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Abstract: Type 2 diabetes mellitus (T2DM), a prevalent chronic disease affecting over
400 million people globally, is driven by genetic and environmental factors. The pathogene-
sis involves insulin resistance and β-cell dysfunction, mediated by mechanisms such as
the dedifferentiation of β-cells, mitochondrial dysfunction, and oxidative stress. Treatment
should be based on non-pharmacological therapy. Strategies such as increased physical
activity, dietary modifications, cognitive-behavioral therapy are important in maintaining
normal glycemia. Advanced therapies, including SGLT2 inhibitors and GLP-1 receptor
agonists, complement these treatments and offer solid glycemic control, weight control,
and reduced cardiovascular risk. Complications of T2DM, such as diabetic kidney disease,
retinopathy, and neuropathy, underscore the need for early diagnosis and comprehensive
management to improve patient outcomes and quality of life.

Keywords: diabetes type 2; diabetes complications; pathophysiology of type 2 diabetes;
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1. Introduction
T2DM is a disease of civilization; based on the latest data from the NCD Risk Factor

Collaboration (2022), the number of patients was 828 million, of which over 95% had
type 2 diabetes [1]. Statistics show that the prevalence of diabetes will continue to rise
and by 2050, it will be 10.8% in the United States alone; however, this is likely higher
due to varying estimates of the current prevalence of diabetes [1–3]. T2DM is a complex,
multisystemic metabolic disorder characterized by high blood glucose levels resulting
from a progressive defect in insulin secretion or tissue resistance to insulin [4,5]. T2DM
is a common and heterogeneous disorder characterized by varying degrees of beta-cell
dysfunction and insulin resistance. There is a strong association between obesity and T2DM,
involving pathways regulated by the central nervous system. These pathways control
food intake and energy expenditure, integrating information from peripheral organs and
the environment [6]. It should also be mentioned that T2DM is not only a domain of
older people; in recent years, in younger people (<40 years of age), a two- or three-fold
increase in the incidence of T2DM has been noted [7]. In the population of young people,
in order to correctly diagnose and recognize T2DM, it is necessary to exclude other types
of diabetes, which may give a similar medical sign. In the differentiation of T2DM in
young people, we consider type 1 diabetes mellitus (T1DM), latent autoimmune diabetes
of adults (LADA), and maturity onset diabetes of the young (MODY). Establishing the
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correct diagnosis is very important in terms of prognosis, possible complications, and
initiating appropriate treatment [7]. The criteria for diagnosing T2DM (Table 1) in non-
pregnant adults according to the American Diabetes Association (ADA) guidelines include
hemoglobin A1C (HbA1C) ≥ 6.5%, fasting plasma glucose ≥ 126 mg/dL or plasma glucose
after a 2 h oral glucose tolerance test (OGTT) at a dose of 75 g of ≥200 mg/dL, and plasma
glucose in a random test of ≥200 mg/dL with simultaneous symptoms of hyperglycemia or
hyperglycemic crisis; in the case of an equivalent result, the tests should be repeated [8]. In
this article, we would like to present in a clear and understandable way new mechanisms
that play a role in the pathogenesis of T2DM, as well as available treatment methods based
on the latest guidelines with a focus on possible complications.

Table 1. T2DM diagnostic criteria.

Hemoglobin A1C (HbA1C) ≥ 6.5%

or

Fasting plasma glucose ≥ 126 mg/dL

or

Plasma glucose after a 2-h 75-g oral glucose tolerance test (OGTT) of ≥200 md/dL

or

Random plasma glucose concentration of ≥200 mg/dL with classic symptoms of
hyperglycemia or hyperglycemic crisis

2. Pathophysiology of T2DM
T2DM has a multifactorial etiology, a combination of genetic and environmental fac-

tors [9]. The main pathomechanisms in which T2DM is developed are the defect of insulin
production and insulin resistance (IR) in peripheral tissues [9]. The dysfunction of pancreatic
β-cells causes a reduction in insulin secretion that results in the inability to maintain physio-
logical glucose levels, while IR promotes the production of glucose in the liver and decreases
glucose uptake in muscle, liver, and adipose tissue, thus creating a flawed feedback loop
between insulin action and secretion, leading to hyperglycemia [10,11].

2.1. β-Cell Dysfunction

Traditionally, the dysfunction of β-cells has been attributed to the loss of β-cell mass
due to β-cell exhaustion in a state of prolonged elevations in glucose metabolism and insulin
secretion, as well as β-cells apoptosis caused by glucotoxicity and lipotoxicity [12–15].
However, it is suggested that the impaired function of β-cells may be a result of more
complex mechanisms and interactions, which are depicted in Figure 1 [14].

One of the proposed mechanisms is the dedifferentiation of β-cells, a process defined
as the loss of β-cell-defining transcription factors [16]. Such loss of identity of a β-cell can
occur as a result of glucotoxicity [17]. A study by Guo [18] et al. has shown that β-cells
from mice T2DM models and humans with T2DM lost transcription factors associated
with mature β-cells, such as Pdx1 and MafA. Moreover, the inactivation of MafA has been
associated with impaired β-cell glucose-stimulated insulin secretion [19].
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Figure 1. Main mechanisms contributing to β-cell dysfunction.

Another mechanism is the transdifferentiation of β-cells, which is a process of con-
verting one terminally differentiated cell type into another [20]. A study by [21] on the
T2DM mice model has found polyhormonal cells in the pancreatic tissue, which might
suggest transdifferentiation. Another study by [22] on mice has found that the deletion
of transcription factor Nkx2.2 in β-cells resulted in the induced expression of other non-β
cell endocrine features and the creation of reprogrammed and bihormonal cells, while
simultaneously causing the onset of a diabetic phenotype in these mice. A study by Gao
et al. [23] has shown that the loss of Pdx1 transcription factor in β-cells resulted in β-cells
acquiring α-cell physiological features. Similarly, a different study by [20] has found that
β-cells can transdifferentiate into glucagon-secreting α-cells. A study by Cinti et al. [24]
has examined pancreatic islets from diabetic and nondiabetic organ donors and found that
β-cells in humans with T2DM become dedifferentiated and convert to α- and δ-“like” cells.
A study by Spijker et al. [25] has provided more evidence that the loss of β-cells identity
and their conversion into α-cells can occur in vivo, and this is associated with the presence
of islet amyloidosis and diabetes incidence. While more studies on humans are needed, the
identification of mechanisms that trigger the loss of human β-cell identity may propose
new strategies of preventing and delaying the progression of T2DM [25].

β-cells’ function can be impaired through the induction of disallowed genes as
well [16]. Disallowed genes are genes that are upregulated in the state of metabolic stress,
such as T2DM, while the proper markers of β-cells are downregulated [16]. These include
genes that are repressed in pancreatic cells but expressed widely in cells of different tis-
sues [26]. There are several genes proposed as the disallowed genes, including a gene
encoding repressor element 1 silencing transcription factor (REST), whose repression is
necessary for a physiological secretion of insulin [16]. The overexpression of REST has
been associated with lower functional β-cell mass and diabetes [27]. The overly expressed
REST leads to the activation of expression of dual-specificity tyrosine-regulated kinase 1A
(DYRK1A), a kinase involved in the repression of β-cell proliferation, thus resulting in
impaired β-cell compensation in the state of T2DM [27,28]. More studies are needed to
understand the expression of the disallowed genes in β-cells [16]. It is speculated that mech-
anisms such as histone modifications, DNA methylation, and microRNAs are involved in
this process [16].

Chronic hyperglycemia can result in glucotoxicity which promotes the development
and progression of T2DM [29,30]. Elevated levels of NADH and reactive oxygen species
(ROS), which are present in chronic hyperglycemia, have been associated with the dysfunc-
tion of β-cell [31]. However, some of the effects of glucotoxicity on cells may be reversible
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in the mechanism of β-cell reset [32]. For instance, studies on humans with T2DM who
underwent bariatric surgery have shown that it helps restore a normal glucose-stimulated
insulin secretion and normalize blood sugar [32–34].

Mitochondrial dysfunction is another factor that can lead to β-cell dysfunction, as
seen in T2DM, and it has been observed that mitochondria in humans with T2DM are
smaller, fragmented, and swollen [31,35–37]. Mitochondria are a source of ROS, which
β-cells are very sensitive to due to their low levels of antioxidant enzymes and high oxygen
consumption [16,38]. ROS in small amounts exert a beneficial effect of stimulating insulin
expression and are necessary for glucose-induced insulin secretion [39]. However, in larger
amounts, ROS can lead to β-cell dysfunction and death [37]. A study by Fu et al. [40] on
a β-cell line has found that chronic exposure to high glucose and palmitate, which were
used to mimic glucolipotoxicity, was associated with greatly reduced insulin secretion and
elevated levels of ROS. It is speculated to be a cause of defected expression and activity of
MafA in the state of oxidative stress [18].

Thioredoxin-interacting protein (TXNIP), which is a factor associated with oxidative
stress and glucotoxicity, has been found in elevated levels in prediabetic and T2DM pa-
tients [41,42]. TXNIP has been shown to promote β-cell apoptosis, while its deletion has
been found to promote insulin production and glucagon-like peptide 1 signaling [42].
Therefore, data suggest that TXNIP may be a new therapeutic target for T2DM [42].

The state of hyperglycemia and increased insulin production can lead to endoplasmic
reticulum (ER) stress, which can result in unfolded protein response (UPR) in β-cells [43,44].
Unfolded protein response is a compensatory reaction that inhibits protein production to
allow for the refolding or degradation of improperly folded proteins [45,46]. Yet, prolonged
and uncontrolled UPR can lead to the upregulation of CHOP, which is a protein involved
in apoptosis, and therefore, increased cell death [16]. A study by Arunagiri et al. [47]
has shown that the accumulation of misfolded proinsulin leads to exacerbated ER stress,
UPR, decreased synthesis of insulin, hyperglycemia, and diabetes. Moreover, the increased
accumulation of islet amyloid polypeptide in β-cells is also suggested as a factor leading to
ER stress and the development of T2DM [48].

Systemic inflammation and hyperglycemia, which are present in T2DM, can lead to
alterations in prostaglandin signaling [49]. One of the upregulated signaling molecules
in T2DM is prostaglandin E2 (PGE2), which binds to a few different receptors, including
EP2 [49,50]. EP2 expression is elevated in T2DM, which suggests that its activity contributes
to defects in the compensatory mechanism of β-cells [49]. Moreover, it has been found that
the blockade of EP2 leads to enhanced β-cell proliferation and survival, proposing it as a
new treatment target for T2DM [49,50].

2.2. Insulin Resistance (IR)

IR means a decline in a target cell’s metabolic response to insulin or, at a systemic
level, a decreased blood glucose-lowering effect of insulin [51]. IR can be a result of
decreased insulin secretion, insulin antagonists in the plasma, and diminished insulin
response in target tissues [52]. The action of insulin is regulated by different hormones,
including growth factors and insulin-like growth factor 1 (IGF-1) in the fed state and
glucagon, glucocorticoids, and catecholamines in the state of fasting [53,54]. Therefore, the
immoderate production of these hormones may promote IR [53,54]. The balance between
insulin and glucagon is especially important since it determines the relative degree of
phosphorylation of downstream enzymes in the regulatory signaling pathways [53,54].

IR of skeletal muscles is regarded as one of the most essential extra-pancreatic factors in
the development of T2DM [55]. In the physiological state, insulin promotes the production
of glycogen in skeletal muscle via glucose uptake from plasma [56]. One of the most
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important factors in this process is glucose transporter type 4 (GLUT4), which translocates
from intracellular compartments upon insulin binding to the insulin receptor (INSR) in
muscle cells, which allows for glucose uptake as depicted in Figure 2 [57]. Therefore, any
mutations that reduce the expression of INSR or GLUT4 and all defects in upstream or
downstream signaling pathways can result in reduced glucose intake into the muscle and
thus a hyperglycaemic state [51]. Moreover, mutations of INSR tyrosine kinase, which
allows for insulin-mediated signaling, and any key proteins of the downstream signaling
pathway such as insulin receptor substrate 1 (IRS-1) and insulin receptor substrate 2 (IRS-2)
or phosphoinositide 3-kinase (PI3K) could also lead to an impaired insulin effect on the
muscle tissue [51,58]. Environmental factors also play a role in glucose intake; in obesity,
increased immune cell infiltration and the secretion of proinflammatory molecules can
result in skeletal muscle inflammation, thus leading to myocyte inflammation, impaired
myocyte metabolism, and the promotion of IR via paracrine effects [59]. On the contrary,
physical activity is known to increase the blood flow into the muscle, which leads to
enhanced glucose uptake and thus reduced IR [60].

Int. J. Mol. Sci. 2025, 26, x FOR PEER REVIEW  5  of  26 
 

 

muscle cells, which allows for glucose uptake as depicted in Figure 2 [57]. Therefore, any 

mutations that reduce the expression of INSR or GLUT4 and all defects in upstream or 

downstream signaling pathways can result in reduced glucose intake into the muscle and 

thus a hyperglycaemic state [51]. Moreover, mutations of INSR tyrosine kinase, which al-

lows for insulin-mediated signaling, and any key proteins of the downstream signaling 

pathway such as insulin receptor substrate 1 (IRS-1) and insulin receptor substrate 2 (IRS-

2) or phosphoinositide 3-kinase (PI3K) could also lead to an impaired insulin effect on the 

muscle tissue [51,58]. Environmental factors also play a role in glucose intake; in obesity, 

increased  immune cell  infiltration and  the secretion of proinflammatory molecules can 

result in skeletal muscle inflammation, thus leading to myocyte inflammation, impaired 

myocyte metabolism, and the promotion of IR via paracrine effects [59]. On the contrary, 

physical activity is known to increase the blood flow into the muscle, which leads to en-

hanced glucose uptake and thus reduced IR [60]. 

 

Figure 2. Insulin signal transduction in a normal glucose-tolerant state. 

An impaired response to insulin by adipose tissue can result in compromised sup-

pression of lipolysis, impaired glucose uptake, and enhanced free fatty acid (FFA) release 

into the plasma even in the presence of high insulin levels [61]. Moreover, the accumula-

tion of FFA in the liver can lead to compromised insulin signaling and, thus, the promo-

tion of hepatic gluconeogenesis and impaired glucose-stimulated insulin response, which 

can  induce  the development of T2DM  [51]. Studies have also shown  that  the defective 

activation of protein kinase B (AKT) promotes the lipolytic enzymes that further worsen 

hyperglycemia [51]. Furthermore, increased adipose tissue mass, such as in obesity, has 

been associated with pathologic vascularisation, hypoxia, fibrosis, and inflammation [62]. 

Obesity and high-fat diets have been shown to be able to promote the activation of satu-

rated FFA-stimulated adenine nucleotide translocase 2 (ANT2), an  inner mitochondrial 

protein that promotes adipocyte hypoxia and the activation of the transcription factor hy-

poxia-inducible factor-1α (HIF-1α), thus causing adipose tissue dysfunction and inflam-

mation [62,63]. Hypertrophied adipocytes are also responsible for elevated levels of pro-

inflammatory cytokines, which result in a chronic state of low-grade systemic inflamma-

tion, also referred to as metabolic inflammation [63]. The aforementioned state of meta-

bolic inflammation is regarded as an essential factor in the pathogenesis of IR and T2DM 

[64]. 

In the liver, insulin partakes in regulating glucose production and utilization, and it 

affects lipid metabolism via different downstream pathways that regulate multiple meta-

bolic processes, such as glycogen synthesis, gluconeogenesis, glycolysis, and lipid synthesis 

[65]. The regulation of hepatic glucose output is achieved via the combined action of gluca-

gon and insulin; glucagon promotes the synthesis of glucose, while insulin inhibits it if se-

rum glucose is elevated [66]. Moreover, insulin promotes the activation of transcription fac-

tor forkhead box protein O1 (FOXO1), which leads to the inhibition of key enzymes for glu-

coneogenesis [67]. Thus, insulin promotes the storage of glucose as glycogen and inhibits 

glucose synthesis and glucose output [67]. However, in the state of IR, the levels of circulat-

ing insulin are not sufficient to exert an appropriate insulin response in hepatic cells [68]. In 

the liver, IR diminishes the production of glycogen, fails to suppress glucose production, 

and promotes lipogenesis and the synthesis of proinflammatory proteins [67]. The excessive 

synthesis of such proinflammatory cytokines in the state of oxidative stress can result in a 

systemic inflammatory state that is responsible for impaired insulin response induced by 

the liver [67]. 

Insulin  INSR  IRS‐1  p85  p110  Akt  GLUT‐4 

Figure 2. Insulin signal transduction in a normal glucose-tolerant state.

An impaired response to insulin by adipose tissue can result in compromised suppres-
sion of lipolysis, impaired glucose uptake, and enhanced free fatty acid (FFA) release into
the plasma even in the presence of high insulin levels [61]. Moreover, the accumulation of
FFA in the liver can lead to compromised insulin signaling and, thus, the promotion of hep-
atic gluconeogenesis and impaired glucose-stimulated insulin response, which can induce
the development of T2DM [51]. Studies have also shown that the defective activation of pro-
tein kinase B (AKT) promotes the lipolytic enzymes that further worsen hyperglycemia [51].
Furthermore, increased adipose tissue mass, such as in obesity, has been associated with
pathologic vascularisation, hypoxia, fibrosis, and inflammation [62]. Obesity and high-fat
diets have been shown to be able to promote the activation of saturated FFA-stimulated
adenine nucleotide translocase 2 (ANT2), an inner mitochondrial protein that promotes
adipocyte hypoxia and the activation of the transcription factor hypoxia-inducible factor-1α
(HIF-1α), thus causing adipose tissue dysfunction and inflammation [62,63]. Hypertrophied
adipocytes are also responsible for elevated levels of proinflammatory cytokines, which
result in a chronic state of low-grade systemic inflammation, also referred to as metabolic
inflammation [63]. The aforementioned state of metabolic inflammation is regarded as an
essential factor in the pathogenesis of IR and T2DM [64].

In the liver, insulin partakes in regulating glucose production and utilization, and
it affects lipid metabolism via different downstream pathways that regulate multiple
metabolic processes, such as glycogen synthesis, gluconeogenesis, glycolysis, and lipid
synthesis [65]. The regulation of hepatic glucose output is achieved via the combined action
of glucagon and insulin; glucagon promotes the synthesis of glucose, while insulin inhibits it
if serum glucose is elevated [66]. Moreover, insulin promotes the activation of transcription
factor forkhead box protein O1 (FOXO1), which leads to the inhibition of key enzymes
for gluconeogenesis [67]. Thus, insulin promotes the storage of glucose as glycogen and
inhibits glucose synthesis and glucose output [67]. However, in the state of IR, the levels
of circulating insulin are not sufficient to exert an appropriate insulin response in hepatic
cells [68]. In the liver, IR diminishes the production of glycogen, fails to suppress glucose
production, and promotes lipogenesis and the synthesis of proinflammatory proteins [67].
The excessive synthesis of such proinflammatory cytokines in the state of oxidative stress
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can result in a systemic inflammatory state that is responsible for impaired insulin response
induced by the liver [67].

2.3. Role of Gut Microbiota

Evidence suggests that gut microbiota partake in the pathophysiology of multiple
chronic diseases, T2DM included [69]. A study by Gurung et al. [69], after summarizing
42 human studies on microbial associations with T2DM, has found that the genera of
Ruminococcus, Fusobacterium, and Blautia were positively associated with T2DM, while
the genera of Bifidobacterium, Bacteroides, Faecalibacterium, Akkermansia, and Roseburia were
negatively associated with T2DM. Gut microbiota can contribute to the development of
T2DM through multiple molecular mechanisms [70]. For instance, studies have found that
microbes such as Fusobacterium nucleatum and Ruminococcus gnavus, which are associated
with T2DM, partake in increasing the synthesis of inflammatory cytokines, which play
a role in the development of diabetes, as well as in other diseases like colorectal cancer
and inflammatory bowel disease [71,72]. However, gut microbiota can influence T2DM
positively as well; for example, it has been shown that Lactobacillus gasseri BNR17 increases
the expression of GLUT-4 in the muscle, thus exerting a potential anti-diabetes effect [73].
Moreover, gut microbiota can also influence the development of T2DM via microbial
metabolites [74]. These metabolites include short-chain fatty acids (SCFAs) such as acetate,
propionate, and butyrate [74]. SCFAs have been observed to improve glucose metabolism
via the activation of intestinal gluconeogenesis and exert insulin-sensitizing effects as
well [75,76]. SCFAs have been found to improve systemic inflammation via the suppression
of proinflammatory cytokines and the infiltration of immune cells into adipose tissue, as
well as the promotion of anti-inflammatory cytokines [77–79]. Branched SCFAs (BSCFAs),
such as isobutyric, isovaleric, and methylbutyric acids, are microbial metabolites produced
via the fermentation of the branched-chain amino acids [80]. A study by Aslamy et al. [81]
has found that a high level of BSCFAs in the blood is associated with a lower prevalence of
dyglicemia and improved glucose homeostasis. Furthermore, microbial metabolites such
as bile acids and indole derivatives seem to be positively correlated with improved glucose
metabolism and a lower risk of T2DM [74]. However, metabolites such as trimethylamine,
branched-chain amino acids (BCAAs), and imidazole propionate are suggested to play
a role in the pathogenesis of T2DM [74]. While evidence supports the claim that gut
microbiota is an important factor in glucose metabolism and the development of diabetes,
more studies are needed to properly utilize that knowledge [69].

2.4. Role of Fat Mass

Excessive caloric consumption and a positive energy balance lead to the increased
accumulation of lipids, obesity, and related comorbidities [82]. A dysfunction of long-term
fat storage in the white adipose tissue, due to the inability of subcutaneous adipose tissue
to expand properly through hyperplasia, can lead to increased cardiometabolic risk and
obesity-related diseases such as T2DM [83]. Evidence suggests that the distribution of
fat mass is an important factor in overall metabolic health, which studies defined as an
increased gluteofemoral and leg fat mass, together with high insulin sensitivity and high
insulin secretion [83,84]. On the other hand, an increased visceral fat mass, increased
subcutaneous abdominal fat mass, and high liver fat content can be connected to a higher
cardiometabolic risk [83,84]. Increased visceral fat mass has been linked with dysregulated
adipokine secretion, inflammation, increased levels of fatty acids in the blood, and ectopic
lipid deposition in organs such as the pancreas, liver, and muscles, thus increasing the risk
of T2DM [83,85]. Subcutaneous abdominal adipose tissue is divided by the Scarpa’s fascia
into superficial subcutaneous adipose tissue, which has a favorable metabolic profile, and



Int. J. Mol. Sci. 2025, 26, 1094 7 of 24

deep subcutaneous adipose tissue, which is a strong independent risk factor of insulin
resistance because of its high expression of proinflammatory, lipogenic, lipolytic genes and
its high content of saturated fatty acids [83,86]. Evidence suggests that deep subcutaneous
adipose tissue expands more significantly with an increase in total body mass, making it
the prevalent subcutaneous abdominal adipose tissue in obese patients [86].

Moreover, the distribution of fat mass is also crucially important in patients with
normal weight, as findings suggest that a lipodystrophy-like phenotype exists in the general
population [84]. Studies have found that normal-weight patients who are metabolically
unhealthy have higher visceral fat mass, liver fat content, and lower subcutaneous leg fat
mass [84]. Normal-weight patients with a lipodystrophy-like phenotype are also strongly
characterized by insulin resistance and impaired secretion of insulin [84].

Obesity is often measured using body mass index (BMI), which is an approximation of
fat mass [87]. Evidence suggests that height can significantly interact with the correlation
between BMI and total fat mass, as the positive relationship between BMI and total body
fat mass becomes stronger with increasing height [87]. A study by Wittenbecher et al. [88]
has found that higher adult height is linked to a lower risk of T2DM. However, a study
by Stefan et al. [87] has shown a highly significant interaction between height and BMI
on the prevalence of T2DM. These findings suggest that BMI better reflects fat mass and
cardiometabolic risk in people of higher height compared with shorter individuals [87].
Moreover, since people nowadays are taller on average, they face a larger BMI-associated
health burden for a similar BMI than people in the past [87]. Therefore, it is important
to account for height changes over the past to improve the estimation of the burden of
cardiometabolic diseases associated with obesity [87].

3. Pharmacological Methods of Treatment
3.1. SGLT2 Inhibitors

Relatively new medications used in the treatment of T2DM include SGLT2 inhibitors
(SGLT2is), also known as gliflozins. Sodium–glucose cotransporter 2 (SGLT2), found in the
proximal tubule of the kidney, plays a key role in glucose reabsorption by moving glucose
from the lumen of the renal tubule into the epithelial cells lining the tubule [89]. An SGLT2i
works by blocking the activity of this protein, which results in lower glucose levels in the
bloodstream [89]. Most of SGLT2i compounds are predominantly selective for SGLT2, found
in the renal proximal tubules, with a selectivity that is 200–2500 times greater compared
to SGLT1, which is present in both the kidneys and the gastrointestinal tract [90]. Clinical
studies of SGLT2 inhibitors have consistently demonstrated their effectiveness in lowering
blood glucose levels, with reductions in HbA1c ranging from 0.5 to 0.9% (5–9 mmol/mol)
after 12 months of therapy. Additionally, the glucoretic effect contributed to a clinically
meaningful decrease in systolic blood pressure (SBP) by approximately 2.5–5.0 mm Hg
and an average weight loss of about 2 kg [91]. Meta-analyses of clinical studies involving
patients using SGLT2 inhibitors have demonstrated notable reductions in body weight.
This effect is primarily linked to caloric loss and a metabolic shift from glucose utilization to
ketone and fatty acid metabolism. This transition promotes increased fat burning, thereby
contributing to weight loss [91–93]. Treatment with these medications can be initiated when
the estimated glomerular filtration rate (eGFR) exceeds 60 mL/min/1.73 m2 and should
be re-evaluated if it decreases to 45 mL/min/1.73 m2, as the glucose-lowering efficacy of
SGLT2i is mainly dependent on renal function [76]. SGLT2is are advised as a component
of holistic treatment plans, as they not only help lower blood sugar levels but have also
been shown in numerous studies to decrease the risk of chronic kidney disease (CKD)
progression and cardiovascular disease (CVD) complications [94–96]. Genital infections are
a notable side effect of SGLT2i therapy, primarily resulting from glucosuria, which provides
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an environment conducive to pathogen growth. The main etiological agents of these
infections, associated with flozins, are fungi. These infections are more commonly observed
in women (10%) compared to men, where the incidence ranges from 2% to 3% [97,98].
Other rare side effects associated with flozins include diabetic ketoacidosis, particularly
among patients using insulin or undergoing surgical procedures [91]. Additionally, an
increased incidence of lower limb amputations has been reported in patients treated with
canagliflozin [95].

3.2. GLP-1 Receptor Agonists

Glucagon-like peptide (GLP-1) receptor agonists are newly approved medications for
the treatment of diabetes and obesity. GLP-1 is an intestinal peptide secreted by epithelial
L-cells in response to nutrient intake, particularly glucose and lipids. GLP-1 exerts physi-
ological effects on various organs. As an incretin, it enhances glucose-dependent insulin
secreted by pancreatic β-cells, promotes β-cell neogenesis, inhibits β-cell apoptosis, and
suppresses glucagon secretion from α-cells (as observed in rodent studies). Additionally,
GLP-1 influences other tissues and organs, including the stomach by delaying gastric emp-
tying, the heart by exerting cardioprotective effects, and adipose tissue and skeletal muscle
by improving glucose uptake, and it also acts centrally on neurons in the hypothalamus,
inducing a feeling of satiety [99–101]. Therapy with GLP-1 receptor agonists suppresses
appetite, resulting in weight loss. This, in turn, has a broad impact on improving patients’
quality of life and reducing the risk of cardiovascular and renal complications [102]. Various
GLP-1 receptor agonists have been authorized for managing T2DM, including exenatide,
liraglutide, lixisenatide, dulaglutide, and semaglutide. These medications are primarily
administered via subcutaneous injection, although an oral formulation of semaglutide
is also available [102]. Scientific studies have demonstrated that GLP-1 analogs improve
glycemic control in patients with T2DM and additionally contribute to a reduction in
SBP. Long-acting agents within this drug class are associated with more effective glucose
lowering and exhibit fewer gastrointestinal side effects compared to their short-acting
counterparts [103–106]. Given that GLP-1 analogs are a relatively new and insufficiently
studied class of drugs, their adverse effects are not yet fully understood. However, among
the side effects identified so far, nausea and vomiting are the most common. Furthermore,
nasopharyngitis and headaches associated with injections may occasionally occur [107].

3.3. DPP-1 Inhibitors

After the discovery of GLP-1, targeting DPP-4 inhibition became a key focus in research.
Blocking DPP-4 significantly impacts incretin hormone activity by raising the levels of
endogenous active peptides in the bloodstream [108]. The primary effects associated with
DPP-4 inhibition are attributed to elevated GLP-1 levels. As a result, DPP-4 emerged as
an important target for managing T2DM [109]. The DPP-4 enzyme, found extensively in
endothelial cells, the immune system, and various other tissues, plays a crucial role in
glucose metabolism by deactivating incretin hormones such as glucagon-like peptide-1
(GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). Blocking DPP-4 prolongs
the half-life of GLP-1, enhancing insulin release and reducing glucagon secretion in a
glucose-dependent way. Beyond their role in regulating glucose, GLP-1 and GIP also have
cardiovascular benefits, including enhancing endothelial function, reducing oxidative stress,
and providing anti-inflammatory effects, which may offer advantages in the treatment
of heart failure [110,111]. To date, five DPP-4 inhibitors, known as gliptins, have been
approved for clinical use: sitagliptin, vildagliptin, linagliptin, saxagliptin, and alogliptin.
These medications share a similar mechanism of action but differ in their pharmacokinetic
properties. Sitagliptin and alogliptin are primarily eliminated through renal excretion,
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whereas hepatic metabolism is the main pathway for saxagliptin elimination. Linagliptin,
on the other hand, is predominantly excreted via the biliary route [112]. The most common
adverse effects associated with DPP-4 inhibitor therapy include nasopharyngitis, skin
rash, and mild gastrointestinal disturbances [113]. Additionally, this class of drugs has no
significant impact on body weight. DPP-4 inhibitors increase GLP-1 levels by two- to three-
fold, compared to a ten-fold increase observed with GLP-1 receptor agonists. Despite their
numerous benefits, DPP-4 inhibitors are less effective in reducing HbA1c levels compared
to GLP-1 receptor agonists [114].

3.4. Tirzepatide

Tirzepatide is a novel medication that leverages the dual agonism of glucose-
dependent insulinotropic polypeptide (GIP) and GLP-1 receptors, resulting in improved
blood glucose control and significant weight reduction [115,116]. Its affinity for the GIP
receptor is equivalent to that of endogenous GIP, while its affinity for the GLP-1 receptor is
five times lower than that of endogenous GLP-1 [117,118]. Additionally, tirzepatide exerts
beneficial effects on blood pressure (BP), LDL cholesterol, and triglyceride levels, suggesting
a potential role in reducing the risk of complications associated with T2DM [119–121].

In 2021, the SURPASS-1 trial—a randomized, double-blinded clinical study—was
conducted to evaluate the efficacy of tirzepatide administered via weekly subcutaneous
injections compared to placebo in patients with T2DM inadequately controlled by diet and
exercise alone. The study demonstrated that tirzepatide, at all tested doses, was significantly
more effective than placebo in reducing body weight, fasting serum glucose, and HbA1c
levels. A summary of the SURPASS-1 study outcomes is presented in Table 2 [122].

Table 2. Results of the SURPASS-1 trial.

Outcomes
Tirzepatide

5 mg
(n = 121)

Tirzepatide
10 mg

(n = 121)

Tirzepatide
15 mg

(n = 120)

Placebo
(n = 113)

HbA1c (%)

baseline 7.97 7.88 7.88 8.08

from baseline −1.87 −1.89 −2.07 0.04

versus placebo −1.91 −1.93 −2.11

Weight (Kg)
from baseline −7.0 −7.8 −9.5 −0.7

versus placebo −6.3 −7.1 −8.8

In the SURPASS-1 trial, tirzepatide demonstrated remarkable efficacy in glycemic
control compared to placebo, and this led to significant weight loss without an increased
risk of hypoglycemia. Its safety profile aligned with that observed for GLP-1 receptor
agonists [122].

In 2021, a study comparing the efficacy of once-weekly tirzepatide and semaglutide in
patients with type 2 diabetes was conducted. A total of 1879 participants were randomized
into four study groups, receiving either tirzepatide at doses of 5 mg, 10 mg, or 15 mg
or semaglutide at a dose of 1 mg. The study demonstrated that the groups treated with
tirzepatide achieved greater reductions in HbA1c levels and body weight compared to the
semaglutide group. Additionally, the tirzepatide groups showed improvements in blood
pressure reduction and lipid profile. Adverse events observed in both treatment groups
were similar, primarily involving mild to moderate gastrointestinal symptoms [123].

4. Non-Pharmacological Methods of Treatment
Non-pharmacological approaches should be an important part of the treatment of

T2DM. Pharmacological approaches may be included when lifestyle modification alone is
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not sufficient to achieve positive results [124]. Recent research supports a holistic, integra-
tive approach to managing T2DM, combining pharmacological treatments with lifestyle
changes and psychosocial interventions. In the following paragraph, non-pharmacological
methods of treating and supporting the healing process of T2DM will be discussed (Table 3).

4.1. Exercise

Physical activity may be important in the treatment of T2DM. Importantly, recent
research shows that in addition to the activity itself, its type is also important. Regular
resistance exercise has been shown to improve glycemic control, insulin sensitivity, and
muscle function in individuals with T2DM. Combining aerobic and resistance exercises
appears to be more effective than single-mode training in managing blood glucose levels
and enhancing overall metabolic health [125]. Interestingly, studies comparing a group of
T2DM patients taking metformin and a group not taking metformin during the 12-week
inter-day concurrent training program showed similar effectiveness in improving metabolic
markers in patients with IR as the metformin treatment alone. Both exercise groups
demonstrated a significant reduction in insulin sensitivity and an increase in maximal fat
oxidation [126].

4.2. Dietary Interventions

Low-calorie high protein diets improved glucose metabolism and other cardiometabolic
outcomes, regardless of protein source (either animal or plant sources), in outpatients with
prediabetes or T2DM [127]. The meta-analysis showed that the Mediterranean diet is
an effective form of dietary intervention in improving glycemic control, and the low-
carbohydrate diet obtained the highest result in anthropometric measurements in people
with T2DM and comorbid overweight/obesity [128].

4.3. Bariatric Surgery

T2DM often co-occurs with obesity. Bariatric surgery is believed to be effective in
treating both T2DM and obesity [129]. It is evident that surgeries like sleeve gastrectomy,
one-anastomosis gastric bypass, and Roux-en-Y gastric bypass have the potential to induce
remission of T2DM. Factors such as age, baseline BMI, HbA1c, the use of antidiabetic
medication, and the duration of diabetes play a major role in T2DM remission alongside
the choice of bariatric surgery [130]. Bariatric surgery is less likely to result in remission
in patients with a history of insulin therapy and longer durations of T2DM prior to the
surgery [131].

4.4. Behavioral and Psychological Interventions

Psychological factors can significantly impact the management of T2DM. Recent
studies have emphasized the importance of integrating psychological interventions with
standard diabetes care. Cognitive-behavioral therapy (CBT) has proven to be an effective
treatment for patients with diabetes. The results of a meta-analysis indicate a significant
reduction in HbA1c, fasting blood glucose, and diastolic blood pressure (DBP) in patients
with diabetes on CBT [132]. Results from a meta-analysis indicated that behavioral strate-
gies had a better effect on glycemic control, and cognitive strategies had a better effect
on depressive symptoms. Among the techniques used, the advantages of interventions
that emphasized homework assignments, stress management, and interpersonal strategies
were particularly important [133]. Another form of psychological support for patients with
T2DM is mindfulness-based stress reduction (MBSR). Although the meta-analysis found
no effect of MBSR on HbA1C post-intervention or at follow-up, the results suggest that
MBSR appears to be an effective treatment for improving mental health and mindfulness
in individuals with T2DM [134].
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4.5. Hyperbaric Oxygen Therapy

Most studies have demonstrated a decrease in blood glucose levels after hyperbaric
oxygen therapy (HBOT) in patients with T2DM. Additionally, some research has indicated
a significant reduction in HbA1c following HBOT. The mechanism underlying the decrease
in blood glucose levels from HBOT seems to be primarily linked to improved insulin
sensitivity rather than an increase in insulin secretion [135]. HBOT is also described in
the context of treating limb ulcers in patients with T2DM. The results of several studies
suggest low or moderate recommendation values, but further research on this topic is
needed [136,137].

4.6. Probiotics

The consumption of probiotics and synbiotics has positive effects on the glycemic
profile of people with prediabetes and T2DM [138]. Probiotics treatment may reduce
glycated hemoglobin A1c (HbA1c), fasting blood glucose (FBG), and insulin resistance level
(HOMA-IR) in T2DM patients [139]. Additionally, the intake of probiotics or synbiotics
may serve as an effective intervention to enhance cardiometabolic health by reducing
inflammation and oxidative stress in individuals with prediabetes and T2DM [140].

Table 3. Non-pharmacological methods of treatment for T2DM [124,126,129,131,135,139]. T2DM
indicates type 2 diabetes mellitus; HbA1c, hemoglobin A1C.

Non-Pharmacological Methods of Treatment T2DM

Type of Method: Positive Effects of Therapy:

Exercise Improvements in glycemic control,
insulin sensitivity, and muscle function.

Dietary Interventions Improvements in glucose metabolism
and cardiometabolic outcomes.

Bariatric Surgery Possibility of remission and weight loss in obese
patients with T2DM.

Behavioral and Psychological Interventions Reductions in HbA1c, fasting blood glucose,
and improvements in mental health.

Hyperbaric Oxygen Therapy Possibility of reductions in blood glucose levels
and HbA1c.

Probiotics Improvements in glycemic profile and
cardiometabolic health.

5. Complications of T2DM
5.1. DKD

Diabetic kidney disease (DKD) is a microvascular complication of DM [141], devel-
oping in 40% of people with T2DM [142]. It is the most common form of CKD [143] and
the cause of 50% of end-stage renal disease (ESRD) worldwide [144]. It is the strongest risk
factor for mortality in DM patients [145]. The risk of death from CVD in people with DKD
and T2DM is 13% higher on a 10-year basis compared to T2DM without DKD. [146] In the
course of DKD, renal function is impaired, or albuminuria occurs [147]. Tests for DKD in
patients with T2DM should be performed at the time of diagnosis of DM [148]. Primary
prevention includes the appropriate control of glycemia, hypertension, the treatment of
dyslipidemia, and lifestyle modifications [149]. Drugs used in DKD include SGLt2i, GLP-1,
dipeptidyl peptidase 4 (DPP4) inhibitors, statins, and angiotensin-converting enzyme
inhibitors (ACEIs) [150].
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5.2. Diabetic Retinopathy

The most common cause of ocular vascular disease is diabetic retinopathy (DR) [151].
In 2020, DR occurred in 103 million people, and this number may reach 130 million in 2030
and even 161 million in 2045 [152]. As many as 60% of people with T2DM will develop
a complication in the form of DR after 20 years of disease duration [153], and it is the
duration of the disease that is the most important factor in its development [154]. In people
suffering from T2DM, the complication of DR occurs three times less frequently compared
to T1DM [122]. It occurs in 30–40% of patients with DM [124]. DR is more common in
women, but its course is worse in men [155]. It is the fifth cause of vision loss in the
world [156]. Symptoms that may accompany this complication include blurred vision,
distorted vision, and the partial or complete loss of vision [157]. Techniques such as pars
plana vitrectomy (PPV), panretinal laser photocoagulation (PRP), and intravitreal anti-
vascular endothelial growth factor (anti-VEGF) injections have been used in the treatment
of DR [158].

5.3. Neuropathy

The most common complication of diabetes is neuropathy [159]. Neuropathy occurs
in almost 45% of T2DM patients [160]. In the course of DM, we can distinguish the
following forms of neuropathy: distal symmetric polyneuropathy, autonomic neuropathy,
radiculo-plexopathy, and mononeuropathy [161]. Distal symmetric polyneuropathy is the
most common form of neuropathy in DM [162]. Symptoms occurring in the course of
neuropathy include pain, tingling, paresthesia, numbness, and increased sensitivity to
stimuli [163]. Appropriate glycemic control helps prevent or slow down the development
of the disease [164]. Testing for this complication should take place at the time of diagnosis
of T2DM [165]. In symptomatic treatment, painkillers such as gabapentin, pregabalin,
tricyclic antidepressants (TCAs), venlafaxine, and duloxetine are used [166].

5.4. Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD)

In the pathogenesis of MASLD, the excessive consumption of glucose, fructose, and
saturated fatty acids is important, which leads to insulin resistance, inflammation, and
oxidative stress in the liver, which in turn promotes the development of liver cirrhosis. Ad-
ditionally, changes in the intestinal microbiome and disorders in the release of adipokines
and cytokines from inflamed adipose tissue enhance this pathogenic process [167]. Addi-
tionally, changes in the intestinal microbiome and disorders in the release of adipokines
and cytokines from inflamed adipose tissue enhance this pathogenic process (the one they
gave in the review). In the pathophysiology of MASLD, in addition to global metabolic
mechanisms, intrahepatic pathways play a key role. Various genetic variants have been
identified, such as PNPLA3, TM6SF2, MBOAT7, GCKR, and HSD17B13, which regulate
triglyceride mobilization, VLDL secretion, and processes related to lipogenesis and lipid re-
modeling [168,169]. Risk factors include obesity, type 2 diabetes, hypertriglyceridemia, and
metabolic syndrome [170]. The treatment of this disease includes lifestyle modifications,
diet, and antidiabetic drugs [171].

5.5. Coronary Artery Disease

People with diabetes predominantly experience mortality due to ischemic heart disease
about two to four times more frequently compared to people free of diabetes. Additional
risk elements, universally applicable across populations, include hypertension, hyperc-
holesterolemia, the presence of microvascular complications, advanced age, sex, smoking
status, glycemic control, and elevated body mass index (BMI) [172]. The appearance of one
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or more of these risk factors, however, may result in a worse quality of life for people with
diabetes than for people without it [173].

Ischemic heart disease is characterized by an imbalance between myocardial oxygen
supply and demand, leading to compromised blood flow and subsequent myocardial in-
jury [174]. This condition is strongly linked to coronary artery disease (CAD), whose initial
clinical manifestation may present as an acute myocardial infarction resulting from the dis-
ruption of atherosclerotic plaques, leading to the obstruction of the coronary vessels [175].
The hallmark symptoms include angina and chest pain, typically described as a pressure or
discomfort located retrosternally, which may radiate to the jaw, shoulder, or arm. Other
signs of CAD include dyspnea, diaphoresis, fatigue, nausea, and lightheadedness [176].

5.6. Stroke

Stroke, as a major component of CVD, poses a significant healthcare challenge not only
for developing countries but also for developed ones, with far-reaching consequences for
patients’ health and lives. Additionally, it incurs substantial cost for society, estimated at
$273–818 billion in the United States alone [177]. Patients with diabetes, according to data
from the Greater Cincinnati/Northern Kentucky stroke study, are more likely to suffer from
ischemic stroke incidents in every age group than patients without this disease, especially
before the age of 65 in Whites and 55 in African Americans [178]. It has been discovered
that prediabetes may also be a cause of higher frequency of stroke [179].

There are two groups in which stroke symptoms can be classified: acute and long-term.
Acute symptoms are especially crucial for revealing whether the patient will experience
post-stroke disability [180]; therefore, a quick reaction to them is critical for maintaining
a better quality of life [181]. Healthcare workers should pay attention to symptoms such
as numbness, confusion, and dizziness, as well as general weakness, difficulty speaking,
problems with coordination, and ophthalmological or even less common signs like vertigo,
dysarthria, or partial sensory deficiency [182]. Acute stroke symptoms can persist beyond
the initial event, potentially leading to long-term disabilities that may necessitate extended
recovery periods or rehabilitation efforts. The most common symptoms include pain,
anxiety, depression, and tiredness. It has been discovered that at least one-fourth of patients
after a stroke will experience one or more of these symptoms [183–185].

Strokes are broadly classified into the more common ischemic type and the more lethal
hemorrhagic type. The prevention of stroke in people with diabetes mainly focuses on
lifestyle changes, such as quitting smoking, managing physical activity, and achieving
weight loss [186], or through pharmacological and surgical interventions [187]. The combi-
nation of managing glucose levels, blood pressure (BP), and lipids along with the use of
renin–angiotensin system (RAS) inhibitors, statins, and aspirin, has been shown to lower
the risk of stroke [188].

5.6.1. Ischemic Stroke

Clinical deterioration, the reason for ischemic stroke, arises from a possibly reversible
inadequately perfused brain region known as the penumbra. If untreated, this region
progressively evolves into irreversibly damaged tissue referred to as the core [189]. The
type of ischemic stroke known as large vessel occlusion (LVO) stroke, responsible for over
50% of all stroke cases, occurs due to the blockage of major intracranial branches of the
internal carotid artery, such as the proximal segments of the anterior and middle cerebral
arteries or the vertebrobasilar arteries [190].

5.6.2. Hemorrhagic Stroke

Hemorrhagic stroke results from bleeding within the brain due to the perforation
of a blood vessel. It is classified based on the specific location of this vessel rupture into
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intracerebral hemorrhage (ICH) and subarachnoid hemorrhage (SAH) [191]. Diabetes and
high blood glucose levels have a detrimental effect on people with these conditions, as
they are connected with the risk of faster development of hematoma, frequent disability
resulting from stroke, or death [192]. A post hoc analysis of the randomized Intensive
Blood Pressure Reduction in Acute Cerebral Hemorrhage (INTERACT-2) experiment found
that persistent hyperglycemia (>24 h) at the time of ICH occurrence was highly linked to
low outcomes and significant disability (modified Rankin Scale [mRS] ≥ 3). In contrast,
pre-existing diabetes was primarily a factor for residual disability [193]. Therefore, it should
be considered that an intensive reduction in SBP in patients with suspected ICH may lead
to a higher rate of hematoma expansion in individuals with hyperglycemia compared to
those with normoglycemia [194].

5.7. Peripheral Artery Disease

Peripheral artery disease is one of the macrovascular complications of T2DM, increas-
ing the risk of its occurrence. It has been proven that for every 1% increase in HbA1c, the
chance of peripheral arterial disease (PAD) rises by as much as 30%, and it is most likely to
display earlier in diabetic patients than in patients with euglycemia [195].

PAD is a chronic form of atherosclerosis that restricts blood flow to the lower limbs,
leading to symptoms associated with reduced circulation. Initially asymptomatic, it may
gradually lead to leg pain at rest. The pathognomonic sign of arterial insufficiency is
claudication, which contributes to the deterioration of patients’ quality of life due to their
progressively declining level of functioning [196]. Classic claudication can be defined
as pain in the calf of one or both legs during exertion, such as walking. This pain does
not occur at rest and typically subsides within a few minutes of standing or resting [197].
The prevalence of classic claudication among patients with symptomatic PAD over the
past decade has been reported to range from 7.5% to 33% [198]. This variation appears
to be influenced by factors such as age, with higher rates reported in older individuals
with relevant clinical characteristics, including hypertension, a prior PAD diagnosis, or
diabetes [199]. The progression of PAD, the frequency of its symptoms, and the elevated
cardiovascular risks associated with systemic atherosclerosis serve as key measures of its
impact. Among the various risk factors, T2DM plays a crucial role, second only to cigarette
smoking, in its contribution to heightened susceptibility [200]. Approximately one-third
of patients with claudication and half of those suffering from critical limb ischemia are
affected by T2DM, underscoring its strong association with PAD severity [201]. The most
painful manifestation of PAD is limb ischemia, characterized by pain in the lower limbs,
impaired wound healing, and the development of skin ulcers [202], which can ultimately
lead to amputation [203].

Patients with T2DM and PAD should be provided with comprehensive care focused on
improving the peripheral blood flow and lowering the risk factors for cardiac events, includ-
ing myocardial infarction, ischemic stroke, or cardiovascular death. The treatment includes
structured programs for walking [204], smoking cessation, and weight management [205].

6. Conclusions
T2DM is a global health problem that affects more than 400 million people worldwide,

and the number of people with diabetes continues to grow. The proper diagnosis of
T2DM requires the exclusion of other types of diabetes, which is extremely important in
determining prognosis and choosing a treatment method. T2DM is an inflammatory disease
with a multifactorial etiology. The main pathomechanisms in which T2DM is developed
are the defect of insulin production and IR in body tissues. Defective insulin synthesis
may be attributed to the death of β-cells or β-cells dysfunction, which may be a result of
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several different mechanisms such as β-cells dedifferentiation, transdifferentiation, the
induction of disallowed genes, the impact of oxidative or ER stress, as well as mitochondrial
dysfunction. IR is a decline in tissue’s response to insulin. The main organs that play a role
in IR are skeletal muscle, adipose tissue, and liver. Gut microbiota is another factor that may
contribute to the development of diabetes; however, more studies are needed to conclude
the importance of its role in this process. Recently, numerous effective medications have
been introduced for the treatment of T2DM. These new therapies not only provide robust
glycemic control but also avoid weight gain and the risk of hypoglycemia. As a result,
they contribute to an improved quality of life for individuals with T2DM and its associated
complications. It is also worth mentioning non-pharmacological methods of treatment,
including appropriate physical activity, a balanced diet, and behavioral and psychological
interventions. Possible complications of diabetes include chronic kidney disease, heart
attack, stroke, and the development of neuropathy, retinopathy, as well as many others.
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