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Abstract: The present study aims to create spiro-N-(4-sulfamoyl-phenyl)-1,3,4-thiadiazole-
2-carboxamide derivatives with anticancer activities. The in vitro anticancer evaluation
showed that only the novel spiro-acenaphthylene tethered-[1,3,4]-thiadiazole (compound
1) exhibited significant anticancer efficacy as a selective inhibitor of tumor-associated iso-
forms of carbonic anhydrase. Compound 1 demonstrated considerable efficacy against the
renal RXF393, colon HT29, and melanoma LOX IMVI cancer cell lines, with IC50 values
of 7.01 ± 0.39, 24.3 ± 1.29, and 9.55 ± 0.51 µM, respectively. In comparison, doxorubicin
exhibited IC50 values of 13.54 ± 0.82, 13.50 ± 0.71, and 6.08 ± 0.32 µM for the correspond-
ing cell lines. Importantly, compound 1 exhibited lower toxicity to the normal WI 38 cell
line than doxorubicin, with IC50 values of 46.20 ± 2.59 and 18.13 ± 0.93 µM, respectively,
indicating greater selectivity of the target compound compared to the standard anticancer
agent doxorubicin. Also, mechanistic experiments demonstrated that compound 1 ex-
hibits inhibitory activity against human carbonic anhydrase hCA IX and XII, with IC50

values of 0.477 ± 0.03 and 1.933 ± 0.11 µM, respectively, indicating enhanced selectivity
for cancer-associated isoforms over cytosolic isoforms hCA I and II, with IC50 values of
7.353 ± 0.36 and 12.560 ± 0.74 µM, respectively. Cell cycle studies revealed that compound
1 caused G1 phase arrest in RXF393 cells, and apoptosis experiments verified a substantial
induction of apoptosis with significant levels of early and late apoptosis, as well as necrosis
(11.69%, 19.78%, and 3.66%, respectively), comparable to those induced by the conventional
cytotoxic agent doxorubicin, at 9.91%, 23.37%, and 6.16%, respectively. Molecular docking
experiments confirmed the strong binding affinity of compound 1 to the active sites of hCA
IX and XII, highlighting significant interactions with zinc-binding groups and hydrophobic
residues. These findings underscore the target compound’s potential as a viable anticancer
agent via targeting CA.
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1. Introduction
Cancer presents a substantial global health problem, with millions of new cases

diagnosed each year and it being one of the leading causes of death worldwide [1]. The
condition can appear in various ways, impacting almost any organ or tissue, and presents
a substantial worldwide health problem [2]. A combination of genetic predisposition,
environmental factors, and lifestyle choices frequently influences cancer development [3].
The reduction in oxygen levels in the microenvironment of solid cancer results in a condition
called hypoxia [4,5]. To survive and flourish in these circumstances, cancer cells utilize
glycolysis and enhance the production of particular enzymes to decrease the external
pH [6–8].

hCA IX isoform, among these enzymes, is increased by tumor cells in response to
hypoxia and is a well-established enzyme in renal cell carcinoma [9,10]. This helps the
cells adapt to the acidic conditions caused by low oxygen levels, ultimately promoting
the growth of cancer cells [11–14]. In contrast, different solid tumors such as breast, lung,
and cervical cancers highly stimulate hCA XII [15,16]. These enzymes use zinc as a crucial
co-factor to regulate the external pH by facilitating the reversible conversion between
bicarbonate ions and carbon dioxide [15,16]. At the molecular level, all isoforms of human
carbonic anhydrase have a structurally conserved active site. This active site is characterized
by a cone-shaped pocket that contains a zinc ion coordinated with three specific amino
acid residues (His 94, His 96, and His 119) and water [17,18]. This active site’s outer edge
comprises hydrophilic or hydrophobic regions [19]. These regions differ in their degree
of hydrophobicity and polarity among different hCA isoforms [20,21]. So, hCA inhibitors
(CAIs) have a zinc-binding group (ZBG) that is needed to connect with the zinc ion in
the active site [22,23]. Sulfonamide-containing compounds work very well as hCAIs, but
they do not pick and choose which hCA isoforms to target, which can cause unwanted
side effects like paresthesia, fatigue, and decreased libido [24–26]. Because the active sites
of different CA isoforms are very similar, it has been hard to make an inhibitor that only
targets certain diseases [27,28].

To tackle this selectivity problem, the “tail approach” has emerged as a promising
strategy [29,30]. This method entails adding different substituted phenyl or heterocyclic
structures to the aromatic sulfonamide ring [31]. These structures interact with specific
hydrophilic/hydrophobic residues in the outer regions of the isoform’s active site [32].
The tail approach was used to make selective hCAIs, and this led to the discovery of
SLC-0111, which is the first selective CAI for the hCA IX isoform and is currently in
clinical trial phases I and II. This compound shows promise in treating patients with
advanced solid tumors, as shown in Figure 1 [33,34]. Multiple analogs of SLC-0111 have
been created by substituting its 4-fluorophenyl tail with various chemical frameworks [35].
Compound I was synthesized by substituting the 4-fluorophenyl group of SLC-0111 with
5-(4-fluorophenyl) thiazole [36]. Compounds II and III were synthesized by substituting
the tail of SLC-0111 with benzothiazole [36] and a substituted 1,3,5-triazine moiety [25],
respectively, as shown in Figure 1.

Inspired by these findings, this inquiry uncovers the development of a novel chemical
designed to replicate the structure of SLC-0111. Our research aims to identify distinctive and
precise inhibitors of tumor-associated carbonic anhydrases, as seen in Figure 2. Firstly, we
substituted the para-fluorophenyl tail in SLC-0111 with a spiro acenaphthylene moiety in
compound 1, which led to the creation of a newly synthesized acenaphthylene-linked [1,3,4]
thiadiazol-based counterpart of SLC-0111.
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Figure 2. Designing a novel carbonic anhydrase inhibitor.

2. Result and Discussion
2.1. Chemistry

The key intermediate compound 2-hydrazinyl-N-(4-sulfamoylphenyl)-2-thioxoacetamide
was synthesized by the reaction of 2-chloro-N-sulfamoylphenyl acetamide with morpholine
and sulfur, followed by a reaction with hydrazine hydrate as reported in Scheme 1 [37].
This intermediate compound was confirmed by IR and NMR spectroscopic techniques
(Figures S1 and S2).
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Scheme 1. Synthesis of the intermediate compound: 2-hydrazinyl-N-(4-sulfamoylphenyl)-2-
thioxoacetamide.

Compound 1, a novel spiro-heterocycle, was synthesized by a reaction of equimolar
amounts of 2-hydrazinyl-N-(4-sulfamoylphenyl)-2-thioxoacetamide (compound 1) and
acenaphthylene-1,2-dione under a green condition in ethanol at room temperature with
a good yield (87%) as illustrated in Scheme 2. Other reported compounds 2–8 were
synthesized as reported and confirmed by their melting points [37]. A 1H NMR spectrum
of the novel compound 1 showed three singlets corresponding to 2(NH) in addition to NH2.
Also, the 1H NMR spectrum showed ten aromatic protons at the expected chemical shifts
(Figure S3). 13CNMR showed the appearance of two carbonyls at 159.0 and 182.0 ppm
corresponding to the amidic and the ketonic carbon. Also, spiro carbon at 86.2 ppm and
other aromatic carbons appear at the expected chemical shift (Figure S4). Also, the mass
spectrometry confirms the structure (Figure S5).

2.2. Biology
2.2.1. One-Dose Anticancer Screening of the Target Compound 1 (NCI, Bethesda,
MD, USA)

Following the anticancer screening guidelines controlled by the National Cancer
Institute (NCI), USA drug evaluation section [38], all the synthesized compounds were
examined against 60 cancer cell lines at a single concentration of 10 µM. The results of the
NCI anticancer screening indicated that only compound 1 exhibited significant anticancer
activity among the eight compounds tested as shown in Figure 3 (results are shown in
detail in the Supplementary Data Figures S6–S13).

The results in Figures 3 and 4 demonstrate the potent anticancer activity of compound
1 against the melanoma LOX IMVI, colon HT29, and renal RXF393 cell lines with growth
inhibition percentages of 89.47, 93.12, and 100, respectively. Good activity was observed
against leukemic cancer cell lines MOLT-4, CCRF-CEM, and K-562 with growth inhibition
percentages of 80.51, 85.30, and 84.48, respectively. Also, the target compound showed
moderate anticancer activities against the leukemic HL-60, colon HCT-116, CNS U251,
melanoma MALME-3M, ovarian IGROVE 1, and breast MCF-7 cancer cell lines with growth
inhibition percent over 68%. The notable anticancer efficacy of compound 1, particularly
against the renal cancer cell line RXF393, prompts us to conduct a more in-depth mechanistic
investigation of this molecule, encompassing cell cycle analysis, apoptosis assessment, and
carbonic anhydrase inhibition assays.

2.2.2. Cell Viability Assay of the Target Compound Against Melanoma LOX IMVI, Colon
HT29, and Renal RXF393 Cancer Cell Lines in Addition to Normal Cell Line WI 38

Based on the results above, the target compound 1 was selected for IC50 determination
against the most sensitive cell lines—the melanoma LOX IMVI colon HT29, and renal
RXF393 cell lines in addition to normal cell line WI 38 compared to doxorubicin as a
reference compound using the MTT assay [2] (Figure 5, Tables S1–S4). Screening results
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showed potent anticancer activity of compound 1 against RXF393 with an IC50 value of
7.01 ± 0.39 µM, which is nearly double the potency of doxorubicin with an IC50 value of
13.54 ± 0.82 µM. Also, the compound 1 has comparable activity to doxorubicin against
LOX IMVI with IC50 values of 9.55 ± 0.51 and 6.08 ± 0.32 µM, respectively. Moreover,
compound 1 showed moderate anticancer activity against the colon HT29 cell line with an
IC50 value of 24.3 ± 1.29 µM, with lower potency than the reference compound doxorubicin,
which has an IC50 value of 13.50 ± 0.71 µM (Figure 4). Also, compound 1 and the cytotoxic
doxorubicin were investigated against the normal cell line WI 38 to demonstrate their
selective action against the cancer cell line (Figure 5, Table S3). The results indicated that
the target compound possesses a safety margin greater than the cytotoxic drug doxorubicin,
with IC50 values of 46.20 ± 2.59 and 18.13 ± 0.93 µM, respectively. These results mean that
compound 1 is more selective than the cytotoxic doxorubicin toward the cancer cell line
with low harm toward the normal human cell line, which is crucial for developing new
anticancer agents.
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2.2.3. Evaluation of Carbonic Anhydrase I, II, IV, and VII Inhibition

Human Carbonic anhydrase (hCA) inhibition assays were conducted on the newly
synthesized target compound and the standard CA inhibitor, acetazolamide, using an
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in vitro CA inhibitory assay. The aim was to evaluate their effectiveness against cancer-
associated isoforms, hCA IX and hCA XII, as well as the cytosolic isoforms hCA I and hCA
II, in order to better understand the potential anticancer mechanism of compound 1. The
carbonic anhydrase assay results highlight significant differences in the IC50 values and
selectivity ratios of compound 1 and acetazolamide for the tumor-associated isoforms hCA
IX and hCA XII. Compound 1 showed moderate potency against hCA IX (IC50 = 0.477 µM)
and hCA XII (IC50 = 1.933 µM), with markedly high selectivity ratios for hCA IX, includ-
ing hCA I/hCA IX = 15.41 and hCA II/hCA IX = 26.33, indicating a strong preference
for inhibiting hCA IX over other isoforms (Table 1). This selectivity suggests potential
utility in targeting tumor-associated CAs while sparing non-tumor isoforms. In contrast,
acetazolamide demonstrates much lower IC50 values for both tumor-associated isoforms
(hCA IX = 0.105 µM and hCA XII = 0.029 µM), reflecting higher potency but significantly
lower selectivity ratios, with hCA I/hCA IX = 3.49 and hCA II/hCA IX = 1.56 (Table 2 and
Tables S4–S8). While acetazolamide is broadly effective, its lack of selectivity may result
in off-target effects. Compound 1’s higher selectivity for hCA IX and hCA XII suggests a
more focused therapeutic profile, particularly for conditions such as cancer, where these
isoforms are upregulated.

Table 1. Inhibitory activity of the target compound 1 on hCA isoforms I, II, IX, and XII compared
with acetazolamide, IC50 (µM).

Compound
hCA Inhibition IC50 (µM) ± SD Selectivity Ratio

hCA I hCA II hCA IX hCA XII hCA I/
hCA IX

hCA II/
hCA IX

hCA I/
hCA XII

hCA II/
hCA XII

Compound 1 7.353 ± 0.36 12.56 ± 0.74 0.477 ± 0.03 1.933 ± 0.11 15.41 26.33 3.80 6.50
Acetazolamide 0.367 ± 0.02 0.153 ± 0.01 0.105 ± 0.01 0.029 ± 0.001 3.49 1.56 12.56 5.27

Table 2. DNA content of the cell cycle of renal RXF393 cancer cell line after treatment with DMSO as
a negative control, IC50 of doxorubicin as a positive control, and IC50 of the target compound 1 and
their effect on the percentage of accumulation of cells at cell cycle different phases.

Compound
DNA Content

%G0-G1 %S %G2/M

Compound 1/RXF393 63.02 22.31 14.67
Doxorubicin/RXF393 72.18 16.81 11.01

DMSO/RXF393 51.95 28.54 19.51

2.2.4. Cell Cycle Analysis

Cell cycle regulatory systems are primarily responsible for regulating cell proliferation.
In tumor cells, cell cycle arrest can decrease cell proliferation [39]. The impact of the target
compound on cell cycle progression in the RXF393 cancer cell line was evaluated against
doxorubicin as a positive control and untreated RXF393 as a negative control, utilizing
a flow cytometry assay. Results showed that the percentage of cells in the G0-G1 phase
increased from 51.95 to 63.02 when the renal RXF393 cancer cell line was treated with the
target compound 1 at its previously measured IC50, suggesting the tendency of the target
compound 1 to induce cell cycle arrest at the G1 phase (Table 2 and Figures 6 and 7).
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2.2.5. Apoptosis Assay

Programmed cell death, sometimes called “cellular suicide” or apoptosis, removes
superfluous cells from healthy cells. Too little apoptosis, which can lead to malignant cells,
is a disease-defining feature of cancer [40]. Apoptosis is a complicated process that involves
numerous Routes. Apoptotic pathway abnormalities may not only encourage malignancy
metamorphosis but it can also make tumor chemotherapy less effective [40]. The apoptotic
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capacity of the target compound 1 was examined to see whether its anticancer efficacy
against the renal RXF393 cell line correlates with an enhancement of apoptosis and necrosis.
The annexin assay analysis indicated that the treatment of the renal RXF393 cell line with
the IC50 concentration of the target compound 1 resulted in significant levels of early and
late apoptosis, as well as necrosis (11.69%, 19.78%, and 3.66%, respectively) comparable
to those induced by the conventional cytotoxic agent doxorubicin, at 12.64%, 17.36%, and
9.02%, respectively (Table 3 and Figure 8). The apoptosis assay results explain that the
target compound’s potent anticancer activity against the RXF393 cancer cell line is related
to the induction of apoptosis in addition to CA inhibition.

Table 3. The apoptosis and necrosis assay of renal RXF393 cancer cell treated with IC50 concentration
of the target compound 1 and doxorubicin, against positive control untreated cell as well as a negative
control (RXF393-DMSO).

Compound
Apoptosis

Necrosis
Total Early Late

Compound 1/RXF393 35.13 11.69 19.78 3.66
Doxorubicin/RXF393 39.44 12.64 17.36 9.02

DMSO/RXF393 1.76 0.42 0.18 1.16
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markers by qPCR. The apoptotic markers, BAX, caspases (3, 8, and 9), P53, and Bcl-2 rela-
tive gene expression were influenced through this study after treatment with the target 
compound 1/RXF393 (Figure 8). The relative expression of BAX; caspases 3, 8, and 9; and 
P53 showed significant upregulation (p < 0.05) compared to the untreated cells. Mean-
while, Bcl-2 mRNA expression was significantly downregulated after treatment with com-
pound 1/RXF393. Moreover, the relative gene expression analysis revealed that the treat-
ment of RXF393 cells raised the ratio of BAX/Bcl-2, indicating the percentage of cell apop-
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Figure 8. Flow cytometric dot plot for renal RXF393 cells treated with target compound, doxorubicin,
and untreated cells after Annexin V-FITC/PI staining. Panel (A) untreated cells; panel (B) target
compound 1/RXF393 (IC50, 7.01 µM); panel (C) doxorubicin/RXF393 (IC50, 13.54 µM); and panel
(D) bar graph of % cell proportion of early, late apoptotic, and necrotic cells. The four quadrants are
designated as follows: Low Left (LL) for viable cells, Low Right (LR) for early apoptotic cells, Upper
Left (UL) for necrotic cells, and Upper Right (UR) for late apoptotic cells. Bars indicate the means
± standard deviation (SD). Significant differences are assessed using one-way ANOVA (analysis of
variance), followed by the Bonferroni post hoc test for multiple comparisons, and a two-way ANOVA
test, where * p < 0.05 compared to the untreated group.
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2.2.6. Analysis of Relative Gene Expression by Quantitative Real-Time PCR

More importantly, apoptosis is assessed by evaluating the expression of apoptotic
markers by qPCR. The apoptotic markers, BAX, caspases (3, 8, and 9), P53, and Bcl-2
relative gene expression were influenced through this study after treatment with the target
compound 1/RXF393 (Figure 8). The relative expression of BAX; caspases 3, 8, and 9; and
P53 showed significant upregulation (p < 0.05) compared to the untreated cells. Meanwhile,
Bcl-2 mRNA expression was significantly downregulated after treatment with compound
1/RXF393. Moreover, the relative gene expression analysis revealed that the treatment
of RXF393 cells raised the ratio of BAX/Bcl-2, indicating the percentage of cell apoptosis
(Figure 9).
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Figure 9. Relative expression levels of BAX, Bcl-2, the BAX/Bcl-2 ratio, and caspases (8, 9, 3),
along with P53. Relative expression normalized to the internal control GAPDH. Bars denote the
means ± standard deviation (SD). Significant differences are assessed using one-way ANOVA, fol-
lowed by the Bonferroni post hoc test for multiple comparisons, and a two-way ANOVA, where
* p < 0.05 indicates significance relative to the untreated group.

2.2.7. Molecular Docking Studies

To explore the binding mode at the molecular level, the molecular docking of the target
compound 1 was performed within the active site of hCA isoforms IX (PDB 4FL4) [22]
and XII (8CO3) [41]. The docking parameters were validated for hCA IX by redocking
the co-crystallized ligand (Figure 10) with low RMSD values, confirming their accuracy
(Tables 4 and 5). The target compound 1 was docked to investigate key interactions; the
sulfonamide moiety functioned as a zinc-binding group, interacting with the Zn (II) ion via
its amino groups HIS 94, HIS 96, and HIS 119. In the hCA IX active site, a hydrogen bond
formed between the sulfamoyl S=O-NH group and THR 200 and THR 201. Additionally,
the target compound 1 showed a pi–alkyl interaction with amino acid residue VAL 130
via the aromatic moiety. It is clear from Figures 11 and 12 that the target compound 1
showed binding with the active site of CA IX and the co-crystallized ligand. Also, docking
parameters were validated for hCA XII by redocking the co-crystallized ligand (Figure 13).
Docking into hCA, XII revealed a hydrogen bond between the S=O group and the NH
group of THR 204 for the target compound 1, alongside π-π stacking between the phenyl
ring of the benzene sulfonamide moiety and the LEU 203 and VAL 125 residues. Also, the
aromatic tail of the target compound 1 showed pi–alkyl interaction with the PRO 207 amino
acid residue (Figures 14 and 15). Moreover, compound 1 showed good binding with the
co-crystalized ligand with the active site of CA XII (PB: 8CO3). There is a great correlation
between the docking data and the carbonic anhydrase inhibition assay results.
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Table 5. Molecular docking data for the target compound 1 and coligand CA XII against human
carbonic anhydrase XII active site (8CO3).

Compound RMSD Binding Affinity
(Kcal/mol)

Amino Acid Residues or
DNA Nucleotide Bases Types of Interaction

Compound 1 1.5098 −6.9990

Lue 203 Carbon hydrogen bond
VAL 125 Pi–alkyl
TRP 214 Pi–sulfur
GLU 110 Attractive charge
HIS 97 Metal interaction
HIS 99 Metal interaction
HIS 123 Metal interaction
THR 204 H bond
PRO 207 Pi–alkyl
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Table 5. Cont.

Compound RMSD Binding Affinity
(Kcal/mol)

Amino Acid Residues or
DNA Nucleotide Bases Types of Interaction

Coligand XII 0.7712 −7.6961

SER 136
Lue 145 Pi–alkyl
VAL125 Pi–alkyl
HIS 97 Metal interaction
HIS 99 Metal interaction
HIS 123 Metal interaction
THR 204 H bond
ALA 135 Pi–alkyl
GLU 110 Attractive charge
TRP 214 Pi–sulfur
LUE 203
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2.2.8. Conclusions

This study successfully designed and synthesized a novel spiro-heterocyclic com-
pound, N-(4-(aminosulfinyl) phenyl)-2-oxo-2H3′H-spiro [acenaphthylene-12′-[1,3,4] thiadiazole]-
5′-carboxamide, as a selective inhibitor of tumor-associated carbonic anhydrase isoforms
IX and XII. The compound demonstrated potent anticancer activity against various can-
cer cell lines, particularly renal RXF393, with superior efficacy compared to doxorubicin.
Mechanistic studies revealed its ability to induce G1 phase cell cycle arrest and apoptosis in
cancer cells, with lower toxicity toward normal cells, highlighting its therapeutic potential.
Molecular docking confirmed strong binding affinities to the active sites of hCA IX and
XII, further supporting its selectivity. The reduced toxicity against normal cells compared
to doxorubicin underscores the compound’s safety profile. Overall, the target compound
1 shows great promise as a lead candidate for developing selective carbonic anhydrase
inhibitors with potential applications in cancer therapy, warranting further investigation in
preclinical and clinical settings.
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3. Experimental Section
3.1. Chemistry

Reactions were monitored via TLC on aluminum pre-coated silica gel plates (2 cm × 5
cm, Kieselgel 60, Merk, Darmstadt, Germany) with a methylene chloride-to-methanol ratio
of 19:1 as the eluent. Spots were detected using light from a UV lamp at a wavelength of
254 nm. Unadjusted melting points were determined utilizing an electrothermal melting
point apparatus from Stuart Scientific Co. (Stone, UK). The Faculty of Science at Sohag
University employs a Shimadzu 408 Spectrophotometer to obtain IR spectra in KBr discs.
The Faculty of Science at Sohag University utilizes a Bruker AM NMR (400 MHz) spec-
trometer to acquire NMR spectra. All numerical values about NMR data are expressed in
parts per million (ppm), with tetramethyl silane (TMS) serving as the reference standard.
Elemental microanalyses for the synthesized compounds’ carbon, nitrogen, and hydrogen
were performed using APCI as the ion source at the Regional Centre for Mycology and
Biotechnology, Al-Azhar University, Cairo, Egypt.

3.1.1. Synthesis of 2-Hydrazinyl-N-(4-sulfamoylphenyl)-2-thioxoacetamide

Synthesis was conducted via the reaction of 2-chloro-N-sulfamoylphenyl acetamide
with morpholine and sulfur, followed by a reaction with hydrazine hydrate by a reported
procedure [37].

Yellow crystals have been reported with the following: yield (82%); mp: 185–186 ◦C,
reported as 186 ◦C [37]. 1H-NMR (DMSO-d6), δ ppm: 10.40 (s, 1H, NH amide), 7.86 (2H, d,
JH-H = 8.0 Hz, Ar-H), 7.80 (2H, d, JH-H = 8.0 Hz, Ar-H), 7.28 (s, 2H, NH2SO2), and 3.81 (br,
3H, 3NH).

3.1.2. Procedure of the Synthesis of
Spiro-N-(4-sulfamoyl-phenyl)-1,3,4-thiadiazole-2-carboxamide Derivatives

Compounds 2–8 were synthesized as reported and confirmed by their melting
point [37]. Meanwhile, the novel compound 1 was synthesized as mentioned below and
characterized by spectroscopic tools and mass spectrometry.

General procedure of the synthesis of compound N-(4-(aminosulfinyl) phenyl)-2-
oxo-2H, 3′H-spiro [acenaphthylene-1, 2′ [1,3,4] thiadiazole]-5′-carboxamide (compound
1).
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First, 1 mmol of acenaphthylene-1,2-dione was added to a solution of 2-hydrazinyl-
N-(4-sulfamoylphenyl)-2-thioxoacetamide (1 mmol) in ethanol (15 mL), and the reaction
mixture was then stirred at room temperature for about 3 h. The reaction was cooled, and
the solid precipitate was collected by filtration, washed with ethanol, and dried [37].

Pale yellow crystal was reported with the following: yield: 0.381 g (87%); mp: 248–250
◦C; IR (KBr) ύ (cm−1): 3346, 3271, 3178 (2NH, NH2), 3108 (CH-Ar), 2935, 2900 (CH-
aliphatic), 1661 (C=O amide, st), and 1286 (S=O, st); 1H-NMR (400 MHz, DMSO-d6) δ ppm:
10.48 (s, 1H, NH amide), 10.18 (s, 1H, NH, thiadiazol), 7.93–7.29 (m, 7H, Ar), 7.01 (s, 2H,
NH2); 13C-NMR (100 MHz, DMSO-d6) δ ppm: 182.60, 159.00, 140.80, 140.12, 135.03, 133.55,
132.62, 129.57, 128.26, 127.07, 120.47 and 86.19; Anal. Calcd for C20H14N4O4S2: C, 54.79;
H, 3.22; N, 12.78; S, 14.62; Found: C, 54.67; H, 3.25; N, 12.83; S, 14.58; MS (APCl) calcd for
C20H13N4O4S2 [M-H]+: 437.04, found: 437.00.

3.2. Biology
3.2.1. Screening of Anticancer Activity in the National Cancer Institute (NCI)

The target compound’s anticancer efficacy was assessed at the National Cancer In-
stitute (NCI), Bethesda, MD, USA, utilizing nine panels of 60 distinct cell lines sourced
from nine human tumors typically accessible at the NCI library. The screening techniques
are detailed on the NCI website (https://dtp.cancer.gov/, accessed on 1 November 2024)
and we conducted them following NCI regulations [2]. For detailed information, see the
Supplementary Materials.

3.2.2. Evaluation of the IC50 of Compound 1 Against Melanoma LOX IMVI, Colon HT29,
and Renal RXF393 Cancer Cell Lines in Addition to Normal Cell Line WI 38

The IC50 of the target compound against HT29, renal RXF393, melanoma LOX IMVI,
and WI 38 cell lines was determined utilizing established MTT test procedures [2]. For
detailed information, see the Supplementary Materials.

3.2.3. Evaluation of Carbonic Anhydrase I, II, IV, and VII Inhibition

In vitro, the inhibition of cancer-associated carbonic anhydrase, hCA IX, and hCA
XII of the target compound 1 was evaluated at the laboratory of the Egyptian company
for the development of drugs, vaccines, and sera (VACSERA, Giza, Egypt) using the
spectrophotometric technique that Pocker and Meany outlined [42,43].

3.2.4. Cell Cycle Analysis

The impact of the target compound 1 on the cell cycle progression of the RXF393 cell
line was assessed utilizing the Propidium Iodide Flow Cytometry Kit to quantify DNA con-
tent following established protocols [44]. For detailed information, see the Supplementary
Materials.

3.2.5. Apoptosis Determination Using Annexin V–Fluorescein Isothiocyanate/Propidium
Iodide (FITC/PI) Staining

Cell apoptosis for the target compound 1 was analyzed using the Annexin V–FITC
Apoptosis Detection Kit (Bio Vision Research Products, Miami, FL, USA) according to the
reported protocols [45]. For detailed information, see the Supplementary Materials.

3.2.6. RNA Isolation and Quantification

To begin, 5 × 105 cells were cultured in triplicate on a 6-well plate. The cells were
subsequently grown in DMEM medium under regulated circumstances of 5% CO2 and a
temperature of 37 ◦C for 24 h. Then, the medium was substituted with DMEM containing
the cells at its IC50 concentration, and the cells were then left for an additional 24 or

https://dtp.cancer.gov/
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48 h prior to collection. Total RNA was isolated from both treated and untreated cells
using TRizol® (Invitrogen, Waltham, MA, USA) in accordance with the manufacturer’s
instructions [46]. The Nano-Drop 1000 (Thermo Scientific, Waltham, MA, USA) was utilized
to assess the quality and quantity of the extracted RNA [47].

3.2.7. Analysis of Gene Expression by Real Time-PCR

In accordance with the manufacturer’s requirements, a high-capacity reverse transcrip-
tase kit was utilized to reverse transcribe the mRNA pool using random hexamer primers.
The reverse transcription process was executed as documented. Following a ten-minute
cycle at 25 ◦C, a two-hour incubation at 37 ◦C was conducted, culminating in a five-minute
incubation at 85 ◦C to ensure completion. The resultant cDNA was employed in a quanti-
tative real-time polymerase chain reaction (qRT-PCR) utilizing the Maxima SYBR Green
qPCR master mix (Thermo Scientific, USA). The procedure included an initial denaturation
phase lasting 10 min at 95 ◦C, followed by 30 amplification cycles consisting of 15 s at 95
◦C, 30 s at 60 ◦C, and 30 s at 72 ◦C. A final 10-min extension phase at 72 ◦C was included.
Amplification was performed using a Step One Real-Time PCR System in accordance with
the manufacturer’s instructions (Thermo Fisher, Waltham, MA, USA) [48,49]. All studies
were performed in triplicate, utilizing the housekeeping gene Glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) as a reference in every experiment. The acquired qRT-PCR data
were analyzed utilizing the comparative Ct method. The fold changes in treated cells
were calculated by comparing them to untreated cells using the following formula: fold
change = 2−∆∆Ct. Table 6 presents the primer sequences.

Table 6. Sequences of the primers.

Primer Primer Sequence

BAX Forward 5′-CTGCAGAGGATGATTGCCGC-3′

Reverse 5′-GGGCGTCCCAAAGTAGGAGA-3′

Caspase 3 Forward 5′-CTAGCGGATGGGTGCTATTGT-3′

Reverse 5′-AGAATGGGGGAAGAGGCAGG-3′

Caspase 8 Forward 5′-AGCCCTTGAGTTGGTCACTT-3′

Reverse 5′-CAGAAGTGGAACCTGTAGGCA-3′

Caspase 9 Forward 5′-TCAGGCCCCATATGATCGAG-3′

Reverse 5′-CAAGAGCACCGACATCACCA-3′

P53 Forward 5′-GGTGACACGCTTCCCTGGAT-3′

Reverse 5′-CATCCATTGCTTGGGACGGC-3′

Bcl-2 Forward 5′-CTGGTGGACAACATCGCCCT-3′

Reverse 5′-GCCGTACAGTTCCACAAAGGC-3′

GAPDH Forward 5′-CGGGGCTCTCCAGAACATCAT-3′

Reverse 5′-GTCCACCACTGACACGTTGG-3′

3.2.8. Docking Studies

The crystal structures of h CA IX (PDB: 5FL4) and h CAXII (PDB: 4WW8) were
retrieved from the protein data bank [40]. The proteins were prepared using AutoDock
tools where the co-crystallized water molecules were removed then Kollman charges and
polar hydrogens were added. The structure of compound 1 was drawn and optimized
using Marvin Sketch V19.12 and Avogadro molecular editors [43]. The grid coordinates for
h CAIX (PDB: 5FL4) and h CAXII were set to 15.13, −27.26, and 59.56 (h CAIX) and 25.63,
4.94, and 10.13 (h CA XII) for the x, y, and z axes, respectively, with grid dimensions of
20 × 20 × 20 for (h CA IX) and (hCA XII). AutoDock vina v1.2.0 was used for molecular
docking, and the best docking poses were visualized using Discovery Studio Visualizer
v24.1.0.23298 [50].
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3.2.9. Statistical Analysis

Data are presented as means ± SD. A one-way ANOVA, accompanied by the Bon-
ferroni post hoc test for multiple comparisons, and a two-way ANOVA were conducted
to evaluate the statistical significance of the differences utilizing the GraphPad Prism 9
software (GraphPad Software Inc., San Diego, CA, USA). Differences were considered
significant when the p-value was below 0.05.

4. Discussion
Designing a novel anticancer agent via the inhibition of the only cancer-associated

isoforms of hCA is a very important goal for medicinal chemists to avoid the side effects
resulting from the inhibition of the cytosolic isoforms of CA, such as a metallic taste,
loss of libido, fatigue, etc. There are various strategies for avoiding these side effects of
unselectively inhibiting CA isoforms such as using local products like dorzolamide for
the treatment of glaucoma, and a structural modification “tail approach” has emerged as
a promising strategy involving changing the tail. The target compound was designed,
synthesized, and evaluated as a novel anticancer agent via hCA cancer-associated inhibition
in this context.

The target compound 1 was synthesized by replacing the para fluorophenyl moiety
(tail moiety) with spiro acenaphthylene, aimed at greater selectivity towards CA IX and CA
XII. The anticancer screening showed good cytotoxic effects against cancer cell lines such as
K-562, HCT-116, HT29, LOX IMVI, IGROV1, RXF393, and MCF7 (NCI, USA) with a growth
inhibition percentage range of 68.85–100%. The anti-proliferative activity of compound 1 is
due to the inhibition of hCA, cell cycle arrest, and apoptosis induction. The inhibition of
the cancer-associated isoforms CA IX and CA XII and cytosolic isoforms CA I and CA II
by compound 1 were screened. Importantly, the results showed that compound 1 showed
selectivity toward the cancer-associated isoform CA IX with an IC50 value of 0.477 µM,
which is a very important target for designing novel anticancer activity via the inhibition
of CA.

Moreover, the results of the carbonic anhydrase inhibition of compound 1 go ahead
with the docking study within the active site of hCA isoforms IX (PDB 4FL4) and XII and
(8CO3). Compound 1 was also docked to investigate key interactions; the sulfonamide
moiety functioned as a zinc-binding group, interacting with the Zn (II) ion via its amino
groups HIS 94, HIS 96, and HIS 119. In the hCA IX active site, a hydrogen bond formed
between the sulfamoyl S=O-NH group and THR 200 and THR 201. Also, compound 1
showed pi–alkyl interaction with amino acid residue VAL 130 via the aromatic moiety.
The timing of cell cycle withdrawal and differentiation is vital for appropriate growth and
development, and it remains so throughout life. In contrast, failure to inhibit proliferation
or the loss of differentiation can cause various disorders and are hallmarks of cancer cells.
Here, we examine the molecular mechanisms that connect cell cycle arrest and the induction
of apoptosis to the antineoplastic activity of the target compound, considering the potential
implications for treating human cancer. The cytotoxic effect of compound 1 against RXF393
showed low IC50 with higher potency than the control, doxorubicin, used in this study.

To determine the effect of compound 1 on cell apoptosis, cells stained by Annexin
V-FITC and PI after exposure to the compound 1/RXF393 were analyzed by the flow
cytometer. Cell line treatment with compound 1 showed a tangible effect on early and late
apoptosis. The rate of apoptosis increased after treatment, confirming the results of the
cytotoxic assay.

Apoptosis is initiated via two primary pathways: the extrinsic pathway, mediated by
cell death receptors, and the intrinsic pathway, mediated by mitochondria. The extrinsic
pathway leads to the activation of caspase-8 and caspase-9, respectively, which subse-
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quently activate the downstream executioner caspase-3. Mitochondrial changes trigger
the intrinsic apoptosis process, leading to the release of cytochrome c and a simultane-
ous decrease in mitochondrial transmembrane potential. Overall, the target compound 1
demonstrates significant potential as a lead candidate for the development of selective car-
bonic anhydrase inhibitors, with prospective applications in cancer therapy, necessitating
additional exploration in preclinical and clinical contexts.
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