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Abstract: The dynamic nature of human endometrial tissue presents unique challenges in
analysis. Despite extensive research into endometrial disorders such as endometriosis and
infertility, recent systematic reviews have highlighted concerning issues with the repro-
ducibility of omics studies attempting to identify biomarkers. This review examines factors
contributing to poor reproducibility in endometrial omics research. Hormonal fluctuations
in the menstrual cycle lead to widespread molecular changes in the endometrium, most
notably in gene expression profiles. In this review, we examine the variability in omics
data due to the menstrual cycle and highlight the importance of accurate menstrual cycle
dating for effective statistical modelling. The current standards of endometrial dating lack
precision and we make the case for using molecular-based modelling methods to estimate
menstrual cycle time for endometrium tissue samples. Additionally, we discuss statistical
considerations such as confounding and interaction effects, as well as the importance of
recording the detailed and accurate clinical information of patients. By addressing these
methodological challenges, we aim to establish more robust and reproducible research
practises, increasing the reliability of endometrial omics research and biomarker discovery.
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1. Introduction
Endometrial function and fertility can be affected by numerous conditions including

endometriosis, adenomyosis, and fibroids. A large component of studying these disorders
has attempted to identify biomarkers that are associated with the condition in order to un-
derstand the aetiology of the disorder and improve diagnosis and treatment. Unfortunately,
systematic reviews of endometrial studies have indicated poor reproducibility with a lack
of consensus on genes that are differentially expressed between endometrial disorders [1,2].

The complex nature of human endometrial tissue renders it particularly challenging
to study. In contrast to the relatively homeostatic state of most tissues, the endometrium
undergoes a cyclical process of rapid growth, breakdown, and shedding in response to
hormonal changes [3]. This process also involves functional changes, allowing for the
implantation of an embryo during a narrow time frame following ovulation [4]. Such
dynamism entails rapid changes at the molecular level with variations in gene expression,
protein expression, DNA methylation, and metabolites observed across different phases of
the menstrual cycle [5–7]. Consequently, accurately identifying the menstrual cycle phase
from which endometrial tissue samples are taken is critical for effective statistical modelling
due to the large role that the menstrual cycle plays in explaining observed variation.
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The aim of this review article is to examine underlying factors contributing to the
observed lack of reproducibility in endometrial omics studies, with an emphasis on tran-
scriptomics studies, and provide recommendations to mitigate some of these difficulties.
We will also discuss the accuracy of current endometrial dating methods and statistical
considerations that are relevant to endometrial analyses. Furthermore, we make the case
for using molecular methods to obtain menstrual cycle time estimates for endometrial
samples and advocate for their inclusion in statistical models.

2. Lack of Reproducibility in Omics-Based Endometrium Research
Since the advent of ‘omics’ methods, including genomics, transcriptomics, proteomics,

epigenomics, and metabolomics, the concurrent analysis of many thousands of variables
has become possible, often to aid biomarker discovery. Many omics-based studies are
’case–control’ studies with the aim of identifying potential mechanisms of action in con-
ditions such as endometriosis and recurrent implantation failure (e.g., [8–11]). These
types of studies have reported many genes to be differentially expressed, suggesting a
plethora of biomarkers and biological mechanisms that may be involved in endometrial
dysfunction [12]. Often, hundreds or thousands of candidate genes are reported to exhibit
substantial differences between cases and controls. However, meta-analyses have described
a lack of consensus, modest effect sizes, or conflicting results [1,2,13–15].

This lack of replicability in endometrial gene expression research was recently investi-
gated by Walker et al. [2], who found that studies on identifying differentially expressed
candidate genes investigating the same endometrial pathology did not form a clear consen-
sus. For example, when examining four studies comparing the mid-secretory endometrium
from endometriosis vs. control patients, a total of 1307 candidate genes were identified,
but only six genes were found to overlap between at least two studies. Similarly, when
examining seven recurrent implantation failure (RIF) studies, a total of 1651 genes were
identified between RIF patients and controls, with 41 genes overlapping between at least
two studies and only one gene overlapping between at least three studies. The situation
became even more concerning when taking into account overlapping genes that change
in the opposite direction. For the four endometriosis studies, Walker et al. [2] found nine
candidate genes that were identified as changing in opposing directions between at least
two studies and, similarly, thirty-three discordant candidate genes between the seven RIF
vs. control studies.

This situation is similar to other fields (e.g., psychology [16], cancer biology [17],
economics [18]), with each having replication crises where effect sizes tend to be dramati-
cally diminished in replication studies or fail to replicate entirely. In the past, genotype–
phenotype associations studies have also been plagued by false positives and overestimated
effects, with many researchers at the time directing attention to the problem [19–21]. Ioan-
nidis et al. [22] quantified the replication of these early, low-powered studies, finding that
only 13 of 1151 candidate loci (1.2%) survived replication using larger GWASs, with over
1000 samples for validation. The authors attributed the high number of published false
positives mainly to selective reporting biases. The situation for association studies has
improved over time with increased sample sizes, more stringent statistical thresholds, im-
proved methodology, and greater transparency. Concurrently, reviewers have also become
more aware of these critical issues, further enhancing the quality and reliability of studies
in this field. The widespread adoption of open science practises, particularly the sharing of
data and code, has also enabled the synthesis of findings through meta-analyses and the
reanalysis of past datasets with new, improved methodology.

Reasons for the lack of replicability have been extensively discussed in the existing
literature. Poor statistical methodology, questionable research practises, and the selective
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reporting of studies with positive results all play a part in the publication of false pos-
itives [23,24]. More specifically to endometrial biology, a lack of concordance between
studies may partly be explained by small sample sizes, the heterogeneity of disease and
patient classifications, and different methodologies used between studies [2]. We also
believe that poor analysis methodologies which fail to account for the unique character-
istics of endometrial tissue play an important role. Specifically, these methodologies do
not sufficiently consider the substantial degree of gene expression variability as the tissue
progresses through the menstrual cycle. The following sections will discuss this issue as
well as possible ways to mitigate the effects of this variability.

3. Gene Expression Variability in the Menstrual Cycle
The unusual biological properties of endometrial tissue present significant methodolog-

ical challenges to its study. In response to circulating hormones, the endometrium under-
goes cycles of tissue repair, estrogen-driven proliferation and angiogenesis, progesterone-
driven differentiation and secretion, and progesterone-withdrawal-driven breakdown and
shedding approximately once every 28 days over a woman’s reproductive lifetime [3]. Ad-
ditionally, this dynamic tissue has the ability to entirely change its function in the presence
of an implanted blastocyst in order to support pregnancy. These dynamic cyclical changes
are unique to the endometrium, setting it apart from other tissues.

In addition to the physical and histological changes in the endometrium, a large
proportion of genes also undergo changes in gene expression throughout the cycle [7,25–27]
(Figure 1). Notably, some genes undergo particularly rapid changes. In a study using single-
cell transcriptomic data, Wang et al. [28] were able to identify abrupt and discontinuous
transcriptomic activation in epithelial cells at the beginning of the window of implantation,
affecting genes such as PAEP, GPX3, and CXCL14. Furthermore, Teh et al. [27], using bulk
RNA sequencing, were able to identify thousands of rapidly changing genes that changed
over an approximate 24 h window at multiple time points in the cycle.
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Figure 1. Examples of genes that significantly change in the menstrual cycle. Gene expression from
RNA-seq with samples histologically dated from the menstrual (M), early proliferative (EP), mid-
proliferative (MP), late proliferative (LP), early secretory (ES), mid-secretory (MS), or late secretory
(LS) phase. Each data point represents an endometrial sample taken from a unique patient. Data are
from GEO Series GSE234354 [27].

When analysing endometrial expression data, a large proportion of variance in gene
expression can be explained by the varying time points in the menstrual cycle at which
samples are collected. Gene expression studies frequently employ principal component
analyses (PCAs) to explore and visualise data, where highly dimensional expression data
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are projected to lower dimensional space. This results in the first principal component
(PC1) capturing the most variance in the data, the second principal component (PC2)
capturing the most variance that is orthogonal to PC1, and so on. In the absence of extreme
batch effects, menstrual cycle timing typically emerges as the dominant source of variation.
The pattern is commonly captured in the first two principal components for studies with
samples across the whole cycle or in PC1 only for studies examining a small subset of the
cycle (e.g., studies with only secretory-phase samples). Figure 2 illustrates this pattern
using data from GSE234352 which contain endometrial samples from across the entire
menstrual cycle.
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Figure 2. A PCA plot of RNA-seq gene expression data from endometrial tissue samples from across
the menstrual cycle. The variance observed in the first two principal components primarily reflects
menstrual cycle-related changes in gene expression. Data are from GEO Series GSE234354 [27].

When modelling omics data such as gene expression, factors that are not of direct
relevance to a research question can be considered to be sources of unwanted variation
and may include patient age, the sequencing batch, and menstrual cycle time, for example.
These are typically included as covariates in a model because variation that is unaccounted
for, and the extra noise conferred, can reduce the statistical power to detect real effects
and potentially introduce spurious signals, including via confounding [29]. Since the cycle
stage is a major source of variation, it is critical that this information is factored in when
analysing endometrial omics data.

Concerningly, many published studies fail to account for cycle timing. In a systematic
search of published endometrial datasets, Devesa-Peiro et al. [13] found that among 35 case–
control studies, 11 studies (31%) did not record any menstrual cycle phase information
at the time of biopsy and 13 studies (37%) collected all samples in either the proliferative
or secretory phase with no further subdivision. Previous approaches to handling cycle
effects have included conducting separate sub-analyses for different cycle phases (e.g.,
proliferative, early secretory, mid-secretory), as demonstrated in Burney et al. [30], or
attempting to limit samples to a narrow time frame (e.g., the window of implantation), such
as in Lucas et al. [31], without explicitly including time as a factor in the statistical analysis.

This importance of proper cycle stage correction and the concomitant increase in
statistical power was further illustrated by Devesa-Peiro et al. [13] wherein the authors
examined 12 prior endometrial gene expression studies for which data had been deposited
in the NCBI Gene Expression Omnibus (GEO) database and that provided the menstrual
cycle stage among their metadata. The authors found that an average of 44% more genes
were identified after adjusting for cycle stage effects compared to without adjustment.
When performing differential expression analysis on endometrial data, taking menstrual
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cycle time into consideration is vital to resolve disease-specific effects from menstrual cycle
effects, enabling the more accurate identification of candidate biomarkers.

4. Histological and Hormone-Based Endometrium Dating Methods
Lack Precision

Endometrial tissue dating is the process of assigning a menstrual cycle stage or time
point for a given tissue sample. The Noyes criteria [32] for endometrial dating represent the
current gold standard and rely on the histological assessment of morphological features.

When dating endometrial tissue histologically, samples are typically classified into
cycle phases encapsulating several days (e.g., ‘menstrual’, ‘proliferative’, ‘early-secretory’,
etc.) [33]. Despite being classified in the same phase, samples can have markedly differ-
ent gene expression profiles, especially during the early–mid-secretory phase when the
endometrium enters the window of implantation [27,28]. It has been argued previously
that histological endometrial dating lacks sufficient accuracy to enable the reliable and
precise assignment of a cycle day or narrow time interval [34]. Accuracy and interobserver
agreement between pathologists can vary, as demonstrated in a study by Duggan et al. [35],
which only found a 68% agreement within one day between experienced pathologists when
dating secretory post-ovulatory day samples.

Furthermore, while inaccuracies from histological endometrial dating are not un-
common for healthy tissue, the situation is exacerbated by the fact that collected samples
may be abnormal in some way due to an underlying condition. Issues can include scant
samples with little functional tissue, the inclusion of pathological tissue such as polyps,
and the presence of endometritis [36]. A poorly developed secretory endometrium and
asynchronous glands, with tissues containing a mix of features from varying points in
the menstrual cycle, can also cause ambiguity in dating. In particular, the presence of
asynchronous endometrial glands is speculated to be relatively common in women with
recurrent reproductive failure [37], adding further difficulty to dating samples for the
purpose of researching endometrial disorders.

Hormone-based sample-dating methods have also been used to detect where a woman
is in the cycle, specifically when examining the secretory phase and fertility (e.g., [38–40]).
In particular, luteinising hormone (LH) typically peaks 10 to 12 h before ovulation with
the onset of the surge starting 35 to 44 h prior to ovulation [41]. Detecting LH in urine
is a relatively easy task via commercial products such as test strips [42]. However, there
is considerable variation in the pattern of LH surges in different women, such as the
amplitude of the maximal LH concentration relative to the baseline and the duration of
the peak from the onset [43]. Additionally, Park et al. [43] found variability in LH surge
configuration, classifying women into three broad categories: spike (a single peak observed,
41.9%), biphasic (two local maxima observed, 44.2%), and plateau (LH levels remained at
the peak for 2–3 days, 13.9%). There is also evidence to suggest that an LH surge does not
always precede ovulation, with a retrospective cohort study in women who had previously
undergone IVF treatment finding that 46.8% had premature LH surges (that did not precede
ovulation), and a subset of those (37%) exhibited multiple premature LH surges [44].

Studies may also employ patient-reported cycle time (e.g., counting the number of
days since a woman has started her cycle) as part of their methodology to date endometrial
tissue. One complication with this method is that women have considerable variability
in cycle lengths. Thus, collecting biopsies from women after the same number of days
after the onset of menstruation can result in different cycle phases being sampled. For
instance, in real-world menstrual cycle data from more than 600,000 menstrual cycles, an
estimated 95% of luteal-phase durations ranged between 10.0 and 14.8 days [45]. This
consequently affects accuracy when using LH surges to date samples, where studies often
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collect samples 6–8 days after the LH peak to target the window of implantation. Combined
with the inherent difficulties of detecting the LH peak, this method of dating is likely to be
relatively inaccurate.

5. Molecular Methods for Estimating Menstrual Cycle Time
More recently, endometrial dating approaches based on gene expression have been

proposed [26,27,46]. These molecular dating approaches have the advantage of not requir-
ing a trained pathologist and also being more reproducible and less subjective, given that
variation between the assessments of different pathologists is common [34,35,47]. A recent
development is the endest R package [27] which estimates time in the menstrual cycle
in silico using gene expression data from endometrial biopsies. To develop this method,
the authors used 266 histologically dated endometrial samples to characterise the gene
expression of all genes throughout the menstrual cycle. Through iterative refinement, the
categorical classifications were transformed into a continuous numerical scale and the
samples were reassigned to the time point that had the best explanatory power. In essence,
this method works by comparing the expression of all genes to the expected expression
throughout the menstrual cycle and minimises a loss function to return a time between
0 and 100 that best fits the observed data. To use this method, users must supply either the
RNA-seq expression or microarray expression values of their endometrium samples.

Another available computational procedure that can generate an estimate for men-
strual cycle time is EndoTime [48], where users supply their own data to train an iterative
model. Using RTq-PCR, the authors were able to use the expression levels of six genes to
build a model for luteal-phase cycle estimation on a continuous numerical scale. As this
procedure is generalisable, users have freedom to employ their preferred gene expression
technology and select relevant target genes; however, they must build their own model
using labelled training data.

With every endometrial sample assigned a numerical time value, a large proportion of
observed gene variability can be explained by this single covariate. Teh et al. [27] showed
that when cycle time was modelled as a spline across the whole menstrual cycle, 50% of
gene expression models had an R-squared value above 0.19 and 30% of models had an
R-squared value above 0.36. This molecular time also demonstrated how rapidly genes
can change during certain parts of the menstrual cycle. Figure 3 shows examples of genes
that change rapidly in the cycle and have a high proportion of variance explained by the
menstrual cycle.
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and time 100 corresponds to the conclusion of the secretory phase. Gene expression from RNA-
seq with cycle time was estimated using the endest R package [27]. Data are from GEO Series
GSE234354 [27].

6. Advantages of Molecular Dating Methods over Histological and
Hormone-Based Methods

The availability of different endometrial dating methods raises questions about the rel-
ative accuracy of each. However, this is a difficult question to answer as there is no ground
truth available. Which method is ‘best’ may also be dependent on the specific question
being asked. Histological dating is the long-established gold standard and is independent
from omics data that are analysed. Some may argue that endometrial tissue structure and
cellular organisation best characterises the menstrual stage of a tissue sample. On the
other hand, it could be asserted that the molecular phenotype is the best representation of
what characterises a tissue sample as it can more accurately reflect molecular function and
biological processes. Differences in molecular phenotyping may not be detectable under a
microscope and molecular quantification can provide more fine-grained estimates.

In the context of differential gene expression, molecular staging is typically superior
to histology dating. Capturing as much variation as possible is ideal in order to model
the data and maximise statistical power. Consider an RNA-seq endometrium study where
the disease state is the variable being studied where all samples are collected during the
secretory phase. Any variation observed that is not due to the disease state can be seen
as unwanted variation which would be ideally accounted for with covariates. If a PCA
plot shows concordance between the position and the estimated time, this indicates that
a noteworthy amount of variation can be explained by the estimated time (see Box 1 for
examples). A PCA plot showing good concordance with histology dating yet stronger
concordance with molecular dating indicates that relying solely on histology dating may
leave additional unexplained variance in downstream analyses, variance that could be
otherwise captured by using molecular dating. This pattern is likely to emerge even in
studies where all samples are collected within a narrow time frame due to how rapidly
gene expression can change in the menstrual cycle.

With molecular dating estimates being derived from omics data, the ability to have
multiple estimates from independent methods for a single endometrial sample becomes
more feasible. One advantage of having multiple dating estimates is the ability to verify
consistency. When estimates diverge significantly, discordant samples can be flagged to
identify underlying abnormalities such as an asynchronous endometrium or potential
sample mix-ups.

Box 1. Comparing provided menstrual cycle information to molecular dating in public endome-
trial datasets.

NCBI’s Gene Expression Omnibus (GEO) database is a public repository containing many thousands
of endometrium biopsy samples from transcriptomics studies. When depositing data into GEO,
authors typically include sample-associated metadata such as age, BMI, disease status, and some
measure of cycle stage. With known issues surrounding accuracy, it follows to question how
accurate the cycle stage metadata are for these public datasets. While estimating true accuracy is not
possible due to the absence of definitive truth, we can compare the study-provided cycle time with
an estimate of the cycle time based on gene expression data [27] and observe concordance across
different studies and measures of menstrual cycle time. Table 1 lists nine RNA-seq studies from
the GEO database that examined eutopic endometrial tissue and Figure 4 illustrates differences
between the provided cycle dating and cycle time es-timated by molecular dating for these studies,
with the molecular dating showing greater con-cordance in sample positioning in the PCA space.
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Table 1. Nine RNA-seq studies from the GEO database that examined eutopic endometrial tissue.
The majority of studies provided the LH+ day in their sample metadata, while two studies did not
provide cycle stage information.

GEO Series Number of Samples Cycle Dating
Provided Reference

GSE106602 70 LH+ day (2, 7, 8) [49]
GSE98386 40 LH+ day (2, 8) [50]
GSE65099 20 LH+ day (6–10) [31]
GSE102131 20 LH+ day (6–10) N/A
GSE185392 20 LH+ day (6–9) [9]
GSE180485 20 LH+ day (7–9) [48]

GSE132711 20 Proliferative or
mid-secretory [51]

GSE172381 40 None [52]
GSE134056 38 None [53]
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Figure 4. PCA plots from nine RNA-seq studies from the GEO database. Count data were obtained
from the GREIN (GEO RNA-seq Experiments Interactive Navigator) platform [54], and molecular
model time was obtained using the endest R package [27]. Samples were plotted using the study-
provided cycle time (Figure 4ai,bi,ci,di,ei,fi,gi) and molecular time (Figure 4aii,bii,cii,dii,eii,fii,gii).
Two studies had no provided cycle time in their sample metadata and were plotted using molecular
time only (Figure 4h,i). The PCA plots reveal that the variance explained by the first two principal
components generally has a stronger concordance with the molecular model timing compared to
histological or LH+ dating.

7. Other Statistical Considerations for Menstrual Cycle Effects
7.1. Sample Size and Chance Confounding

Endometrial samples are typically obtained via invasive biopsy procedures, which can
make sample collection difficult, leading to studies with small sample sizes. These reduced
sample sizes diminish the statistical power of studies; by definition, limiting the potential
to detect differentially expressed genes with high confidence. Many case–control studies
attempt to limit sample collection to a specific phase (e.g., [55–57]). Chance confounding,
where covariates are imbalanced due to chance, is more likely to occur with small sample
sizes [58]. Severe imbalances, such as one group containing all earlier samples and the
other group containing all later samples, can result in a differential expression analysis
between groups mistakenly identifying genes that change due to normal menstrual cycle
effects rather than the condition being studied (Figure 5).
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into two groups to perform differential gene expression and three different combinations of com-
parisons are shown. p-value histograms are useful for diagnosing issues [59]. Under the null, we
expect a flat distribution, as seen in hypothetical experiment 2. The composition of different samples
for each experimental group can determine the distribution of p-values, e.g., conservative, flat, and
anti-conservative distributions. Severe imbalances such as in hypothetical experiment 1 can result in
an anti-conservative p-value distribution which can result in identifying false positive effects that are
due to cycle effects. In a real experiment, it would not be possible to distinguish if the effect is due to
the confounding variable or the effect of interest.

Overestimated effect sizes are also more common with small sample sizes due to higher
amounts of sampling variability which negatively impacts replicability. Early microarray
studies typically had very few patients (e.g., [8,30,57]), and while some studies have been
cited hundreds of times, there is still no clear consensus for a set of validated biomarkers
that can distinguish between endometrial conditions [2,14]. Small sample sizes, combined
with the previously discussed complication of large amounts of gene variation due to
cycle stage effects, lead to an increased susceptibility to mistaking noise for signals and
publishing flawed results.

7.2. Confounding Variables

Many omics studies are observational case–control studies and employ some form
of multivariate regression analysis. A critical step in statistical modelling is the careful
selection of which biological factors to include as covariates, commonly referred to as
‘controlling for a variable’. These may include factors such as patient age, weight, medi-
cations, disease comorbidities, and the time in the menstrual cycle when the biopsy was
taken. Ideally, the decision to include or exclude a variable in a statistical analysis involves
considering the causal pathways that generate gene expression observations related to the
endometrial disorder and therefore requires domain expertise. Care must be taken to not
‘overadjust’ when including covariates in models as this can reduce the effects of factors
of interest or introduce bias [60]. Frameworks such as Pearl’s back-door criterion [61] can
be employed to evaluate which variables to use as controls, while guidelines containing
numerous examples can be found in resources such as those developed by Cinelli et al. [62].

7.3. Interaction Effects

In addition to confounding effects, interaction effects between the disorder being
studied and other variables should be considered. Interaction effects refer to situations
where the effects of two variables are not independent from each other and have varying
effects depending on their combination. For instance, an endometrial disorder may have
an interaction effect with the menstrual cycle stage, leading to different gene expression
changes in different cycle phases. For example, Burney et al. [30] identified the dysregulated
gene expression of genes involved in cellular proliferation during the early secretory phase
in the endometrium of women with endometriosis which was not seen in other phases of
the menstrual cycle. Interaction effects can be addressed by including interaction terms in
the statistical model or stratifying the samples by the menstrual cycle stage and disease
state and performing contrasts between the relevant groups.

7.4. Discrete vs. Continuous Cycle Time Modelling

As discussed previously, menstrual cycle data are often recorded as a cycle phase
when estimated histologically, which spans several ‘cycle days’, during which many tissue
and gene expression changes can occur. This lack of resolution is suboptimal. Time within
the menstrual cycle is continuous, and as such, discretising the variable into blocks results
in a loss of information that can have adverse effects on statistical power [63]. For example,
a sample in the proliferative stage might be closer to other early-secretory-stage samples
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than other proliferative stage samples but still be classified as proliferative. Examining a
PCA plot of the data and identifying outliers can mitigate some of this effect; however, it
can also introduce researcher degrees of freedom (where certain decisions can be made to
bias towards more favourable results) in classifying which samples belong in which cycle
group. On the other hand, one advantage of recording menstrual cycle time as a continuous
numerical value allows it to be used in regression models as a numerical variable, with the
option of modelling time functions as non-linear, such as by using polynomial or spline
functions (see Box 2 for implementation examples). Since gene changes throughout the
menstrual cycle are conspicuously non-linear (Figure 3), these methods have considerable
utility in explaining observed variance, especially when modelling longer timescales across
different parts of the cycle.

Lastly, the amount of variation that is observed for a particular gene may not be
constant throughout the menstrual cycle; there may be points in the cycle where expression
varies greatly across a cohort. Such behaviour violates homoskedasticity assumptions for
linear methods such as t-tests and ANOVAs and should be kept in mind if working with
gene expression data across the whole menstrual cycle.

Box 2. Accounting for cycle effects in linear models.

Differential expression analysis is commonly performed using the R programming language [64]
using packages such as Limma [65], edgeR [66], and DESeq2 [67]. These methods all require a
model formula to set up the statistical model. Here, we create a design matrix which is the approach
for model specification in Limma and edgeR. In these examples, ‘endo’ is a binary categorical
variable that contains the disease state (case or control) for endometriosis and ‘age’ is a numerical
variable.
If ‘cycle_stage’ is a categorical variable (which includes phases such as proliferative, early
secretory, and mid-secretory), we can simply include it in the model formula: design <-
model.matrix(~endo + age + cycle_stage)

Where ‘cycle_time’ is a numeric variable, we can simply include it in the model if we want to model
the variable as a linear effect. Alternatively, we can use the splines R package to model cycle time as
a curve. The ns() function can generate a B-spline basis matrix for use in the design matrix, where
‘df’ is the degree of freedom to control the complexity of the curve:
design <- model.matrix(~endo + age + ns(cycle_time, df))

Polynomial modelling can also be performed using the base poly() function where ‘degree’
determines the degree of the polynomial:
design <- model.matrix(~endo + age + poly(cycle_time, degree))

Cyclic splines can be used if endometrial samples span the whole menstrual cycle as cyclic splines
can account for the biological continuity between the late secretory phase and the beginning of the
menstrual phase. The cSplineDes() function from the mgcv R package (≥v1.7) [68] can produce a
cyclic B-spline basis that allows for this modelling. Similarly to specifying the degrees of freedom,
we supply the location of the spline knots as a vector. We must also remove a column from the basis
to remove linear dependence in the model:
X <- cSplineDes(cycle_time, knots)
design <- model.matrix(~endo + age + X[,-ncol(X)])

Detailed guidance on spline modelling and parameter specifications can be found in the documen-
tation of the respective R packages.

8. Replicability Issues in DGE Analysis
The type of data produced by genomic studies is particularly prone to problems

in statistical analysis that exacerbate irreproducibility. Analyses of datasets with high
dimensionality, where large numbers of potential response and explanatory variables are
measured, are prone to becoming ‘fishing expeditions’. Often, thousands of hypotheses are
tested in the hope of finding a significant result, without necessarily considering the number
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of different statistical tests that have been applied along the way or conducting appropriate
multiple-testing adjustment. This can be particularly challenging for endometrial studies
in which tissue collection occurs often from multiple different menstrual cycle stages that
are dissimilar enough to justify separate sub-analyses rather than one combined analysis
(e.g., [30,69]). When performed correctly, statistical methods such as multiple hypothesis
testing correction can mitigate reporting incorrect results by reducing false positive rates.
However, multiple comparisons are not always as simple as counting the number of
statistical tests that are performed and adjusting for this.

Gelman and Loken [70] describe ‘The garden of forking paths’ where many informal,
post hoc decisions made in the data collection and analysis process are performed after ob-
serving data and can cause inadvertent problems for replicability. For example, a researcher
could choose to perform a different statistical test based on initial observations, exclude spe-
cific data points, include different variables for a regression, or decide to look for interaction
effects when main effects do not appear significant. This leads to unintentional effects that
resemble ‘p-hacking’, where many statistical tests are performed and only significant results
are reported. One way to mitigate this is to preregister hypotheses and analysis methods
before observing the data, which would reduce post hoc decisions. Preregistration has
been empirically shown to increase the number of null results, with Kaplan and Irvin [71]
observing that the number of positive results from 55 large RCTs decreased from 57% to 8%
under the requirement for preregistration and transparency measures.

The current paradigm of Null Hypothesis Significance testing (NHST) under the
frequentist framework can be seen as another factor contributing to poor reproducibility
and has been often criticised [72–74]. NHST is the default method of learning statistics
in undergraduate statistical education, the practice of which typically consists of setting
up a null hypothesis, calculating a p-value with a statistical test, and then rejecting the
null hypothesis if the p-value is below a certain threshold, often p < 0.05. One common
charge levelled at NHST is that it asks the wrong question, leading to misinterpretation [74].
Researchers are often interested in the probability of their hypothesis being true given
the data, rather than the probability of observing the data (or more extreme) under the
null hypothesis. Another important point is that p-values also do not convey effect sizes.
An emphasis on searching for statistical significance (“stargazing”) can lose sight of the
biological consequence attached to statistically significant findings. With very large datasets,
NHST allows minuscule effect sizes to become detectable, perhaps with extremely low
p-values, even if they are biologically inconsequential [74]. Moreover, biological systems
are complex with often a large number of interacting variables; thus, the presence of
confounding variables is likely. Simulations by Bruns and Ioannidis [75] have demonstrated
that uncorrected confounding can lead to false positive results that are indistinguishable
from true effects.

Many researchers have advocated using Bayesian methods as an alternative to NHST,
owing to Bayesian methods having numerous advantages [73,74,76]. A key feature of the
Bayesian framework is the incorporation of existing knowledge into statistical models
through the specification of priors, which can lead to more accurate inferences with limited
or noisy data. Bayesian methods also result in a probability distribution of parameters,
offering a more accurate description of the uncertainty around a measurement. Additionally,
hierarchical models can be constructed to model complex scenarios and handle missing data
and measurement uncertainty through probabilistic modelling. The growing accessibility
of powerful computing resources and the development of probabilistic programming
languages such as Stan [77] have facilitated the adoption of these statistical models that use
simulation-based methods.
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Many of the challenges previously mentioned impact the replicability of endometrial
omics analysis, but there also exists a widespread bias in DGE publications as a whole. Päll
et al. [78] examined differential analysis from RNA-seq data in the NCBI GEO database,
estimating a 59% upper limit of reproducibility (i.e., obtaining identical results when
using the original workflow and downloaded data), with more recent studies being more
reproducible. Analysis of p-value distributions from each experiment revealed that only 23%
of experiments had a theoretically expected p-value distribution, again with an improving
trend over time. The mean proportion of null effects was also shown to increase over time,
indicating that genes were less likely to be identified as differentially expressed between
conditions in more recent experiments. Analysis software used in respective experiments
was heavily associated with both p-value distribution and proportion null effects, implying
that part of the bias was driven by the chosen methodology.

9. Pathologies, Comorbidities, and Accurate Diagnoses
Case–control studies are commonly employed in omics-based studies, grouping all

patients with the pathology in one group and all controls in the other. Classifying patients
into analysis groups is a critical part of research and is made difficult by the heterogeneity
of endometrial disorders. Placing all women with the disorder into a single, homogeneous
‘case’ group may not be optimal for analysis. For example, the symptoms of women with
endometriosis are highly variable, with 30–50% of endometriosis patients being infertile,
40–50% experiencing chronic pelvic pain, and 20–25% being asymptomatic [79]. This multi-
factorial presentation is likely to be reflected in molecular phenotyping, wherein various
pathways are differentially activated in the presence of different symptoms, yielding con-
siderable variability. The application of simple case and control groups without accounting
for sub-types would be expected to decrease the statistical power to resolve differential
expression signals.

Severe cases of endometriosis have been shown to have greater ‘genetic loading’ in
GWAS analyses [80,81], as indicated by an increased number of SNPs conferring higher
risk. After excluding mild endometriosis samples, Nyholt et al. [80] were able to discover
additional SNPs associated with endometriosis, despite a smaller sample size. Infertility-
related disorders may also have diverse aetiologies. Recurrent implantation failure, for
example, is hypothesised to have two possible endometrial causes: the displacement of
the window of implantation and disruption of the window due to pathologies, both of
which could coexist in the same patient [82]. These two aetiologies are likely to confer
different gene signatures and pathway involvement. As discussed above for endometriosis,
the simple grouping of all infertile samples to form a homogeneous collection regardless
of presentation would be expected to reduce the likelihood of identifying differentially
expressed genes; there are likely to be subtypes (e.g., the displacement of the window of
implantation) of subtypes (e.g., infertile).

There exists a trade-off between defining homogeneous disease sub-groups and sample
size because the class (sub-group) sample size is reduced with stricter criteria for patient
inclusion. While smaller-sized classes generally tend to reduce statistical power, in many
cases, more homogenous classes would be expected to more than offset the sample-size
effect by reducing variability within groups, thereby allowing biological signals specific to
a particular severity or subtype of disease to be revealed; essentially, class-specific signals
would become more ‘focused’ [83].

Comorbidities in endometrial disorders are common and represent another impor-
tant consideration when performing experimental design and analyses. The presence of
endometriosis has been associated with an increased risk of other gynecological conditions
such as adenomyosis [84], uterine fibroids [85] and ovarian cancers [86]. Non-gynecological



Int. J. Mol. Sci. 2025, 26, 857 14 of 19

comorbidities such as interstitial cystitis and irritable bowel syndrome further compli-
cate matters as they have overlapping pain symptoms caused by shared mechanistic
features [87]. These comorbidities can confer statistically confounding effects and, as such,
it is vital that they are recorded.

Many endometrial pathologies share overlapping symptoms, such as pelvic pain,
abnormal uterine bleeding, and infertility [88], which, combined with high symptom het-
erogeneity, can contribute to difficulties in diagnosis. A retrospective study by Orlov and
Jokubikiene [89] found that half of women displaying endometriosis-associated symp-
toms had no abnormal transvaginal ultrasound findings. The definitive diagnosis of
endometriosis requires surgical and histological visualisation and, on average, diagnosis
takes approximately 7 years from the onset of symptoms [90,91]. Similarly, the average
time to diagnosis for symptomatic uterine fibroids is approximately 3.6 years [92].

Comorbidities can confound diagnosis, making causal attribution to symptoms dif-
ficult. Even in the case of a single observed pathology, a diagnostician cannot ascribe a
symptom to that pathology with high confidence. Diagnoses can be missed and pathologies
may coexist with symptoms without being responsible for them. To further illustrate the
complexity around the diagnosis of endometrial conditions, it has been observed that in
over a third of cases of chronic pelvic pain symptoms reappear or persist after diagnosis
and treatment [93]. This is also reflected in the non-response rate of endometriosis to
laparoscopic surgery, which ranges from 20% to 38% [94,95].

All bioinformatic analyses are downstream from biological classification. If diagnosis
and classification are prone to error, results will be noisy and confer diminished statistical
power. Perhaps a better approach to analysis might be to focus on symptoms instead of
pathologies. The reason for this is twofold. Firstly, diagnosis is difficult, and symptom
classification may lead to cleaner, more homogenous groups. Secondly, many women with
pathologies have normal endometrial function, despite the presence of pathologies, and
the symptoms, such as pain and infertility, are of most concern to patients. Practically,
disorders such as endometriosis and fibroids do not require treatment in asymptomatic
cases; thus, focusing on symptoms may better target clinical interventions and efforts
towards discovering future treatments.

10. Conclusions
The current state of endometrial omics research suffers from a lack of replicability.

A major reason for this is a failure of properly accounting for the menstrual cycle being
a major source of variation. It is critical that a measure of the menstrual cycle stage is
included in statistical models when modelling endometrial omics data to mitigate possible
confounding and increase statistical power to find real effects. The current standards of
endometrial omics methodology are inadequate and there is no justification for omitting
menstrual cycle time from future analyses.

Histological and hormone-based methods are commonly used for endometrial dating;
however, we recommend using molecular methods (such as the method implemented in
the endest R package [27]) for estimating cycle time in which gene expression data from
endometrial tissue are used to obtain an estimate. Molecular methods typically explain
a higher proportion of observed variance and have the added advantage of generating
continuous variable values, allowing cycle time to be modelled as non-linear in regression
models (e.g., using splines or polynomial functions).

To improve the replicability of research findings, good statistical analysis is not enough;
good data collection is also needed. While clean case–control groups are ideal, such
groups are not always feasible. Consequently, it is important to record any phenotypic
observation that may impact gene expression such as the presence of endometritis and other
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abnormalities. To further enhance replicability, pre-registration is encouraged. Decisions
such as cycle stage sub-analyses and defining breakpoints when dichotomising variables
ought to be decided beforehand. Finally, conducting validation studies with new samples
is essential to reduce the propagation of inaccurate research findings.

While endometrial tissues present unique challenges with regard to experimental
design and bioinformatic analysis, steps can be taken to minimise publishing erroneous
conclusions. By considering these factors, researchers can enhance the reproducibility and
validity of their findings.
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