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Abstract: Extracellular vesicles (EVs) are lipid bilayer particles released by virtually all cells,
with prominent roles in both physiological and pathological processes. The size, number,
and molecular composition of released EVs correlate to the cells of origin, modulated by
the cell’s environment and pathologic state. The proteins, DNA, RNA, and protein cargo
carried by EVs are protected by degradation, with a prominent role in targeted intercellular
signaling. These properties make EVs salient targets as both carriers of biomarkers and
potential therapeutic delivery vehicles. The majority of EV research has focused on blood,
urine, saliva, and cerebrospinal fluid due to easy accessibility. EVs have also been identified
and studied in all ocular biofluids, including the vitreous humor, the aqueous humor, and
the tear film, and the study of EVs in ocular disease is a new, promising, and underexplored
direction with unique challenges and considerations. This review covers recent advances
in the diagnostic and therapeutic use of ocular EVs, with a focus on human applications
and key preceding in vitro and in vivo animal studies. We also discuss future directions
based on the study of EVs in other organ systems and disease sates.

Keywords: extracellular vesicles; biomarkers; therapeutic; diagnosis; vitreous humor;
tear film

1. Introduction
Extracellular vesicles (EVs) are lipid bilayer particles released by virtually all cells,

and their contents are shown to directly correlate to the cells of origin [1]. Initially thought
to be a waste-disposal mechanism, their functions are now known to include intercellular
communication, disposal of undesirable material, and transfer of functional proteins and
ribonucleic acid (RNA) [1]. In fact, the EV lumen has been shown to contain a variety
of functional proteins, messenger RNA (mRNA), transfer RNA (tRNA), ribosomal RNA
(rRNA), micro RNA (miRNA), and double-stranded DNA (dsDNA) fragments [2]. The
definition of EV subclassification is an ongoing discussion. Broadly speaking, groupings
are evolving from a descriptive classification based on size towards a classification based
on the mechanism of origin. Exosomes are generally smaller than 100 nm in diameter
and produced via endosome maturation into multivesicular bodies (MVBs), whereas
ectosomes are larger 100–1000 nm particles formed when surface blebs are split off from the
plasma membrane [3,4]. Furthermore, cells undergoing apoptosis release large apoptotic
bodies through plasma membrane blebbing that are 1–5 µm in diameter [5]. Regardless of
their origin, EVs stabilize their molecular cargo, delaying degradation and making them
appealing targets in both diagnostic and therapeutic applications [6,7].
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1.1. EV Isolation

EVs have been isolated from a variety of biofluids, including blood, urine, and CSF [8–10].
Interestingly, EVs are capable of crossing cellular barriers while retaining their cargo, imply-
ing that biofluids not proximal to the cells of origin can still yield useful information [11].
However, the biofluid most proximal to the disease process should provide the greatest
differences between diseased and healthy EVs due to the higher relative concentration
of pathologic EVs in disease-proximal biofluids [6]. A variety of methods can be used
to isolate EVs from biofluids, including precipitation, ultracentrifugation, size-exclusion
chromatography, microfluidic methods, and affinity purification based on membrane lipids
and surface proteins [12–14]. The choice of isolation method depends on the biofluid source,
the anticipated downstream analysis, and the relative concentration of the EVs of interest.
For example, affinity purification may be useful to isolate tissue-specific EVs that make up
a small proportion of all EVs in a biofluid, thus increasing the potential signal-to-noise ratio
at the expense of EV concentration [15,16]. In contrast, studying the total EV population
in a biofluid captures both the EVs derived from pathologic tissues and from the body’s
response to the underlying pathology. For example, affinity purification may be useful for
the discovery of novel disease-associated EV biomarkers but may lead to undesirable loss
of EVs when detecting a highly specific disease-associated biomarker.

The large variety of EV isolation methods and biotech companies competing for market
share have resulted in remarkably little standardization across the field of EV research
and a lack of unified consensus, with hundreds of isolation methods and protocols [17,18].
Attempts to establish the minimal requirements for the isolation and study of EVs in order
to ensure validity, reproducibility, and translational potential are ongoing and should be
adhered to [19–21].

1.2. EV Quantification and Analysis

The most common quantification of EVs is their concentration; however, their small
size presents unique challenges. Measuring the protein concentration in the EV fraction of a
biofluid is a crude way to assess the concentration, although this method is confounded by
non-EV proteins and only a general correlation between EVs and protein concentration [22].
Furthermore, because each EV purification method can alter the proportion of non-EV
proteins in the isolate, simply measuring the protein concentration is not a robust way to
compare EVs isolated through different methods. Due to a substantial proportion of EVs
being smaller than 200 nm, their analysis through light microscopy is generally limited
by Abbe’s diffraction limit, which is thought to be possible with fluorescent labeling and
image analysis [23]. Scanning and transmission electron microscopy can easily image EVs,
albeit at the expense of time and sample preparation [24]. The most accessible and widely
used method for assessing EV size, concentration, and surface markers at this time remains
nanoparticle tracking analysis (NTA), which infers the hydrodynamic particle diameter
from high resolution assessment of the EV’s Brownian motion in solution, coupled with
its fluorescent particle labeling capability [25]. This method is also not without its pitfalls,
as it will also count non-EV debris and clumped EVs within the target size range. This
problem can be partially overcome via fluorescent labeling of EV surface markers, and
novel technologies allowing for single EV capture, imaging, and characterization are being
developed [26].

Assessment of proteomic EV contents has evolved from Western blotting and enzyme-
linked immunosorbent assays towards advanced methods, such as single molecule local-
ization microscopy [27]. Mass spectrometry analysis of EVs is another powerful tool to
enable qualitative and quantitative analysis of protein, lipid, and metabolite cargo [28–30].
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The genetic contents of EVs in biofluids can be interrogated with or without enrichment
from the biofluid of interest. Next generation sequencing (NGS) was a major advancement
in the study of EV genetic cargo, allowing for relatively fast assessment of mRNAs, small
interfering RNA (siRNAs), and miRNAs, as well as small nucleotide polymorphisms [31].

1.3. Ocular EVs

The study of EVs in ocular disease is a new, promising, and underexplored direction,
with tears, aqueous humor, and vitreous humor serving as potential EV-containing biofluids.
EVs have been identified in all ocular biofluids, including the vitreous humor [30], the
aqueous humor [32], and the tear film [33]. As shown with EVs derived from other tissues,
the concentration and composition of ocular fluid EVs change with both the disease state
and normal physiological processes. For example, Biasutto et al. showed that the retinal
pigment epithelium (RPE) produced altered protein-laden EVs in response to oxidative
stress [34]. Similarly, Demais et al. showed that Müller cells and neurons secrete exosomes
with distinct molecular profiles and that the proteomic content of the EVs changes in
response to ischemia [35]. Age-specific changes in vitreous EV miRNAs have also been
observed in an animal model [36]. As shown with non-ocular tissues, the cellular origin
of EVs can now be traced using novel techniques, such as multiplex proximity extension
assays [37]. This review covers key studies in ocular EVs that have evolved into novel
diagnostic and therapeutic applications (Figure 1).
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2. Diagnostic Ocular Use of EVs
The use of ocular EVs for diagnosis is a rapidly developing field, although it is

partially limited by the difficulty of collecting ocular fluids compared to other biofluids,
such as blood, urine, and cerebrospinal fluid, as well as the limited collection volume.
Nevertheless, collection of tear fluid and vitreous fluid from patients with infectious
endophthalmitis and those undergoing vitrectomy has provided reliable samples for study.
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At this stage, only six clinical trials utilizing EVs for the diagnosis of ocular pathology have
been identified on clinicaltrials.gov (Table 1). It is known that the concentration and size
distribution of EVs are significantly different between several eye pathological processes,
and changes in intraocular EV concentration following treatment, such as anti-vascular
endothelial growth factor (anti-VEGF) injection, opens possibilities to study both disease
and treatment responses [38]. Diagnostic ocular EVs have been studied in the setting of
several pathological processes outlined below.

Table 1. Diagnostic clinical trials of EVs for ocular disease. Data collected from “clinicaltrials.gov
(accessed on 10 December 2024)”.

No. Trial ID Source of EVs Disease EV Analysis Status/Outcome

1 NCT06475027 Blood Dry eye syndrome miRNA Not yet recruiting

2 NCT05888558 Serum Ocular Myasthenia
Gravis miRNA Enrolling by invitation

3 NCT03264976 Serum Diabetic retinopathy miRNA Unknown status

4 NCT06198543 Plasma, atrial fluid,
and vitreous fluid

Proliferative diabetic
retinopathy Proteomic analysis Not yet recruiting

5 NCT06188013 Plasma Diabetic retinopathy Proteomic analysis Not yet recruiting

6 NCT04164134 Blood Retinoblastoma

RNA expression on platelets
and allelic DNA balance of EVs

in the blood of adult RB1
mutation carriers

Completed. No
published results

available.

2.1. Infectious

Gandhi and Joseph showed that in patients with suspected fungal endophthalmi-
tis, aquaporin-5 levels in EVs isolated from vitreous humor could be used to dis-
tinguish between culture-proven bacterial and fungal endophthalmitis [39]. Similarly,
Rudraprasad et al. showed that complement cascade 8-alpha was elevated and calpain-8
was reduced in the vitreous-derived EVs of both culture-positive and culture-negative bac-
terial endophthalmitis patients compared to controls [40]. EV-based assays may therefore
prove to be key diagnostic tests that guide the treatment of ocular infections.

2.2. Malignancy

Vitreous EVs have been studied in the context of ocular malignancy. Specifically,
Pessuti et al. made the connection between aqueous humor, vitreous humor, and plasma
samples in patients with uveal melanoma. They demonstrated that the EV concentration in
the vitreous humor of uveal melanoma (UM) patients was higher than the concentration
in the aqueous humor or the plasma, suggesting that a biofluid source proximal to the
malignancy would provide the highest pathologic EV yield. Further mass spectroscopy
analysis of uveal melanoma patient EVs showed a high percentage of shared protein cargo
between plasma-, aqueous-humor-, and vitreous-humor (VH)-derived EVs, and the EVs
carried proteins derived from melanocytes of the uveal tract [41]. Studies of miRNA in the
EVs from uveal melanoma patients, in contrast, showed that UM VH samples contained
a unique miRNA profile that only partially overlapped with corresponding plasma EVs,
again suggesting VH as the optimal biofluid source [42]. Although ocular malignancy can
be diagnosed clinically, analysis of ocular EVs can shed light on the pathophysiology of the
disease, identify targetable tumor mutations, enable biomarker discovery, and allow for
better disease monitoring.

2.3. Retinal Disease

EVs have also been investigated in the study of proliferative diabetic retinopathy
(PDR), which is often a manifestation of systemic changes in the patient’s vasculature.
Proteomic analysis of plasma- and vitreous-derived EVs of patients with PDR showed

clinicaltrials.gov
clinicaltrials.gov
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elevation in tumor-necrosis-factor-α-induced protein 8 (TNFAIP8) and confirmed its ability
to pathologically alter human retinal microvascular endothelial cell migration and tube
formation, indicating that TNFAIP8 can be used as a biomarker of PDR and potentially as a
therapeutic target [43,44]. Recently, Shan et al. showed that while the size and concentration
of VH EVs is not significantly different between diabetic and non-diabetic patients, the EVs
of type II diabetics had the capacity to induce TNFα and IL1β inflammatory cytokine ex-
pression in macrophages [45]. Similarly, Wang et al. showed differential protein expression
in the vitreous EVs of patients with PDR, including elevations in APOB, APOM, LDHA,
and FCN3 [46]. Furthermore, lncRNA LOC100132249 has been implicated in endothe-
lial dysfunction in PDR [47]. The characteristics of EVs have also been studied in other
eye pathologies, including pathological myopia, suggesting that differentially expressed
EV-miRNAs could predict the development of pathologic myopia maculopathy [48]. Fur-
ther, pro-inflammatory vitreous EVs were elevated following retinal detachment, which
could serve as prognostic factors for photoreceptor cell death and as potential therapeutic
targets [49].

2.4. Corneal Disease

Tear fluid EVs (tEVs) in particular are appealing for both diagnostic and therapeutic
purposes due to their easy accessibility and negligible risk to the patient compared to VH
and aqueous humor (AH) sampling. Tear fluid contains abundant EVs sized 40–100 nm
that can be subjected to further proteomic and genetic analysis [33,50,51]. Since the initial
characterization of tEVs in 2016 by Grigor’eva et al., numerous diagnostic and therapeutic
applications have been studied [33].

Several groups have reported the diagnostic potential of tEVs, as evidenced by distinct
proteomic and genomic EV components in patients with ocular disease compared to
healthy controls. Aqrawi et al. analyzed the EVs of patients with Sjogren’s syndrome using
liquid chromatography-mass spectrometry (LC-MS), finding alterations in metabolism,
protein folding, and the adaptive immune response [52]. Similarly, distinct proteome and
RNA signatures in the tear EVs of patients with dry eye syndrome were found [53–55].
Tamkovich et al. showed differences in the miRNA expression in tEVs of patients with
primary open angle glaucoma compared to controls [56]. In patients with thyroid eye
disease, tEVs had distinct differences in cytokine levels, including Il-1 and IL-18, as well as
C-reactive protein, MMP-9, and VCAM-1 [57,58]. Interestingly, even in non-inflammatory
conditions, such as keratoconus, subtle differences in the makeup of tEVs was detected,
indicating that studying their contents could shed light on the pathophysiology of this
condition [59]. Even retinal diseases, such as age-related macular degeneration, diabetic
macular edema, and diabetic retinopathy, were found to alter the miRNA and proteomic
composition of tEVs [60,61]. Further studies are needed to elucidate the cellular source
of tEVs and whether tEV changes in patients with retinal pathologies are a result of
pathophysiology or treatment [59,62].

The study of tear EVs from patients undergoing treatment presents an exciting oppor-
tunity to not only learn about the disease mechanism but the response to treatment, as well.
For example, through analysis with Olink proteomics, Thormann et al. showed distinct
shifts from Th2/Th17 to Th1/Th17 cytokine profiles in patients with Dupilumab-associated
ocular surface disease [63], which could be ameliorated through the application of bone
marrow mesenchymal-stem-cell-derived exosomes [64]. Proteomic changes have also been
detected in tEVs in the context of infection, such as herpes simplex virus [65], and they
have been implicated in the spread of herpes simplex keratitis [66].

In summary, the use of EVs has a high potential to enhance diagnosis and the under-
standing of disease in the ocular setting (Figure 2). At this nascent stage, this field is in
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urgent need of safe and standardized biofluid collection methods, as well as analysis of
EV characteristics, surface markers, and cargo. Additionally, EV isolation and analysis
methods that are tailored to low volumes are urgently needed. The benefit of diagnostic
sample collection must always be weighed against the risk of harm and the capacity to
inform treatment and affect outcomes.
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3. Ocular Therapeutic Use of EVs
In principle, several factors make EVs promising from a therapeutic standpoint, includ-

ing protection of their molecular cargo from degradation, non-immunogenicity, and the
promise of targeted delivery. Ocular therapeutic use of EVs derived from several cellular
sources has also been thoroughly explored in animal models, with emerging applications
in humans. The foundation of these studies is that through careful selection of the cell type
and the environment, EVs with unique functional properties can be produced, with the
goal of influencing pathologic cells and processes. The EV surface molecules, contents, and
delivery vehicle can also be modified to target the EVs and alter their stability, transport,
and uptake after delivery.

3.1. EV Manufacturing

Cells are the natural factories for producing EVs, and by selecting an appropriate cell
type and cell culture conditions, EVs tailored for therapeutics can be produced [67]. A
key idea distinguishing EV manufacturing from other therapeutics is that therapeutic EVs
are a complex and heterogenous product, even before the introduction of any processing,
modification, or storage steps. Their heterogeneity can be controlled only to a degree, and,
ultimately, clinical application will depend on (1) safety and (2) efficacy.

Following the discovery that mesenchymal stem cells (MSCs) are therapeutically
beneficial for a variety of diseases, and that their therapeutic effects can be mediated
via EVs, MSC-derived EVs have been extensively studied in ocular and non-ocular
applications [68–70]. Multiple advantages of MSC-EVs have emerged, including elimina-
tion of the risk of malignant transformation, enhanced biodistribution, simplified storage,
and lower immunogenic potential [71–73]. It must be noted that the term MSC is broad,
and it can refer to a variety of cell types and can therefore produce EVs with variable
composition and function [74]. Nevertheless, in the majority of ocular therapeutic EV
applications, the EVs are MSC-derived due to the large body of evidence, established cur-
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rent good manufacturing practices (cGMP) manufacturing, and clinical trials supporting
MSC therapy.

Unfortunately, there is little consensus around creating a unified manufacturing proto-
col for MSC-EVs and, by extension, EVs derived from other cell types [75–77]. Following
cGMP guidelines is crucial for regulatory approval [78]. Several considerations may in-
fluence the design of the manufacturing process, which may be unique to the clinical
application. An autologous process can be more costly, with potentially lower immuno-
genicity, while an allogeneic process can be scalable, cheaper, more expedient, and allow for
banking of a certified product [79]. Changes in the cell line, including cell age and passage
number, may also be reflected in the resulting EVs, which could be addressed through
monitoring of cellular age via the population doubling level and utilizing a tiered banking
system [76,80]. The process of tiered banking has already been developed for autologous
MSC therapy [81], and it addresses initial MSC heterogeneity and donor–donor variations.
The creation of a validated master cell bank and subsequent working cell banks along with
continuous quality control measures should be applied to EV manufacturing, as well.

The components of the cell culture media used for EV collection must be balanced
for the optimization of cellular growth, EV production, and implications for downstream
EV purification. Components, such as fetal bovine serum or human platelet lysate, are
common in cell cultures but contain large amounts of EVs that would be purified along
with EVs of interest [82]. Elimination of serum in cell culture media reduced the problem
of contamination with serum EVs, although the resulting stress on EV-producing cells and
the corresponding alteration in EVs’ composition are important considerations and may be
beneficial [83,84].

Other cell culture parameters, such as cell seeding density [76] and hypoxia, can affect
EV composition [85]. Through utilizing bioreactors rather than two-dimensional (2D) cell
cultures, EV production volumes can be dramatically increased to achieve therapeutic
amounts [86,87]. However, changes in the cellular environment also influence EV composi-
tion and are important considerations [88]. A bioreactor system also allows for continuous
monitoring and optimization of cell culture conditions and scaling of manufacturing [89].
These changes are not only explained by larger cell density but also by decreased EV reup-
take in a perfusion bioreactor system [90]. A focus on cells that can be grown in suspension
culture will allow for easier scalability and control over culture conditions, which has been
demonstrated with MSCs for the purposes of EV manufacturing for ocular use [91].

Regardless of the manufacturing method used, the next step in EV manufacturing
involves the concentration and purification of the EVs from cell culture media. Multiple
cGMP-compatible methods exist, among which precipitation, ultracentrifugation, and ultra-
filtration are most scalable, although there is no consensus on the optimal method [92,93].
The scalability and complexity of the purification method are crucial considerations. While
ultracentrifugation is applicable to small volumes of media, it is time-consuming and costly
to scale. In contrast, a method such as tangential flow filtration can be utilized to scale up
EV manufacturing by allowing continuous EV collection from the cell culture media in a
bioreactor [94].

3.2. EV Modification

The same considerations that guide pharmacokinetics of small molecules and biologic
drugs can be applied to EVs, whose inherent complexity and heterogeneity require a
unique approach. The lipid bilayer of EVs is akin to the lipid bilayer of a cell characterized
by proteins, proteoglycans, glycans, lectins, and lipids [95]. These surface molecules
contribute to cell-specific targeting and internalization, while also presenting exciting
opportunities to tailor these properties [96–99]. As an example, insertion of amphiphilic
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phosphatidylcholine into EVs significantly increased tumor cell internalization, while
blocking caveolae-dependent endocytosis can reduce EV uptake [100,101]. Salunkhe et al.
provide an excellent review of EV surface modifications for targeting purposes, and the
same approaches can be applied to ocular therapeutic EVs [102]. For example, the rod, the
cone, and the RPE can be targeted in age-related macular degeneration, as well as retinal
ganglion cells in glaucoma and RPE cells in Stargardt disease.

The contents of EVs may be similarly modified for therapeutic effect. EVs can be
loaded with adeno-associated viruses (AAVs), proteins, and small molecules either through
endogenous treatment of EV donor cells or postproduction modification [103]. One ap-
plication of EV loading was demonstrated by Li et al., who used sonication to load IL-10
into MSC-EVs, thereby extending its therapeutic effect in a mouse model of autoimmune
uveitis [104]. An alternative approach of endogenous loading also explored by the same
group utilized the transfection of MSCs with a lentivirus carrying IL-10-overexpressing
plasmids, confirming its presence in the resulting MSC-EVs and its therapeutic effect in the
mouse model, albeit without specifically measuring the IL-10 concentration in the EVs [105].
Other methods of exogenous cargo loading exist, including freeze–thawing, co-incubation,
electroporation, sonication, and extrusion [106,107]. While EVs loaded via endogenous or
exogenous loading methods demonstrate therapeutic benefits, exogenous methods may
allow for more control over the manufacturing process. Nevertheless, the use of cell lines
for endogenous protein production is extensively utilized in the biopharmaceutical industry
and can inform this approach [108]. As MSCs are already in clinical trials, one approach
could be to use the resulting GMP-grade medium for further EV isolation [109].

Loading of AAVs into EVs could be especially relevant to ocular applications given the
recent drastic increase in the study of AAVs for retinal disease [110]. With multiple ongoing
gene therapy trials for retinal diseases, EVs are poised to make incremental improvements
through targeted delivery and mediation of the inflammatory response [111]. More studies
are needed to evaluate whether EV encapsulation could enhance AAV delivery to deeper
retinal layers and alter innate and adaptive immune responses [112].

One unresolved question key to clinical applications regarding EV loading and modi-
fication remains quality control, and robust assays are needed to characterize modification.
A wide range of EV loading efficiencies has been reported depending on the encapsulation
method and the cargo, generally ranging from 0.4 to 80% [113]. In the case of encapsulation
of a therapeutic peptide for ocular use, Li et al. have shown that sonication is a method to
both encapsulate IL-10 into EVs and measure the loading efficiency of 10.35% [104]. In the
case of viral EV loading, assessment of the viral potency units should be used [114,115].
These results further reinforce the idea that EVs are a complex and heterogenous product
by definition, and the introduction of cargo and modifications further increases their het-
erogeneity. Although this heterogeneity should be characterized and tracked, functional
assessments of the loaded cargo and its ability to exert therapeutic effects in vitro and
in vivo will remain perhaps the most important assay for regulatory approval after safety.

In summary, researchers aiming to develop ocular therapeutic EVs should aim to use
manufacturing methods, modification methods, and assessments that will enable easy
transition towards regulatory compliance. Current protocols to assess EV concentration,
size distribution, and protein concentration should be continued at all points of the manu-
facturing process. Immortalization of cells through the use of oncogenes and upregulation
of human telomerase reverse transcriptase should allow for large passage numbers of
cell lines, but with the need to characterize a limit of population doubling. In the case
of endogenous or exogenous cargo loading, researchers should focus on robust quality
assurance protocols that characterize not only the presence of therapeutic cargo but also
its function through in vitro and in vivo assays. These assays should be repeated at all
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stages of the manufacturing process to ensure that any modification processes and storage
conditions do not impact efficacy. EV storage, stability, and potency over time are crucial
considerations that need further study [116,117]. EVs release cargo during freeze–thaw
cycles [118], and the introduction of cryopreservation reagents introduces added regulatory
complexity and the possibility of contamination. Finally, and perhaps most importantly,
the final EV product should be assessed from a safety standpoint, with a focus on pathogen
contamination, such as mycoplasma, viruses, bacteria, endotoxins, and fungi. A summary
of key considerations at each manufacturing step is outlined (Figure 3).
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Adherence to these guidelines, along with cGMP principles, will pave the path towards
regulatory compliance. Researchers should keep in mind that additional complexity, such
as cell line modification, EV modification, cargo loading, EV encapsulation, and prolonged
storage, all increase regulatory complexity and introduce the chance for errors. This com-
plexity must always be weighed against the desired therapeutic benefit. It is not surprising
that in initial ocular studies, unmodified EVs are derived from well-studied MSCs.

3.3. EV Dosing

It is crucial to address the question of EV dosing in order to accurately assess thera-
peutic efficacy, dynamics, and kinetics [119]. The difficulty in addressing this question lies
in the natural complexity and heterogeneity of EVs, even if isolated in a controlled environ-
ment, such as a cell culture. The majority of existing pre-clinical studies utilized in vivo
dosing based either on protein concentration or particle number, with large variability in
the EV dose per kg of body weight [119]. While dosing based on protein concentration is
a simple and quick method, it does not distinguish between EV protein, soluble proteins,
and contaminants. In rodent models of ocular disease, there is heterogeneity in the units of
measurement as well as the magnitude, with ranges from 1× to 3 × 109 particles or 4.5 to
15 µg of protein delivered in 5 µL [120].

So far, doses of 10–50 µg in 50 µL have been used in human studies with minimal
inflammatory reaction (Table 2). These amounts appear to be low relative to rodent studies,
as the human eye has a volume of 6 mL compared to 0.15 mL for a rodent, suggesting that
a human dose would need to be 40× larger (given that a rat eye has a volume of 0.15 mL
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and a human eye has a volume of ~6 mL), or at least 180 µg. A lower dose to achieve the
same efficacy may be possible in the ocular setting through EV encapsulation.

Similarly, assessing EV size and concentration does not capture the identity and
functionality of EV components and is not without variability [121]. Several promising ap-
proaches exist to overcome these challenges, including functional assays and quantification
of effector molecules carried by the EVs [122–124], but these strategies have not yet been
applied to human trials, and further development is urgently needed in this area.

Furthermore, through modification of the EV delivery medium, such as via encapsu-
lation in a thermosensitive hydrogel by Tang et al., sustained EV release can be achieved
in the ocular setting [125]. While having few ocular applications to date, encapsulation
of microparticles, such as EVs, has been extensively studied in a variety of applications,
including spinal cord injury [126], inflammatory bowel disease [127], and regenerative
medicine [128,129]. There are multiple advantages to encapsulation, including mitigation
of the immune response [130], further extending the stability of EVs’ structure and function.
3D printing [131,132] or microsphere encapsulation of EVs allows for spatiotemporal EV
release in the target area [133–135]. For example, by modifying the hydrogel degradation
properties, Li et al. demonstrated remarkable temporal control over the release of two
functional populations of EVs from hydrogel-encapsulated microspheres [136]. Building
on this knowledge, EV microsphere encapsulation has a high potential to synergize with
other EV modifications and enable less frequent dosing in the ocular setting.

3.4. Intraocular EV Delivery

Numerous pre-clinical studies have been conducted to study the safety and distri-
bution of intraocularly delivered EVs. Mathew et al. tested the fate of MSC-derived
intravitreally administered EVs using in vivo and ex vivo rat models, showing that EVs
were primarily endocytosed by the inner retina, peaking 14 days after injection and pen-
etrating no deeper than the inner nuclear layer [137]. Attempts to alter the uptake and
transport of EVs have also been investigated. Modification of the EV surface with cationic
peptides enhanced exosome transport through the cornea and the vitreous humor [138].
Pollalis et al., in contrast, showed that retina-derived EVs penetrated both the inner and the
outer nuclear layers, including inner plexiform layer, inner nuclear layer, outer plexiform
layer, and outer nuclear layer. This is in contrast to MSC-EVs, which appear to be limited to
the inner retina. Moreover, systemically administered EVs were also detected in the retina,
suggesting that they can cross the blood–retina barrier [139]. Furthermore, modification of
the EV surface with a targeting RGD peptide allowed the EVs to target cytomegalovirus
sites in the retina [139].

Several other disease systems have demonstrated potential EV utility to counteract
pathologic processes. For example, pro-angiogenic EVs can be produced from hypoxic-
preconditioned endothelial cells to stimulate angiogenesis and facilitate nerve tissue re-
pair [140], as well as recovery from focal brain ischemia in mice [141]. Similar mecha-
nisms can be targeted to modulate ischemia-induced changes after retinal artery occlu-
sion [142]. Mesenchymal-stem-cell derived EVs have been shown to reverse endothelial-to-
mesenchymal cell transition (EMT) in endometrial repair and cancer pathogenesis [143–145].
Similarly, EMT is an important and targetable mechanism in retinal, lens, and corneal patho-
logic processes [146–148]. By utilizing the capacity of tissues to produce functional EVs
in response to stressors, the potential exists to produce therapeutic EVs that could alter
inflammatory, angiogenic, and proliferative pathways [149].

Indeed, multiple trials utilizing EVs are ongoing, which can be used as templates for po-
tential EV application to ocular disease. For example, platelet-derived EVs have been shown
to be a safe wound-healing treatment [150] beneficial for COVID-19-induced respiratory
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failure [151,152], and they may be part of the therapeutic mechanism behind neurological
improvements in stroke patients treated with mesenchymal stem injections [153].

3.5. Ocular Surface Therapeutic EVs

The application of EVs to the surface of the cornea has been studied in the context
of dry eye disease, recovery from corneal injury, and corneal infection. MSC-derived EVs
have been shown to mitigate inflammation and restore homeostasis in a mouse model
of dry eye disease [154,155]. EVs derived from mouse adipose mesenchymal stem cells
could be used to promote diabetic corneal epithelial wound healing through activation of
dendritic cells [156]. EVs derived from M2 macrophages or adipose tissue stem could be
beneficial for treating dry eye disease by targeting ocular surface inflammation [157–160].
Furthermore, the EV surface can be modified to improve corneal epithelial recovery in
dry eye disease [161]. Pathogen-produced EVs, such as those produced by Aspergillus
fumigates, were found to alter immune cell function and increase the secretion of secretory
immunoglobulin A in tear fluid, which could be utilized therapeutically to enhance the
host response to fungal keratitis [162].

3.6. Intravitreal Therapeutic EVs

Therapeutic intravitreal EV application has largely centered on EVs derived from
mesenchymal stem cells (MSCs) that have been extensively characterized in terms of their
capacity for immune regulation and tissue regeneration [163]. Intravitreal injection of
MSCs was found to be neuroprotective and mediated largely by EVs taken up by retinal
neurons, ganglion cells, and microglia [164]. Therefore, MSC-derived EVs (MSC-EVs) are
a promising cell-free therapeutic alternative to cell injection. The broad target of these
interventions is the mitigation of an inflammatory microenvironment and its potential
to treat retinal degenerative diseases [165–167]. The risks of carcinogenesis and immune
rejection associated with mesenchymal stem cells are, at least in theory, mitigated by the
EVs produced by these cells. In a mouse model of retinitis pigmentosa, Zhang et al. showed
that MSC-EVs are taken up in all retinal layers after intravitreal injection, improving
photoceptor structure and function and visual acuity [168].

The benefits of MSC-EV injection have been studied in the context of several disease
processes. For example, Zhang et al. showed that MSC-EVs could be used to reduce
hyperglycemia-induced retinal inflammation [169]. Seyedrazizadeh et al. showed that
embryonic-stem-cell-derived EVs delivered via IV injection improved the survival of retina
ganglion cells in the optic nerve crush model [170].

Similarly, in a rat model of chronic ocular hypertension, intravitreal injection of MSC-
EVs reduced retinal damage, increased the number of retinal ganglion cells, and inhibited
the activation of caspase-3, reinforcing the protective potential of MSC-EVs [171]. In rat
models of glaucoma induced by microbead injection or laser photocoagulation, MSC-EVs
prevented retinal nerve fiber layer degenerative thinning [172]. MSC-EVs have also shown
potential in mitigating ischemia-reperfusion injury [173] and delaying the development of
diabetic retinopathy [174].

Like MSC-EVs, human embryonic-stem-cell-derived EVs have been shown to alleviate
retinal degeneration in RCS rats and promote retinal Muller cell retro-differentiation [175].
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Table 2. Clinical trials and case reports of therapeutic ocular EVs. Data collected from “clinicaltrials.
gov (accessed on 10 December 2024)”.

No. Trial ID Source of EVs Phase Disease Administration Status/Outcome

1 NCT06543667 Limbal stem cells I Dry eye
syndrome

0.15 mL/single eye/one
time, four times a day for

3 months
Unknown status

2 NCT03437759 Mesenchymal
stem cells I Macular holes

50 µg or 20 µg of
MSC-Exos in 20 µL of

PBS dripped into the MH
region during pars plana

vitrectomy

50 µg of MSC-Exos resulted in
anterior chamber
inflammation. No

inflammation with 20 µg of
MSC-Exos. MSC-Exos

application correlated with
anatomical closure and BCVA

improvement [176]

3 NCT04213248
Umbilical

mesenchymal
stem cells

I/II
Chronic graft
versus host

disease

UMSC-exo 10 ug/drop,
four times a day for

14 days
Unknown status

4 NCT05738629

Pluripotent
stem-cell-derived

mesenchymal
stem cell

I/II
Dry eye diseases

post refractive
surgery

Eye drops
0.125 mL/single eye/one
time, four times a day for

12 weeks

Not yet recruiting

5 NCT05413148 Mesenchymal
stem cells II/III Retinitis

pigmentosa Subtenon injection Unknown status

Despite their potential in animal studies, human studies of ocular MSC-EVs are
currently limited (Table 2). In a small pilot trial of seven patients with macular holes,
MSC-EVs were shown to improve both anatomic and visual outcomes [176].

4. Ocular EV Safety
Perhaps the biggest current obstacle to the utility of vitreous sampling for diagnostic

use is patient safety, such as the risk of endophthalmitis, intraocular inflammation, retinal
detachment, and hemorrhage [177,178].

A large meta-analysis of 105,536 intravitreal anti-vascular endothelial growth factor
(VEGF) injections between 2005 and 2009 found a rate of endophthalmitis of 0.049% [179].
In other studies during the early 2000s, the risk of endophthalmitis following intravitreal
injection ranged from 0.019 to 0.077% [180–184]. In 2018, a retrospective cohort study of
818,558 anti-VEGF intravitreal injections found a rate of endophthalmitis ranging from 0.047
to 0.100% depending on the anti-VEGF agent used [185]. Notably, while the overall risk of
endophthalmitis remains low after intravitreal injection, with similar rates between injec-
tions in the office compared to the operating room, rates of culture-positive endophthalmitis
are significantly higher in the office setting [186].

RPE tears can occur, and rare events occur at increased rates following intravitreal
anti-VEGF injections, especially in those patients with existing pigment epithelium detach-
ments [187]. Therefore, pre-existing conditions must be considered when evaluating the
risk–benefit ratio for a particular patient.

The rate of rhegmatogenous retinal detachment in patients receiving anti-VEGF in-
travitreal injections was found to be 0.013% per injection [188].

Elevation of intraocular pressure (IOP) is an often-transient event lasting a few hours
after intravitreal injections, and IOP monitoring in patients receiving injections is recom-
mended [189–191].

The risk–benefit ratio shows a reassuring trajectory, with new studies showing diag-
nostic utility, while developing technologies hold promise for safe and routine vitreous
biopsy [192–194]. Standardized protocols, consideration of each patient’s pre-existing
conditions, and individualized risk–benefit discussions will undoubtedly be part of any
future EV-based treatments.

clinicaltrials.gov
clinicaltrials.gov
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5. Conclusions
The use of intraocular EVs for diagnostic and therapeutic purposes is a promising

research direction. The field of ocular EV research could draw from the rich experience of
studying the circulating proteome in metabolic and cardiovascular heath, with the promise
of discovering novel disease-related biomarker sets as well as the development of targeted
assays [195,196]. One potential evolution in the study of ocular EVs is the isolation of cell-
specific EVs, which was shown to be possible by Pulliam et al. and Sun et al. in the study
of neuronal EVs [197–199]. Advances in the standardization of EV isolation, purification,
and characterization along with safety and toxicity studies are needed to further enable
clinical trials.

6. Future Directions
The field of diagnostic vitreous EV analysis is currently limited by sample availability,

biasing studies to those disease processes where vitreous sampling is indicated (e.g., en-
dophthalmitis) or is part of a medically necessary vitrectomy in the case of retina surgery.
The development of safe and reliable routine vitreous sampling has the capacity to shed
light on multiple other underexplored directions. Until vitreous sampling is as routine
and safe as an intravitreal injection, study sample sizes will remain limited in the number
and scope of diseases. Furthermore, numerous protocols and procedure modifications
are currently used by researchers to study vitreous EVs, and standardization is needed
to ensure the validity and translational potential of the results [200,201]. A specific focus
on the isolation of ocular EVs from small biofluid volumes is essential, and slow develop-
ment in this area likely contributes to the relatively slow pace of development of ocular
EV-based biomarkers.

Therapeutic ocular EV applications are a promising field backed by robust animal
research and experience from other fields of medicine. EV source cells could be chosen
or modified to produce EVs with desirable characteristics, taking into account cell age
and culture conditions. For example, EVs derived from IL-35-producing B-regulatory cells
not only contained IL-35 but also suppressed neuroinflammation in a mouse autoimmune
uveitis model [202]. Altering the EV cargo and surface peptides is another promising
direction, albeit with added complexity in manufacturing and regulatory guidelines. For
example, in a rat model of diabetic retinopathy, loading of small EVs with bevacizumab
reduced the frequency of intravitreal injections [203]. Loading the MSC-EVs with pig-
ment epithelium-derived factor (PEDF) inhibited endothelial cell proliferation and tube
formation in an oxygen-induced retinopathy model in mice, opening the potential for EV
cargo modification to further enhance the therapeutic effect [204]. New methods, such as
the fusion of EVs with drug-loaded liposomes, are being explored [205]. Modifications
of the EV phospholipid layer are also a promising way to alter the incorporation into
retinal layers [206]. This field could draw heavily from the well-established research on
liposomal drug formulation [207], as well as the ability to influence spatiotemporal EV
release provided by encapsulation [136].

However, several challenges to ocular therapeutic implementation of EVs remain.
First, the risks of intraocular injection, such as infection, inflammation, and elevations in
intraocular pressure, must be balanced with the potential benefits. Second, the clinical
benefit of therapeutic injection of a novel, complex clinical product must be justified
compared to existing therapies. For example, the injection of encapsulated EVs carrying
anti-VEGF may prolong the time between injections but introduce additional risks and
costs due to the complexity of the clinical product.

Development of regulatory guidance is ongoing and urgently needed for safe and
reproducible therapeutic EV application [208,209]. Researchers who aim to develop thera-
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peutic EVs should pay special attention to the latest MISEV guidelines [210], with a specific
focus on reproducible manufacturing, quantification, in vitro and in vivo functional assays,
and, ultimately, therapeutic efficacy.
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