synthesis in Rat Soleus Muscle During Early Stages of Hindlimb Unloading. Cell Physiol. Biochem. 2016, 39, 1011–1020. [Google Scholar] [CrossRef] [PubMed]
- Chin, E.R. The role of calcium and calcium/calmodulin-dependent kinases in skeletal muscle plasticity and mitochondrial biogenesis. Proc. Nutr. Soc. 2004, 63, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Sharlo, K.A.; Paramonova, II; Lvova, I.D.; Mochalova, E.P.; Kalashnikov, V.E.; Vilchinskaya, N.A.; Tyganov, S.A.; Konstantinova, T.S.; Shevchenko, T.F.; Kalamkarov, G.R.; et al. Plantar Mechanical Stimulation Maintains Slow Myosin Expression in Disused Rat Soleus Muscle via NO-Dependent Signaling. Int. J. Mol. Sci. 2021, 22, 1372. [Google Scholar] [CrossRef] [PubMed]
- Theeuwes, W.F.; Gosker, H.R.; Schols, A.; Langen, R.C.J.; Remels, A.H.V. Regulation of PGC-1alpha expression by a GSK-3beta-TFEB signaling axis in skeletal muscle. Biochim. Biophys. Acta Mol. Cell Res. 2020, 1867, 118610. [Google Scholar] [CrossRef] [PubMed]
- Lvova, I.D.; Sharlo, K.A.; Rozhkov, S.V.; Mirzoev, T.M.; Shenkman, B.S. The Role of Glycogen Synthase Kinase 3 Activity in the Regulation of Mitochondrial Biogenesis in Rat Postural Muscle under Hindlimb Unloading. Biochem. (Mosc.) Suppl. Ser. A Membr. Cell Biol. 2021, 16, 372–377. [Google Scholar] [CrossRef]
- Donaldson, S.K.; Kerrick, W.G. Characterization of the effects of Mg2+ on Ca2+- and Sr2+-activated tension generation of skinned skeletal muscle fibers. J. Gen. Physiol. 1975, 66, 427–444. [Google Scholar] [CrossRef]
- Allen, D.G.; Westerblad, H. The effects of caffeine on intracellular calcium, force and the rate of relaxation of mouse skeletal muscle. J. Physiol. 1995, 487 Pt 2, 331–342. [Google Scholar] [CrossRef] [PubMed]
- McDonald, K.S.; Fitts, R.H. Effect of hindlimb unloading on rat soleus fiber force, stiffness, and calcium sensitivity. J. Appl. Physiol. 1995, 79, 1796–1802. [Google Scholar] [CrossRef] [PubMed]
- Widrick, J.J.; Norenberg, K.M.; Romatowski, J.G.; Blaser, C.A.; Karhanek, M.; Sherwood, J.; Trappe, S.W.; Trappe, T.A.; Costill, D.L.; Fitts, R.H. Force-velocity-power and force-pCa relationships of human soleus fibers after 17 days of bed rest. J. Appl. Physiol. (1985) 1998, 85, 1949–1956. [Google Scholar] [CrossRef]
- Fitts, R.H.; Trappe, S.W.; Costill, D.L.; Gallagher, P.M.; Creer, A.C.; Colloton, P.A.; Peters, J.R.; Romatowski, J.G.; Bain, J.L.; Riley, D.A. Prolonged space flight-induced alterations in the structure and function of human skeletal muscle fibres. J. Physiol. 2010, 588, 3567–3592. [Google Scholar] [CrossRef]
- Stephenson, D.G.; Williams, D.A. Calcium-activated force responses in fast- and slow-twitch skinned muscle fibres of the rat at different temperatures. J. Physiol. 1981, 317, 281–302. [Google Scholar] [CrossRef]
- Ingalls, C.P.; Wenke, J.C.; Armstrong, R.B. Time course changes in [Ca2+]i, force, and protein content in hindlimb-suspended mouse soleus muscles. Aviat. Space Environ. Med. 2001, 72, 471–476. [Google Scholar] [PubMed]
- Zhang, S.S.; Zhou, S.; Crowley-McHattan, Z.J.; Wang, R.Y.; Li, J.P. A Review of the Role of Endo/Sarcoplasmic Reticulum-Mitochondria Ca(2+) Transport in Diseases and Skeletal Muscle Function. Int. J. Environ. Res. Public Health 2021, 18, 3874. [Google Scholar] [CrossRef]
- Zanou, N.; Dridi, H.; Reiken, S.; Imamura de Lima, T.; Donnelly, C.; De Marchi, U.; Ferrini, M.; Vidal, J.; Sittenfeld, L.; Feige, J.N.; et al. Acute RyR1 Ca(2+) leak enhances NADH-linked mitochondrial respiratory capacity. Nat. Commun. 2021, 12, 7219. [Google Scholar] [CrossRef]
- Andersson, D.C.; Betzenhauser, M.J.; Reiken, S.; Meli, A.C.; Umanskaya, A.; Xie, W.; Shiomi, T.; Zalk, R.; Lacampagne, A.; Marks, A.R. Ryanodine receptor oxidation causes intracellular calcium leak and muscle weakness in aging. Cell Metab. 2011, 14, 196–207. [Google Scholar] [CrossRef]
- Andersson, D.C.; Meli, A.C.; Reiken, S.; Betzenhauser, M.J.; Umanskaya, A.; Shiomi, T.; D’Armiento, J.; Marks, A.R. Leaky ryanodine receptors in beta-sarcoglycan deficient mice: A potential common defect in muscular dystrophy. Skelet. Muscle 2012, 2, 9. [Google Scholar] [CrossRef]
- Matecki, S.; Dridi, H.; Jung, B.; Saint, N.; Reiken, S.R.; Scheuermann, V.; Mrozek, S.; Santulli, G.; Umanskaya, A.; Petrof, B.J.; et al. Leaky ryanodine receptors contribute to diaphragmatic weakness during mechanical ventilation. Proc. Natl. Acad. Sci. USA 2016, 113, 9069–9074. [Google Scholar] [CrossRef] [PubMed]
- Murphy, R.M.; Dutka, T.L.; Horvath, D.; Bell, J.R.; Delbridge, L.M.; Lamb, G.D. Ca2+-dependent proteolysis of junctophilin-1 and junctophilin-2 in skeletal and cardiac muscle. J. Physiol. 2013, 591, 719–729. [Google Scholar] [CrossRef] [PubMed]
- Mukhina, A.M.; Altaeva, E.G.; Nemirovskaia, T.L.; Shenkman, B.S. Role of L-type Ca channels in Ca2+ accumulation and changes in distribution of myosin heavy chain and SERCA isoforms in rat M. soleus under gravitational unloading. Ross. Fiziol. Zhurnal Im. I.M. Sechenova 2006, 92, 1285–1295. [Google Scholar]
- Hargreaves, M.; Spriet, L.L. Skeletal muscle energy metabolism during exercise. Nat. Metab. 2020, 2, 817–828. [Google Scholar] [CrossRef] [PubMed]
- Salway, J.G. Metabolism at a Glance; Wiley: Hoboken, NJ, USA, 2017. [Google Scholar]
- Gollnick, P.D. Metabolic regulation in skeletal muscle: Influence of endurance training as exerted by mitochondrial protein concentration. Acta Physiol. Scand. Suppl. 1986, 556, 53–66. [Google Scholar] [PubMed]
- Sahlin, K.; Soderlund, K.; Tonkonogi, M.; Hirakoba, K. Phosphocreatine content in single fibers of human muscle after sustained submaximal exercise. Am. J. Physiol. 1997, 273, C172–C178. [Google Scholar] [CrossRef] [PubMed]
- Romijn, J.A.; Coyle, E.F.; Sidossis, L.S.; Gastaldelli, A.; Horowitz, J.F.; Endert, E.; Wolfe, R.R. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am. J. Physiol. 1993, 265, E380–E391. [Google Scholar] [CrossRef]
- Randle, P.J.; Garland, P.B.; Hales, C.N.; Newsholme, E.A. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1963, 1, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Racinais, S.; Girard, O.; Micallef, J.P.; Perrey, S. Failed excitability of spinal motoneurons induced by prolonged running exercise. J. Neurophysiol. 2007, 97, 596–603. [Google Scholar] [CrossRef]
- Martin, V.; Kerherve, H.; Messonnier, L.A.; Banfi, J.C.; Geyssant, A.; Bonnefoy, R.; Feasson, L.; Millet, G.Y. Central and peripheral contributions to neuromuscular fatigue induced by a 24-h treadmill run. J. Appl. Physiol. (1985) 2010, 108, 1224–1233. [Google Scholar] [CrossRef]
- Jeukendrup, A.E.; Vet-Joop, K.; Sturk, A.; Stegen, J.H.; Senden, J.; Saris, W.H.; Wagenmakers, A.J. Relationship between gastro-intestinal complaints and endotoxaemia, cytokine release and the acute-phase reaction during and after a long-distance triathlon in highly trained men. Clin. Sci. 2000, 98, 47–55. [Google Scholar] [CrossRef]
- Ostrowski, K.; Hermann, C.; Bangash, A.; Schjerling, P.; Nielsen, J.N.; Pedersen, B.K. A trauma-like elevation of plasma cytokines in humans in response to treadmill running. J. Physiol. 1998, 513 Pt 3, 889–894. [Google Scholar] [CrossRef]
- Papassotiriou, I.; Alexiou, V.G.; Tsironi, M.; Skenderi, K.; Spanos, A.; Falagas, M.E. Severe aseptic inflammation caused by long distance running (246 km) does not increase procalcitonin. Eur. J. Clin. Investig. 2008, 38, 276–279. [Google Scholar] [CrossRef]
- Mastaloudis, A.; Traber, M.G.; Carstensen, K.; Widrick, J.J. Antioxidants did not prevent muscle damage in response to an ultramarathon run. Med. Sci. Sports Exerc. 2006, 38, 72–80. [Google Scholar] [CrossRef]
- Skenderi, K.P.; Kavouras, S.A.; Anastasiou, C.A.; Yiannakouris, N.; Matalas, A.L. Exertional Rhabdomyolysis during a 246-km continuous running race. Med. Sci. Sports Exerc. 2006, 38, 1054–1057. [Google Scholar] [CrossRef] [PubMed]
- Overgaard, K.; Lindstrom, T.; Ingemann-Hansen, T.; Clausen, T. Membrane leakage and increased content of Na+ -K+ pumps and Ca2+ in human muscle after a 100-km run. J. Appl. Physiol. (1985) 2002, 92, 1891–1898. [Google Scholar] [CrossRef]
- Sejersted, O.M.; Sjogaard, G. Dynamics and consequences of potassium shifts in skeletal muscle and heart during exercise. Physiol. Rev. 2000, 80, 1411–1481. [Google Scholar] [CrossRef]
- Glancy, B.; Kane, D.A.; Kavazis, A.N.; Goodwin, M.L.; Willis, W.T.; Gladden, L.B. Mitochondrial lactate metabolism: History and implications for exercise and disease. J. Physiol. 2021, 599, 863–888. [Google Scholar] [CrossRef] [PubMed]
- Gollnick, P.D.; Hermansen, L. Biochemical adaptations to exercise: Anaerobic metabolism. Exerc. Sport Sci. Rev. 1973, 1, 1–44. [Google Scholar] [CrossRef] [PubMed]
- Purdom, T.; Kravitz, L.; Dokladny, K.; Mermier, C. Understanding the factors that effect maximal fat oxidation. J. Int. Soc. Sports Nutr. 2018, 15, 3. [Google Scholar] [CrossRef]
- van Loon, L.J.; Greenhaff, P.L.; Constantin-Teodosiu, D.; Saris, W.H.; Wagenmakers, A.J. The effects of increasing exercise intensity on muscle fuel utilisation in humans. J. Physiol. 2001, 536, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Tsintzas, K.; Williams, C.; Constantin-Teodosiu, D.; Hultman, E.; Boobis, L.; Clarys, P.; Greenhaff, P. Phosphocreatine degradation in type I and type II muscle fibres during submaximal exercise in man: Effect of carbohydrate ingestion. J. Physiol. 2001, 537, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Ball-Burnett, M.; Green, H.J.; Houston, M.E. Energy metabolism in human slow and fast twitch fibres during prolonged cycle exercise. J. Physiol. 1991, 437, 257–267. [Google Scholar] [CrossRef]
- Tsintzas, O.K.; Williams, C.; Boobis, L.; Greenhaff, P. Carbohydrate ingestion and single muscle fiber glycogen metabolism during prolonged running in men. J. Appl. Physiol. (1985) 1996, 81, 801–809. [Google Scholar] [CrossRef] [PubMed]
- Brooks, G.A. Lactate as a fulcrum of metabolism. Redox Biol. 2020, 35, 101454. [Google Scholar] [CrossRef] [PubMed]
- Robergs, R.A. Invited review: Quantifying proton exchange from chemical reactions—Implications for the biochemistry of metabolic acidosis. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2019, 235, 29–45. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.K. Anaerobic threshold: Its concept and role in endurance sport. Malays. J. Med. Sci. 2004, 11, 24–36. [Google Scholar] [PubMed]
- Molinari, C.A.; Edwards, J.; Billat, V. Maximal Time Spent at VO(2max) from Sprint to the Marathon. Int. J. Environ. Res. Public Health 2020, 17, 9250. [Google Scholar] [CrossRef] [PubMed]
- Metzger, J.M.; Moss, R.L. Effects of tension and stiffness due to reduced pH in mammalian fast- and slow-twitch skinned skeletal muscle fibres. J. Physiol. 1990, 428, 737–750. [Google Scholar] [CrossRef]
- Debold, E.P.; Beck, S.E.; Warshaw, D.M. Effect of low pH on single skeletal muscle myosin mechanics and kinetics. Am. J. Physiol. Cell Physiol. 2008, 295, C173–C179. [Google Scholar] [CrossRef]
- Parolin, M.L.; Chesley, A.; Matsos, M.P.; Spriet, L.L.; Jones, N.L.; Heigenhauser, G.J. Regulation of skeletal muscle glycogen phosphorylase and PDH during maximal intermittent exercise. Am. J. Physiol. 1999, 277, E890–E900. [Google Scholar] [CrossRef]
- Spriet, L.L.; Howlett, R.A.; Heigenhauser, G.J. An enzymatic approach to lactate production in human skeletal muscle during exercise. Med. Sci. Sports Exerc. 2000, 32, 756–763. [Google Scholar] [CrossRef]
- Wakatsuki, T.; Ohira, Y.; Yasui, W.; Nakamura, K.; Asakura, T.; Ohno, H.; Yamamoto, M. Responses of contractile properties in rat soleus to high-energy phosphates and/or unloading. Jpn. J. Physiol. 1994, 44, 193–204. [Google Scholar] [CrossRef]
- Allen, D.G.; Trajanovska, S. The multiple roles of phosphate in muscle fatigue. Front. Physiol. 2012, 3, 463. [Google Scholar] [CrossRef]
- Pathare, N.; Walter, G.A.; Stevens, J.E.; Yang, Z.; Okerke, E.; Gibbs, J.D.; Esterhai, J.L.; Scarborough, M.T.; Gibbs, C.P.; Sweeney, H.L.; et al. Changes in inorganic phosphate and force production in human skeletal muscle after cast immobilization. J. Appl. Physiol. 2005, 98, 307–314. [Google Scholar] [CrossRef]
- Allen, D.G.; Lamb, G.D.; Westerblad, H. Impaired calcium release during fatigue. J. Appl. Physiol. 2008, 104, 296–305. [Google Scholar] [CrossRef] [PubMed]
- Pathare, N.; Vandenborne, K.; Liu, M.; Stevens, J.E.; Li, Y.; Frimel, T.N.; Walter, G.A. Alterations in inorganic phosphate in mouse hindlimb muscles during limb disuse. NMR Biomed. 2008, 21, 101–110. [Google Scholar] [CrossRef]
- Ohira, Y.; Yasui, W.; Kariya, F.; Wakatsuki, T.; Nakamura, K.; Asakura, T.; Edgerton, V.R. Metabolic adaptation of skeletal muscles to gravitational unloading. Acta Astronaut. 1994, 33, 113–117. [Google Scholar] [CrossRef]
- Grichko, V.P.; Heywood-Cooksey, A.; Kidd, K.R.; Fitts, R.H. Substrate profile in rat soleus muscle fibers after hindlimb unloading and fatigue. J. Appl. Physiol. (1985) 2000, 88, 473–478. [Google Scholar] [CrossRef] [PubMed]
- Grichko, V.P.; Gettelman, G.J.; Widrick, J.J.; Fitts, R.H. Substrate and enzyme profile of fast and slow skeletal muscle fibers in rhesus monkeys. J. Appl. Physiol. (1985) 1999, 86, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Debold, E.P. Potential molecular mechanisms underlying muscle fatigue mediated by reactive oxygen and nitrogen species. Front. Physiol. 2015, 6, 239. [Google Scholar] [CrossRef] [PubMed]
- Karam, C.; Yi, J.; Xiao, Y.; Dhakal, K.; Zhang, L.; Li, X.; Manno, C.; Xu, J.; Li, K.; Cheng, H.; et al. Absence of physiological Ca(2+) transients is an initial trigger for mitochondrial dysfunction in skeletal muscle following denervation. Skelet. Muscle 2017, 7, 6. [Google Scholar] [CrossRef] [PubMed]
- Min, K.; Smuder, A.J.; Kwon, O.S.; Kavazis, A.N.; Szeto, H.H.; Powers, S.K. Mitochondrial-targeted antioxidants protect skeletal muscle against immobilization-induced muscle atrophy. J. Appl. Physiol. (1985) 2011, 111, 1459–1466. [Google Scholar] [CrossRef] [PubMed]
- Murgia, M.; Ciciliot, S.; Nagaraj, N.; Reggiani, C.; Schiaffino, S.; Franchi, M.V.; Pisot, R.; Simunic, B.; Toniolo, L.; Blaauw, B.; et al. Signatures of muscle disuse in spaceflight and bed rest revealed by single muscle fiber proteomics. PNAS Nexus 2022, 1, pgac086. [Google Scholar] [CrossRef] [PubMed]
- Powers, S.K.; Wiggs, M.P.; Duarte, J.A.; Zergeroglu, A.M.; Demirel, H.A. Mitochondrial signaling contributes to disuse muscle atrophy. Am. J. Physiol. Endocrinol. Metab. 2012, 303, E31–E39. [Google Scholar] [CrossRef]
- Hord, J.M.; Garcia, M.M.; Farris, K.R.; Guzzoni, V.; Lee, Y.; Lawler, M.S.; Lawler, J.M. Nox2 signaling and muscle fiber remodeling are attenuated by losartan administration during skeletal muscle unloading. Physiol. Rep. 2021, 9, e14606. [Google Scholar] [CrossRef]
- Ortenblad, N.; Nielsen, J.; Saltin, B.; Holmberg, H.C. Role of glycogen availability in sarcoplasmic reticulum Ca2+ kinetics in human skeletal muscle. J. Physiol. 2011, 589, 711–725. [Google Scholar] [CrossRef]
- McBride, A.; Ghilagaber, S.; Nikolaev, A.; Hardie, D.G. The glycogen-binding domain on the AMPK beta subunit allows the kinase to act as a glycogen sensor. Cell Metab. 2009, 9, 23–34. [Google Scholar] [CrossRef]
- Eggelbusch, M.; Charlton, B.T.; Bosutti, A.; Ganse, B.; Giakoumaki, I.; Grootemaat, A.E.; Hendrickse, P.W.; Jaspers, Y.; Kemp, S.; Kerkhoff, T.J.; et al. The impact of bed rest on human skeletal muscle metabolism. Cell Rep. Med. 2024, 5, 101372. [Google Scholar] [CrossRef]
- Nielsen, J.; Suetta, C.; Hvid, L.G.; Schroder, H.D.; Aagaard, P.; Ortenblad, N. Subcellular localization-dependent decrements in skeletal muscle glycogen and mitochondria content following short-term disuse in young and old men. Am. J. Physiol. Endocrinol. Metab. 2010, 299, E1053–E1060. [Google Scholar] [CrossRef]
- Kalashnikov, V.E.; Tyganov, S.A.; Turtikova, O.V.; Kalashnikova, E.P.; Glazova, M.V.; Mirzoev, T.M.; Shenkman, B.S. Prochlorperazine Withdraws the Delayed Onset Tonic Activity of Unloaded Rat Soleus Muscle: A Pilot Study. Life 2021, 11, 1161. [Google Scholar] [CrossRef] [PubMed]
- Vilchinskaya, N.A.; Mirzoev, T.M.; Lomonosova, Y.N.; Kozlovskaya, I.B.; Shenkman, B.S. Human muscle signaling responses to 3-day head-out dry immersion. J. Musculoskelet. Neuronal Interact. 2015, 15, 286–293. [Google Scholar] [PubMed]
- Hilder, T.L.; Baer, L.A.; Fuller, P.M.; Fuller, C.A.; Grindeland, R.E.; Wade, C.E.; Graves, L.M. Insulin-independent pathways mediating glucose uptake in hindlimb-suspended skeletal muscle. J. Appl. Physiol. 2005, 99, 2181–2188. [Google Scholar] [CrossRef] [PubMed]
- Matoba, T.W.Y.; Ohira, Y. β-Guanidinopropionic acid suppresses suspension-induced changes in myosin expression in rat skeletal muscle. Med. Sci. Sports Exerc. 1993, 25, 157. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sergeeva, X.V.; Lvova, I.D.; Sharlo, K.A. Disuse-Induced Muscle Fatigue: Facts and Assumptions. Int. J. Mol. Sci. 2024, 25, 4984. https://doi.org/10.3390/ijms25094984
Sergeeva XV, Lvova ID, Sharlo KA. Disuse-Induced Muscle Fatigue: Facts and Assumptions. International Journal of Molecular Sciences. 2024; 25(9):4984. https://doi.org/10.3390/ijms25094984
Chicago/Turabian StyleSergeeva, Xenia V., Irina D. Lvova, and Kristina A. Sharlo. 2024. "Disuse-Induced Muscle Fatigue: Facts and Assumptions" International Journal of Molecular Sciences 25, no. 9: 4984. https://doi.org/10.3390/ijms25094984
APA StyleSergeeva, X. V., Lvova, I. D., & Sharlo, K. A. (2024). Disuse-Induced Muscle Fatigue: Facts and Assumptions. International Journal of Molecular Sciences, 25(9), 4984. https://doi.org/10.3390/ijms25094984