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Abstract: The epidermal growth factor receptor (EGFR) is one of the key oncomarkers in
glioblastoma (GB) biomedical research. High levels of EGFR expression and mutations
have been found in many GB patients, making the EGFR an attractive target for therapeutic
treatment. The EGFRvIII mutant is the most studied, it is not found in normal cells and
is positively associated with tumor cell aggressiveness and poor patient prognosis, not
to mention there is a possibility of it being a tumor stem cell marker. Some anti-EGFR
DNA aptamers have already been selected, including the aptamer U2. The goal of this
study was to construct a more stable derivative of the aptamer U2, while not ruining
its functional potential toward cell cultures from GB patients. A multiloop motif in a
putative secondary structure of the aptamer U2 was taken as a key feature to design a novel
minimal aptamer, Gol1, using molecular dynamics simulations for predicted 3D models.
It turned out that the aptamer Gol1 has a similar putative secondary structure, with G-C
base pairs providing its stability. The anti-proliferative activities of the aptamer Gol1 were
assessed using patient-derived GB continuous cell cultures, G01 and BU881, with different
abundances of EGFR and EGFRvIII. The transcriptome data for the cell culture G01, after
aptamer Gol1 treatment, revealed significant changes in gene expression; it induced the
transcription of genes associated with neurogenesis and cell differentiation, and it decreased
the transcription of genes mediating key nuclear processes. There were significant changes
in the gene transcription of key pro-oncogenic signaling pathways mediated by the EGFR.
Therefore, the aptamer Gol1 could potentially be an efficient molecule for translation into
biomedicine, in order to develop targeted therapy for GB patients.

Keywords: brain tumors; glioblastoma; EGFR; EGFRvIII; aptamers; reverse folding task;
molecular dynamics simulation; secondary structure predictions: transcriptomics

1. Introduction
Glioma is the most common and aggressive type of brain tumor in adults [1]. The

most aggressive form is glioblastoma (GB), a grade IV glioma, according to the WHO
classification. GB is a highly malignant tumor characterized by rapid growth, extensive
invasion, and poor prognosis. According to the WHO 2021 classification, GBs include adult
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diffuse astrocytic gliomas with wild-type IDH1/2. The diagnostic criteria for GB is based
on the presence of one or more of three genetic parameters: (a) TERT promoter mutations,
(b) EGFR gene amplification, and (c) copy number alterations +7/−10 [2]. GB accounts for
approximately 15% of all brain tumors and 48.3% of all malignant tumors [3]. The 5-year
survival rate of patients diagnosed with GB is 6.8% [3].

The incidence is approximately 3–4 cases per 100,000 people in the U.S. population per
year [3]. GB is more common in the elderly, with a median age at diagnosis of 65 years [3].
There is a slight male predominance, with a male-to-female ratio of 1.6:1 [4].

Magnetic resonance imaging (MRI) is the primary imaging modality for the diagnosis
and evaluation of GB [5]. GBs, visualized by MRI, show a heterogeneous contrast-enhancing
mass, with central necrosis and peripheral edema. A definitive diagnosis of GBs is made
based on histological analysis of a tissue biopsy or tumor resection, as well as molecular
genetic analysis.

The standard of care first diagnosed is a maximal safe surgical resection, followed
by chemoradiotherapy combined with temozolomide and then adjuvant temozolomide
therapy [6]. This standard has not changed significantly over the past 20 years, although
it is ineffective and has only increased the median patient survival by approximately
2.5 months [6,7].

Unfortunately, frequent recurrences are observed after surgical tumor resection in GB
patients [8,9]. The high recurrence rate may be due to the presence of unresectable foci of
residual tumor cells removed from the neoplasm early in the formation of the tumor [10] or
the invasion of tumor cells into healthy brain tissue [11].

Other therapies, such as tumor treating fields (TTFs) [12–14], immunotherapy [15,16],
and targeted molecular therapy [17], have been actively studied in clinical trials, but have
yet to demonstrate a meaningful effect on highly malignant gliomas which alters the course
of the disease.

Despite aggressive treatment, the prognosis for GB remains poor, with a median
overall survival of 14–16 months after diagnosis [18]. Overall, glioblastoma is an extremely
aggressive brain tumor, with a poor prognosis. Ongoing research is aimed at better under-
standing the biology of the disease and developing more effective treatment strategies.

Recently, aptamer-based research has become widespread for more effective ther-
anostics (a personalized medicine approach that combines diagnosis and therapy) for
various tumor types. Aptamers are short single-chain nucleic acids that can bind with high
specificity and affinity to various targets, such as proteins, small molecules, and cellular
components, etc. [19–21]. Their unique properties make them a powerful tool for the
diagnosis and treatment of various tumors, including gliomas.

Aptamers can be specifically designed for tumor-targeted therapy, allowing drugs to
be precisely directed at tumor cells, thus minimizing their effects on healthy tissues [19]. Im-
portantly, aptamers have the unique ability to distinguish between similar targets, such as
isomers of chemical compounds or point mutations manifested in protein molecules [22,23].
This is particularly important in the treatment of aggressive forms of cancer, where maxi-
mum treatment efficacy with minimal side effects is required.

It is also worth noting that aptamers can be easily modified to improve their prop-
erties, such as their stability, affinity, and specificity, making them a convenient tool for
personalized tumor therapy [24–26]. With the ability to rapidly synthesize and modify
aptamers, researchers and clinicians have the ability to tailor aptamers to specific tumor
types and patient characteristics.

In tumor diagnostics, aptamers can be used to detect tumor markers and biomarkers,
allowing for more accurate and sensitive patient screening [27–29]. Specific binding of
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aptamers to tumor cells or proteins can also be used to form contrast agents in radiology or
as labeled particles in imaging techniques [30].

Aptamers can be used as drug carriers for tumor treatment, ensuring their delivery
to the tumor with high precision and minimizing side effects on healthy tissues [31,32].
Moreover, aptamers can also act as inhibitors of signaling pathways, helping to suppress
tumor growth or induce the apoptosis of tumor cells [32,33].

Rapid progress and advances have been made in the use of aptamers in the diagnosis
and treatment of tumors. Technologically innovative, this technology provides great
promise for developing pioneering ways to fight cancer, including glioblastoma. In the
future, aptamers may become a key component of a personalized approach to cancer
treatment, enabling precise and effective targeting of tumor cells with a minimal impact on
healthy tissue.

EGFR is one of the markers of glioblastoma and may be an effective target protein
for aptamers. The EGFRvIII mutation is of particular interest to research as it correlates
with a poor prognosis for patients. In 2014, Wu et al. [34] selected DNA aptamers against
U87-EGFRvIII cells, i.e., specific for the EGFRvIII receptor, using the whole-cell systematic
evolution of ligands by exponential enrichment (SELEX) method. The U2 and U8 aptamers
were shown to have the best binding capacity to the EGFRvIII receptor protein.

EGFR is a receptor tyrosine kinase that plays a key role in the regulation of cell prolifer-
ation, survival, and differentiation [35,36]. In GB, genetic alterations such as amplification,
mutation, and overexpression of the EGFR gene lead to hyperactivation of the signaling
pathway, promoting tumor growth and progression. The most common genetic alteration
observed in GB involving EGFR is a mutant form known as EGFRvIII [37].

EGFRvIII is a constitutively active truncated form of the EGFR receptor characterized
by a deletion of exons 2 to 7 that lacks a ligand binding domain [38]. This mutation is asso-
ciated with persistent activation of the EGFR signaling pathway, resulting in uncontrolled
cell proliferation and tumor growth. Studies have shown that EGFRvIII expression is
associated with increased tumor aggressiveness, resistance to therapy, and poor prognosis
in patients with GB [38]. Several studies classify EGFRvIII as a potential cancer stem cell
marker [39]. This form of the receptor is not found in normal cells [40].

In 2018, Zhang et al. [41] showed that the U2 aptamer can specifically bind to
U87-EGFRvIII cells and internalize into the cells through the endosome recycling path-
way using FCM and immunofluorescence techniques. The effect of the U2 aptamer on
U87MG/EGFRvIII cells was also demonstrated: 24 h treatment of U87-EGFRvIII cells with
the U2 aptamer significantly reduced tumor cell proliferation, migration, and invasion and
the activation of apoptosis. However, U87MG/EGFRvIII cells treated with U2 at concen-
trations of 25 and 50 nM showed only a 59% and 51% reduction in tumor cell viability,
respectively. Likely, the survival of 41% to 49% of tumor cells is due to the large size of the
aptamer and, correspondingly, poor penetration into tumor cells.

In this work, we present a modification of the U2 aptamer, Gol1. The shortened Gol1
aptamer was derived from the secondary structure of the U2 aptamer as a result of sequence
optimization. Secondary structure elements of U2 were preserved in Go11 which allowed
Go11 to retain its high specificity for targeting the EGFR and EGFRvIII receptors. This
aptamer might be a promising molecule for further therapies and imaging techniques
for glioblastoma.

2. Results
2.1. Computational Modeling and Synthesis of the Gol1 Aptamer

The cell SELEX method (Cell-SELEX Aptamer for Highly Specific Radionuclide Molec-
ular Imaging of Glioblastoma In Vivo) was used to search for DNA oligonucleotides that
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could bind EGFR and EGFRvIII on the cell surface of the U87MG cell line [41]. The four
aptamers U2, U8, U19, and U31 bind to EGFRvIII in the nanomolar range, making these
sequences attractive for the further development of EGFR inhibitors [41]. The sequences
of these aptamers contain poly-T repeats, which are expected to negatively affect the for-
mation of stable secondary structure elements. The goal of this work was to minimize the
sequence while preserving the secondary structure elements. Based on a comparison of
the putative secondary structures of the listed aptamers, the aptamer U2 was of particular
interest because its putative secondary structure contains a “multiloop” element, while the
other aptamers form hairpins with internal loops (Figure 1a).
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Figure 1. (a) Secondary structure of the U2 aptamer; (b) Change in formation of the secondary
structure energy when the aptamer is shortened. Data are shown for structures where the multiloop
is preserved; (c) Truncated secondary structure of the U2 aptamer.

We used Python bindings for the ViennaRNA package [42] to resolve the prob-
lems of length minimization and secondary structure stabilization. We used the
DNA_Mathews2004 parameter set [43] for the parameterization of the DNA secondary
structure score. To achieve reproducibility, all activities were recorded using Jupyter Note-
book [44] Positioning and Power in Academic Publishing: Players, Agents, and Agendas
(pp. 87–90). We proposed considering loops 1 and 2 and a multiloop in the 50–60 nucleotide
range in U2 as putative recognition elements.

A dot-bracket notation description of the multiloop was chosen as the key pattern
for the selected structure. Using a sliding window, we searched for variants of sequence
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truncation while preserving the multiloop substructure (Figure 1b). This resulted in a short-
ening of 6 nucleotides from the 5′ end and 11 nucleotides from the 3′ end (Figure 1c). This
result demonstrates that shortening a sequence while preserving its predicted secondary
structure “on paper” can lead to inherently false results, i.e., the formation of an entirely
different structure.

The minimal sequence and its secondary structure containing loops 1 and 2 and the
M1 multiloop were used to search for sequences that could form the desired secondary
structure [45]. Formally, the diversity of sequences that could reproduce the minimal
structure can be estimated as 4 raised to the power of the number of nucleotide pairs in
the stem regions, 415 or about 109. It is evident that replacing A-T pairs with G-C pairs
should yield the desired result, but one must avoid the formation of quadruplex motifs
and pseudoknots, which is also difficult to accomplish “on paper”. The chosen approach
has a stochastic element, and, therefore, we repeated the procedure 1000 times to achieve
sample saturation. The results yielded 522 unique sequences.

For each design result, a truncated design variant was searched. After sorting, the
best design variant was edited to recover the original sequences in loop 1 and loop 2.
Since most of the designs had adenine residues in the multiloop, it was decided to build
3D models with different compositions of the multiloop: AAAA, TTTT, and ATAT. The
models were constructed using trRosettaRNA as the RNA structure, the resulting structures
were modified to match the DNA and equilibrated using metadynamics by the collective
variable ERMSD for the loop bases. The choice of this sequence of actions is dictated
by the extremely low amount of information about complex DNA structures in the PDB
database, which makes it impossible to apply machine-learning models to construct the
DNA structure directly. We tried to use AlpaFold 3 for this purpose and the result for
the aptamer structure was unsatisfactory: the pIDDT score was less than 50 for all DNA
residues. It has been previously shown that by using modern force fields, the transition
from the A-form of DNA to the B-form is quite fast in molecular dynamics [46]. We
performed molecular dynamics simulations in five iterations with a trajectory length of
1 µs for three candidate sequences. The consensus relaxation results of the models in an
explicitly defined solvent are shown in Figure 2. The final secondary structure of the Gol1
aptamer is shown in Figure 2d.

The variant with the ATAT sequence in the loop exhibits higher conformational mobil-
ity (Figure S1). When analyzing the RMSD (root mean square deviation of atomic positions
after structure fit) change from the 20 ns backward trajectory state, the AAAA and TTTT
variants exhibit RMSD values below 4A after 250 ns of simulation, while in the case of
ATAT RMSD fluctuations are observed at 6A.

Therefore, we selected the ATAT sequence for the multiloop, and the final sequence of
the whole aptamer was named Gol1. The estimated secondary structure formation energy
of GOL1 was −24.7 AU, while the best design had −26.1 AU. The secondary structure
formation energy of the original U2 was −14.1 AU.
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Figure 2. Optimized 3D models of the aptamer with different multiloop compositions: (a) AAAA,
(b) ATAT, and (c) TTTT: (d) Secondary structure of the Gol1 aptamer. The pink labeled nucleotides
are adenine (A) and the blue ones in the loop are thymine (T). The aptamer model with the AAAA
multiloop sequence (Figure 2a) forms a sufficiently large surface area at the base of the stack for
potential interaction with the EGFR protein, which upon dimerization forms a distinct plane with a
surface area containing a high density of positive charge (Figure S1). All purine bases form stacking
interactions within the loop and its surroundings. This leads to a situation where only the sugar-
phosphate backbone of the loop can interact with the protein, resulting in the loss of interactions
involving heterocyclic bases, which could contribute significantly to the aptamer’s specificity. The
model aptamer with the ATAT sequence forms a similar surface but with the adenine and thymine
bases 45–46 facing potential interactions with the protein, which is attractive for the formation of
additional stacking interactions and/or hydrogen bonds. In the case of the TTTT sequence, the
multiloop structure becomes unstable and the aptamer is unable to form an interaction plane.
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2.2. Human Glioblastoma Cell Cultures with EGFRwt/EGFRvIII Expression

Two human glioblastoma cell cultures, BU881 and G01, derived from patient tumor
tissue, were used to evaluate the effect of aptamers on human glioblastoma cell proliferation.
Both cell cultures show high expression levels of EGFRwt, as determined by RT-qPCR
(Figure 3).
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qPCR data showed that the expression of EGFRwt in the human glioblastoma cell
culture BU881 is significantly higher than in G01 cells. There is also a three-fold increase in
EGFRvIII expression in BU881 when compared to G01 cells (Figure 3).

2.3. Analysis of the Effect of Aptamers on the Proliferative Potential of Human Glioblastoma Cells

To evaluate the effect of the U2 and Gol1 aptamers on the proliferative potential of
cells with variable EGFRwt and EGFRvIII receptor gene expression, BU881 and G01 cells
were analyzed by MTS assay (Figure 4).

Interestingly, it was noted that the greater the representation of target receptors is
in the cell culture, the more pronounced the antiproliferative effect of both aptamers
(Figure 4). Moreover, in both cultures, the Gol1 aptamer reduced the proliferation of
human glioblastoma cells more effectively compared to the U2 aptamer. In G01 cell
culture, the aptamer U2 at a concentration of 10 µM reduced cell proliferation by ~10% and
the aptamer Gol1 by ~21%; correspondingly, in human glioblastoma BU881 cell culture
cells at the same concentration, the aptamer U2 reduced proliferation by ~20% and the
aptamer Gol1 by ~40%. Thus, in the human glioblastoma BU881 cell culture with a
more pronounced expression of target receptor genes, the antiproliferative effect of both
experimental aptamers is two-fold more pronounced when compared to Gol1 cells. In both
cell cultures, the Gol1 aptamer is two-fold more effective than the U2 aptamer.

To assess whether the antiproliferative effect of aptamers is specific to tumor cells,
we investigated the effect of U2 and Gol on the proliferative potential of OES-b olfactory
neuroepithelial lining cells (Figure S2) by MTS test (Figure 5).
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Figure 5. Evaluation of proliferation changes in OES-b treated with U2 and Gol1 aptamers at
a concentration of 20 µM by MTS assay. A statistically significant differences between control
and experimental groups were evaluated by one-way analysis of variance (ANOVA) followed by
Bonferroni multiple comparison test (ns—no statistically significant differences).

OES-b cells were treated with the aptamers at a concentration two times higher than
that used in the human glioblastoma cell experiments (Figure 5). However, even at the
higher concentration, neither aptamer had a statistically significant effect on the level of
cell proliferation compared to the control.
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These results suggest that the aptamers specifically target the EGFRwt and EGFRvIII
receptors of tumor cells. The aptamer Gol1 has a more pronounced antiproliferative effect
on human glioblastoma cells compared to the aptamer U2, while both aptamers do not
affect normal cells.

2.4. Analysis of Transcriptomic Data of Human Glioblastoma G01 Cells After Gol1 Aptamer
Treatment

The effect of the Gol1 aptamer on the transcriptome of human glioblastoma tumor
cells, G01, was evaluated. Transcriptome analysis of human glioblastoma cells, G01,
was performed after incubation with the Gol1 aptamer at a concentration of 10 µM for
72 h. Based on the transcriptome results, incubation with the Gol1 aptamer resulted
in profound changes in gene expression, effectively separating treated and untreated
human glioblastoma G01 cells as observed in the Principal Component Analysis (PCA)
plot (Figure 6).
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Next, we focused on detecting differentially expressed transcripts of Gol1 aptamer-
treated and untreated human glioblastoma G01 cells. Heat map analysis effectively sepa-
rated treated and untreated human glioblastoma G01 cells (Figures 7 and 8), where a clear
clustering can be observed confirming the effect of the Gol1 aptamer on gene expression of
human glioblastoma G01 cells (Figure 6).
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A total of 50,006 genes were analyzed. Next, only the genes with an average number
of reads across samples greater than 10 were selected. This resulted in the selection
of 12392 genes which represent ~25% of the original number of genes. Volcano plot
analysis identified 1207 statistically significant differentially expressed (DE) genes in human
glioblastoma G01 cells (Figure 9).
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After DE analysis, genes with adjusted significance levels p < 0.05 and |log2FoldChange| > 1
were selected. In total, 765 genes were upregulated and 442 genes were downregulated
in the sample treated with Gol1, representing 63.3% and 36.7% of the total DE genes,
respectively (Figure 9).

To correlate the observed transcriptional changes in human glioblastoma G01 cells
after Gol1 aptamer addition with biological processes, we performed Gene Ontology
(GO) analysis. GO analysis of DE transcripts of upregulated genes (Figure 10) shows an
increase in the expression of genes responsible for neurogenesis and cell differentiation. In
addition, there is an increase in pathways related to the cellular response to various stimuli
(endogenous, chemical, and organic).

Int. J. Mol. Sci. 2025, 26, x FOR PEER REVIEW 12 of 25 
 

 

Figure 9. Volcano plot analysis showing statistically significant differentially expressed (DE) genes 
after treatment of human glioblastoma G01 cells with the Gol1 aptamer. The y-axis represents the 
p-value after log10 transformation, and the x-axis represents the multiple transformed to log2. Hor-
izontal line: −log10(0.05) Vertical line: log2FoldChange value (log2 ratio of gene expression levels in 
the compared lines) equal to −1 and 1. 

To correlate the observed transcriptional changes in human glioblastoma G01 cells 
after Gol1 aptamer addition with biological processes, we performed Gene Ontology (GO) 
analysis. GO analysis of DE transcripts of upregulated genes (Figure 10) shows an increase 
in the expression of genes responsible for neurogenesis and cell differentiation. In addi-
tion, there is an increase in pathways related to the cellular response to various stimuli 
(endogenous, chemical, and organic). 

 

Figure 10. Gene Ontology (GO) analysis of upregulated genes in human glioblastoma G01 cells after 
Gol1 aptamer treatment. 

All statistically significant GO pathways of upregulated genes are shown. They be-
long to one of the following GO categories: Molecular Function (MF) in yellow bars, Cel-
lular Components (CC) in blue bars, or Biological Processes (BP) in red bars. 

In turn, the GO analysis of DE transcripts of downregulated genes (Figure 11) shows 
decreased expression of genes involved in cell growth pathways, RNA splicing, alterna-
tive RNA splicing, RNA processing, biogenesis of various nuclear components, and nu-
clear metabolic processes. 

Figure 10. Gene Ontology (GO) analysis of upregulated genes in human glioblastoma G01 cells after
Gol1 aptamer treatment.

All statistically significant GO pathways of upregulated genes are shown. They belong
to one of the following GO categories: Molecular Function (MF) in yellow bars, Cellular
Components (CC) in blue bars, or Biological Processes (BP) in red bars.

In turn, the GO analysis of DE transcripts of downregulated genes (Figure 11) shows
decreased expression of genes involved in cell growth pathways, RNA splicing, alternative
RNA splicing, RNA processing, biogenesis of various nuclear components, and nuclear
metabolic processes.



Int. J. Mol. Sci. 2025, 26, 1072 12 of 24Int. J. Mol. Sci. 2025, 26, x FOR PEER REVIEW 13 of 25 
 

 

 

Figure 11. Gene Ontology (GO) analysis of downregulated genes in human glioblastoma G01 cells 
after Gol1 aptamer treatment. 

All statistically significant GO pathways of downregulated genes are shown. They 
belong to one of the following GO categories: Molecular Function (MF) in yellow bars, 
Cellular Components (CC) in blue bars, or Biological Processes (BP) in red bars. 

Since the target molecule of the aptamers is EGFR, we analyzed the gene expression 
changes of the major signaling pathways mediated by the EGFR receptor. The major pro-
oncogenic signaling pathways of the EGFR receptor include the MAPK pathway, PI3K-
Akt pathway, and JAK-STAT pathway [47]. 

Out of 246 genes known to be involved in the regulation of the MAPK pathway, 23 
DE genes are upregulated and 4 DE genes are downregulated. In the case of the PI3K-Akt 
pathway, 30 DE genes out of 338 genes known to be involved in the PI3K-Akt pathway 
are upregulated, and 13 genes are downregulated. Finally, in the gene cascade of the JAK-
STAT pathway, 10 genes out of 162 genes are overexpressed and 6 genes of them are 
downregulated. 

The most pronounced changes were observed in the genes of the PI3K-Akt pathway 
cascade (Figure 12). 

 

(a) (b) 

Figure 12. PPI network of PI3K-Akt cascade genes, (a) overexpressed and (b) hypo-expressed in the 
human glioblastoma G01 cell prototype after exposure to the Gol1 aptamer, obtained by STRING. 
PPI, protein–protein interaction; STRING, a search tool to extract interacting genes. 

  

Figure 11. Gene Ontology (GO) analysis of downregulated genes in human glioblastoma G01 cells
after Gol1 aptamer treatment.

All statistically significant GO pathways of downregulated genes are shown. They
belong to one of the following GO categories: Molecular Function (MF) in yellow bars,
Cellular Components (CC) in blue bars, or Biological Processes (BP) in red bars.

Since the target molecule of the aptamers is EGFR, we analyzed the gene expression
changes of the major signaling pathways mediated by the EGFR receptor. The major pro-
oncogenic signaling pathways of the EGFR receptor include the MAPK pathway, PI3K-Akt
pathway, and JAK-STAT pathway [47].

Out of 246 genes known to be involved in the regulation of the MAPK pathway, 23 DE
genes are upregulated and 4 DE genes are downregulated. In the case of the PI3K-Akt
pathway, 30 DE genes out of 338 genes known to be involved in the PI3K-Akt pathway
are upregulated, and 13 genes are downregulated. Finally, in the gene cascade of the
JAK-STAT pathway, 10 genes out of 162 genes are overexpressed and 6 genes of them
are downregulated.

The most pronounced changes were observed in the genes of the PI3K-Akt pathway
cascade (Figure 12).
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Figure 12. PPI network of PI3K-Akt cascade genes, (a) overexpressed and (b) hypo-expressed in the
human glioblastoma G01 cell prototype after exposure to the Gol1 aptamer, obtained by STRING.
PPI, protein–protein interaction; STRING, a search tool to extract interacting genes.

3. Discussion
Aptamer-based studies for GB therapy are important for several reasons. First is

the specificity of action: Aptamers can be designed to precisely recognize and bind to
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molecules that play a key role in the development of GB [23,48]. The use of aptamers
allows the targeting of specific proteins or processes within tumor tissue, minimizing side
effects on healthy tissue. Second is the personalized approach: Due to the specificity of
aptamer action, it is possible to create personalized therapies that consider individual
patient and tumor characteristics. This helps to improve treatment efficacy and reduce
the risk of complications. Third is overcoming drug resistance: GB is often resistant to
standard chemotherapeutic agents [49]. Aptamers are a new class of drugs that offer the
possibility of overcoming drug resistance in the treatment of glioblastoma. Fourth is drug
delivery: aptamers can be used to deliver drugs directly to GB tumor cells or tumor vessels
by penetrating the blood–brain barrier (BBB), thereby increasing the efficacy of therapy and
providing a more targeted effect on the tumor [48,50].

GB is characterized by the overexpression and dysregulation of the EGFR signaling
pathway [51]. A mutant form of the EGF receptor, EGFRvIII, is found in 60% of GB
cases [37]. EGFRvIII is positively associated with tumor malignancy and aggressivity [52]
and is one of the potential markers of cancer stem cells [39]. What makes the mutant
receptor an even more attractive target for GB therapy and diagnosis is that normal cells
are not characterized by its expression [40].

Our previous studies have shown that in competitive apta-immunocytochemical
staining of the patient glioblastoma cell culture G01, the aptamer Gol1 showed a higher
competitive binding to EGFRvIII compared to the aptamer U2 and a commercial anti-
EGFRvIII antibody, and in the case of EGFRwt it was equal to the antibody [53]. In this
study, we proposed and synthesized an aptamer Gol1 to EGFR and EGFRvIII, which is
a variant sequence capable of forming a secondary structure similar to the U2 aptamer
known in the literature [41]. Using the MTS assay method, we evaluated changes in the
proliferative potential of the human glioblastoma culture cells G01 and BU881, which are
characterized by different expression levels of the two target receptors, EGFR and EGFRvIII.
As expected, there is a correlation between the cell proliferation rate and the level of
receptor expression (Figure 4). In addition, the Gol1 aptamer exhibits a more pronounced
antiproliferative effect than the U2 aptamer in both cultures. These data demonstrate that
the new variant of the Gol1 aptamer we have proposed is a more potent molecule compared
to its predecessor.

Presumably, the Gol1 aptamer promotes the overexpression of several components of
the PI3K-Akt pathway that are positively associated with apoptosis and differentiation and
negatively associated with proliferation and cell growth in human glioblastoma cells, such
as the CDKN1A and PKN2 genes (Figure 12).

The p21 protein, encoded by the CDKN1A gene, is a major member of the cyclin-
dependent kinase (CDK) inhibitors and plays an important role in the cell cycle regulation
that contributes to genomic stability [54]. This protein is frequently de-regulated in sev-
eral human cancers [55,56]. In addition, p21 plays important roles in processes such as
apoptosis, differentiation, reprogramming of induced pluripotent stem cells, DNA repair,
transcription, and cell migration [55,56]. p21 is critical for the transition between the G2
and M phases of the cell cycle, and its deficiency can lead to the prolongation of mitosis,
which, in turn, can cause mitotic dysfunction and consequent genomic instability [57]. p21
inhibits CDKs that phosphorylate the retinoblastoma protein (pRB)-related proteins p107
and p130. Thus, the expression of p21/CDKN1A results in the hypophosphorylation of
p107 and p130. In this hypophosphorylated state, p107 and p130 can bind to other proteins
to form the DREAM complex and thereby repress transcription. This, in turn, can lead
to irreversible cell cycle arrest as a result of senescence or induction of apoptosis [58]. In
addition, p21 has been shown to repress a relevant number of genes that control the S-phase
and mitosis. Thus, the activity of p21 as an inhibitor of cell cycle progression would be
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mediated not only by CDK inhibition but also by the transcriptional regulation of key
genes [59]. This protein can also directly inhibit cell proliferation by binding to CDKs [60]
and proliferating cell nuclear antigen (PCNA) [61].

Protein kinase C-related kinase 2 (PKN2/PRK2) is involved in the regulation of various
biological processes including cell migration, adhesion, and death. Cell proliferation and
differentiation are mutually exclusive processes that are regulated by different extracellular
signals that trigger the activation of often-identical intracellular signaling pathways such
as Akt signaling [62]. PKN2 is thought to be specifically involved in differentiation-specific
Akt activation and myoblast differentiation. PKN2 expression is increased during myoblast
differentiation, whereas PKN2 overexpression did not show increased Akt activation in
proliferating cells [63]. A protein–protein interaction between Akt and the C-terminal
region of PKN2 specifically reduces Akt protein kinase activity, resulting in the inhibition of
downstream Akt signaling in vivo. The C-terminal fragment of PKN2 strongly inhibits the
Akt-mediated phosphorylation of BAD, a pro-apoptotic Bcl-2 family protein, and blocks
the anti-apoptotic activity of Akt in vivo [64].

When we analyzed the genes of the PI3K-Akt pathway, whose expression is down-
regulated in human glioblastoma G01 cells after Gol1 aptamer treatment (Figure 12), we
observed several very interesting trends. The expression of the key genes that are associated
with high levels of malignancy and poor prognosis in GB (PP2R1B, CCND1, CCNE1, BCL2,
and SGK1) was reduced. Furthermore, we identified BCL2 and SGK1 which are known to
be the key anti-apoptotic genes [65–67], as well as CCND1 and SGK1 genes, the markers of
human GB stem cells [68–70].

Protein phosphatase 2 scaffold subunit Abeta (PPP2R1B) is a gene encoding the beta
isoform of serine/threonine protein phosphatase 2A subunit A (PP2A). Canonically, PP2A
functions as a tumor suppressor gene; however, several studies have shown that the
inhibition of PP2A activity has an anti-oncogenic effect. For example, PP2A inhibition leads
to the increased radiosensitivity of tumor cells and the prevention of tumor recurrence. In
malignant gliomas, PP2A inhibition increases the frequency of cells in M-phase mitosis,
leading to an inhibition of tumor proliferation [71]. A key problem, however, is the selection
of a specific PP2A inhibitor that does not affect normal cells. We have shown that the Gol1
aptamer does not affect normal cells, making it a valuable candidate for PP2A inhibition. In
GB, genetic alterations in genes encoding PP2A subunits are rare (less than 1%) according
to the Cancer Genome Atlas (TCGA) datasets [37]. Non-genetic mechanisms of PP2A
dysregulation in GB might be due to the overactivation of receptor tyrosine kinases (RTKs)
such as EGFR [72].

Cyclin D1 and cyclin E1 are regulators of G1–S-phase cell cycle progression, are often
constitutively expressed, and are associated with pathogenesis and tumorigenesis in most
human cancers. They are considered to be promising targets for cancer therapy [73,74].

CCND1 is a gene encoding the protein cyclin D1, which is overexpressed in malignant
gliomas and positively associated with malignancy grade and poor prognosis [75]. In a
2020 study, CCND1 expression was shown to be significantly upregulated in GB tissues and
GB-derived stem cells [68]. The inhibition of CCND1 renders tumor cells more sensitive to
temozolomide (TMZ) treatment and temozolomide-induced apoptosis [76].

CCNE1 is the gene encoding the protein cyclin E1, a nuclear protein required for
cell cycle progression [77,78], DNA replication [79,80], and centrosome duplication [81].
The expression of this gene correlates with the malignancy rate of meningiomas [82].
The inhibition of cyclin E1 has been reported to significantly improve the efficacy of
temozolomide therapy for GB [83].

The BCL-2 gene plays a key role in the regulation of apoptosis, encoding pro-apoptotic
proteins (such as Bax and Bak) and anti-apoptotic proteins (such as BCL-2 itself). BCL-2
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functions mainly as an inhibitor of apoptosis by preventing the escape of cytochrome c from
the mitochondria into the cytosol [84]. BCL-2 is a prognostic factor for highly malignant
gliomas [85]. One of the hallmarks of GB is the abnormal expression of anti-apoptotic
proteins such as BCL-2, which is associated with tumor survival and the resistance of
malignant cells to radiotherapy and chemotherapy [65,66]. The development and clinical
trials of BCL-2 inhibitors such as Venetoclax have demonstrated efficacy in reducing cancer
cell survival by restoring apoptosis [86]. Combining BCL-2 inhibitors with other therapies,
such as chemotherapy or radiotherapy, may enhance their effects [66,87].

Serum and glucocorticoid-induced protein kinase 1 (SGK1) is a serine-threonine
kinase involved in various cellular processes including cell survival, growth, and
apoptosis [88–90]. SGK1 is activated by several growth factors and stress signals. It pro-
motes cell survival by inhibiting apoptotic pathways [67,91,92]. For example, SGK1 can
influence the balance between pro- and anti-apoptotic members of the BCL-2 family [93].
Increased SGK1 expression correlates with increased tumor cell proliferation, invasion,
and resistance to apoptosis, contributing to the aggressive nature of tumor cells [67,69,93].
Studies have shown that SGK1 is frequently overexpressed in GB cells [91] and is a key
gene for GB stem cell viability [69,70]. SGK1 may play a role in glioblastoma resistance to
conventional therapies [91,94].

Of particular interest among MAPK pathway genes whose expression is altered upon
treatment with the Gol1 aptamer is the overexpression of DUSP5 and DDIT3 and the
decreased expression of RRAS2 genes.

Dual-specificity phosphatase 5 (DUSP5) plays an important role in cell prolifera-
tion and differentiation by negatively regulating members of the MAPK superfamily
(MAPK/ERK, SAPK/JNK, and p38) [95]. Furthermore, DUSP5 acts as a negative regula-
tor of glioma cell motility and the ERK signaling pathway [96]. DNA damage-inducible
transcript 3 (DDIT3) is a pro-apoptotic transcription factor encoded by the DDIT3 gene.
Increased DDIT3 expression has been shown to be associated with the activation of apop-
tosis in GB tumor cells [97]. Ras-related protein (RRAS2), encoded by the gene of the
same name, is a member of the Ras family of small GTPases. The RRAS2 gene is overex-
pressed in many malignancies, including brain tumors and especially GB [98–100]. Recently,
Gutierrez-Erlandsson S et al. demonstrated that RRAS2 is an important driver of neuronal
transformation in tumorigenesis [100].

Our research findings provide an insight into the potentially important contribution
that the Gol1 aptamer can make to the diagnosis and therapy of glioblastoma. We believe
this approach may become the key to resolving currently acute problems in glioblastoma
diagnostics and treatment based on the ability of aptamers to target specific molecules
without normal tissue damage. We consider this to be a very promising approach in tumor
theranostics.

4. Materials and Methods
4.1. Aptamers

To find a new DNA sequence, we decided to optimize the secondary struc-
ture of known aptamers. As a source of secondary structure data, we used the
predicted states for the DNA aptamer U2 selected by the team of X. Zhang [34].
Based on the analysis of predicted structures of two different aptamers, U2 and
U31, specific for EGFR and EGFRvIII, the design of a new structure containing a
multiloop was selected. It was assumed that the multiloop serves as the recog-
nition element. Based on the results of the computational optimization of the se-
quence for the desired secondary structure by multidimensional Boltzmann scanning
in the RNASketch utility [101,102], the Gol1 aptamer was proposed with the sequence:
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5′-GCCGGCGGCATTTTGACGCCGCCGCCGGCCGGCTGCTTATGCTGCTCCGGGGGG
CATATATGGC-3′.

4.2. Modeling

DNA secondary structure prediction was performed using the ViennaRNA pack-
age [42]. The DNA_Mathews2004 parameter set was used to parameterize the DNA
secondary structure estimation. The visualization of the RNA secondary structure was
performed using the Varna applet [103]. The inverse folding (design) procedure (in-
verse_pf_fold) from the ViennaRNA package was used. We used Python bindings for
the ViennaRNA package to solve the length minimization and secondary structure stabi-
lization problems. All steps were recorded in Jupyter Notebook to achieve reproducibility.

For 3D structure prediction, we used trRosettaRNA [104] with the input sequence
and probable secondary structure; after 10 replicates, 3D structures preserving the original
secondary structure were used for modeling.

MD simulations: We ran three sets of simulations for each “junction” content: AAAA,
ATAT, and TTTT. Each system was run in three independent replicates of 1000 ns each; only
replicates with stable secondary structures were used for further analysis. The GROMACS
2023.4 software package was used to model and analyze MD trajectories. Simulations
were performed in an explicit solvent in the parmbsc1 force field [46] at T = 300 K under
the control of a velocity conversion thermostat [105], with isotropic constant pressure
boundary conditions under the control of the Berendsen pressure coupling algorithm [106],
and applications of the Ewald particle mesh [107] method for long-range electrostatic
interactions (PME). The TIP4P triclinic box [108] of water molecules was added around the
DNA to a depth of 25 Å on each side of the solvent. The negative charges of the systems
were neutralized by the addition of sodium cations, resulting in an ion concentration of
∼0.15 M. Sodium and chloride ions were added to the systems by substituting water
molecules at random positions with a minimum ion spacing of 6 Å.

4.3. Cell Cultures

Primary cultures of human glioblastoma cells G01 and BU881 and primary cultures
of olfactory neuroepithelial lining cells OES-b were obtained from explants provided by
the N.N. Burdenko National Medical Research Center for Neurosurgery (Moscow). This
study was approved by the Ethics Committee of Burdenko Neurosurgical Institute, Russian
Academy of Medical Sciences (№_12/2020). All subjects gave written informed consent
in accordance with the Declaration of Helsinki. The cells were cultured in DMEM/F12
medium (Servicebio, Wuhan, Hubei, China) supplied with 10% FBS (Biowest, Nuaille,
France), 2 mM L-glutamic acid, (Paneco, Moscow, Russia), and 1% antibiotic solution
(penicillin/streptomycin) (Corning, Corning, NY, USA) at 37 ◦C and 5% CO2. Cells were
removed from culture vessels using the Versene solution (Paneco, Moscow, Russia) and
0.25% Trypsin solution (Paneco, Moscow, Russia).

4.4. Cell Cultivation with Aptamers

Aptamers were used in in vitro experiments at a concentration of 10 µM. Prior to
addition to cell culture, aptamers were treated at 95 ◦C followed by cooling at room
temperature for one hour. Cells were treated with the aptamer for 72 h.

4.5. MTS Assay

Changes in cell proliferative activity after exposure to aptamers were assessed by
MTS assay. Cells were seeded at 2000 cells per well in 96-well plates (three replicates) in
DMEM/F12 culture medium. Incubation was performed at 37 ◦C with 5% CO2 for 72 h.
After 72 h, the cells were washed and 100 µL culture medium plus 10 µL MTS reagent
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(Promega, Madison, WI, USA) was added per well. Cells were incubated at 37 ◦C with 5%
CO2 for 2 h. Aptamers were not present in the positive control; the cell medium was used
as a blank. Optical density was measured at l = 495 nm using a CLARIOstar Plus tablet
analyzer (BMG LABTECH, Ortenberg, Germany).

4.6. Transcriptome Analysis

G01 glioblastoma cells were treated with the Gol1 aptamer as described above. For
transcriptome analysis, cells were treated with Trizol reagent (Thermo Fisher Scientific,
Waltham, MA, USA) according to the protocol. The quality and quantity of total RNA were
assessed using a BioAnalyzer and RNA 6000 NanoKit (Agilent, Waldbronn, Germany).
The PolyA fraction was then isolated from the total RNA using the Dynabeads® mRNA
Purification Kit (Ambion, Austin, Texas, USA; Thermo Fisher Scientific, Waltham, MA,
USA) oligoT magnetic beads according to the kit protocol. PolyA RNA libraries were then
generated using the NEBNext® RNA UltraII Kit (NEB, Hitchin, UK), quantified using the
Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA) on a Qbit 2.0
instrument, and fragment length distribution analysis using the Agilent High Sensitivity
DNA Kit (Agilent, Waldbronn, Germany). Sequencing was performed on a HiSeq1500
instrument (Illumina, San Diego, CA, USA) with a minimum of 10 million short reads of
50 nucleotides per sample.

Differentially expressed genes were then calculated using the following algorithm:

1. The reference genome assembly GRCh38.p14 (NCBI RefSeq GCF_000001405.40) was
indexed, and RNA-seq data were aligned using STAR (v. 2.7.11). Gene expression
levels were obtained using HTSeq (v. 2.0.5).

2. Differential expression analysis was performed using DESEQ2 (v. 1.44.0). For further
analysis, only genes with adjusted significance level p < 0.05 and |log2FoldChange|
> 1 were selected.

Gene enrichment analysis using Gene Ontology terms and the Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway database for differentially expressed genes was
performed using the ClusterProfiler package (v. 4.12.0) in R.

4.7. RT-qPCR

EGFRvIII has a deletion of exons 2 to 7. The primers for its cDNA were selected at
the junction of the remaining exons to avoid annealing on the wild-type matrix. One of
the primers to the EGFRwt gene was selected in the deletion zone of the EGFRvIII gene
to exclude amplification from the mutant gene matrix. The specificity of the primers was
tested on genes cloned into plasmids.

Sequence NM_005228.5 was taken as the wild type. This transcription variant encodes
the longest isoform. The forward primer is annealed at the junction of exons 1 and 2, and
the reverse primer is annealed at the second exon (Figure 13a).

The sequence NM_001346941.2 was taken as EGFRvIII. This variant (EGFRvIII, also
known as delta-EGFRwt and de2-7EGFR) has a deletion of six exons in the 5′ coding region
compared to variant 1. The forward primer is annealed at the junction of the first and
eighth exons, while the reverse primer is annealed at the junction of the ninth and eighth
exons (Figure 13b).
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Figure 13. Nucleotide sequence of the primers predicted to match: (a) EGFRwt and (b) EGFRvIII;
(c) primer annealing scheme.

The primer annealing scheme is shown in Figure 13c.
To determine the expression level of EGFR and EGFRvIII, total RNA was isolated

from human glioblastoma G01 and BU881 cells using the RNAzol R⃝ RT reagent (Sigma,
Milwaukee, WI, USA) according to the manufacturer’s protocol. MMLV H minus reverse
transcriptase (Thermo Fischer, Waltham, MA, USA) and N10 random primer (Eurogen,
Eurogen, Russia) were used to obtain cDNA. The obtained cDNA was used for polymerase
chain reaction. PCR-RT parameters: Predenaturation—95 ◦C for 5 min; 40 cycles of am-
plification: 10 s denaturation at 95 ◦C; 30 s primer annealing at 60 ◦C; 30 s extension at
72 ◦C; final extension—72 ◦C for 3 min. Analysis was performed using the LightCycler
96 amplifier and LightCycler 96 software version 1.1 (ROCHE, Basel, Switzerland).

Primers for human genes were selected using the Primer Blast program (NCBI).
GAPDH (glyceraldehyde-3-phosphate dehydrogenase) and RPL13A (ribosomal protein
L13a) were selected as reference genes. The experiment was performed in three replicates.

The primers used in the study are shown in Table 1.

Table 1. Sequence of oligonucleotide primers.

Gene Forward Primer 5′-3′ Reverse Primer 5′-3′

EGFRwt GCTCTGGAGGAAAAGAAAGTTTGC TTCCCAAGGACCACCTCACA
EGFRvIII GCTCTGGAGGAAAAGAAAGGTAAT TTCCGTTACACACTTTGCGG

4.8. Statistical Analysis

MARS software 3.33 was used to analyze the MTS assay data, and target gene ex-
pression levels were measured using the LightCycler® 96 system software 1.1. GraphPad
Prism 9 was used for statistical analysis, data were expressed as mean ± standard error of
the mean, and the p criterion was considered significant when * = p < 0.05, ** = p < 0.01,
*** = p < 0.001, and **** = p < 0.0001. The significance of the MTS test was evaluated by
one-way analysis of variance (ANOVA) followed by the Bonferroni multiple comparison
test. RT-qPCR results were evaluated using multiple unpaired t-tests to compare means in
two cell cultures.

5. Conclusions
In summary, our study introduces a novel way to minimize aptamer structure while

preserving elements of secondary structure with a reverse folding search of the most
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optimal sequence. Precise analysis with molecular dynamics simulations may help us to
choose the most attractive conformation putative recognition element. We applied this
approach to known aptamers to the EGFR and as a result, we suggest a novel DNA aptamer,
Gol1, which is a modified shortened version of the previously known U2 aptamer mapped
to EGFRvIII. On human glioblastoma culture cells, the Gol1 aptamer demonstrated a more
pronounced antiproliferative effect compared to the U2 precursor, with the aptamers having
no statistically significant antiproliferative effect on non-tumor cells. Analysis of changes
in transcriptomic data of human glioblastoma cell culture after treatment with the aptamer
Gol1 revealed profound changes in gene expression; a significant change in gene expression
of the key pro-oncogenic signaling pathways mediated by EGFR was shown. Thus, our
study provides a framework to further explore the potential use of the Gol1 aptamer in the
therapy and diagnosis of glioblastoma.
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