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Abstract: Plant viral diseases cause great harm to crops in terms of yield and quality.
Natural products have been providing an excellent source of novel chemistry, inspiring
the development of novel synthetic pesticides. The Amaryllidaceae alkaloids crinasiadine
(3a), trisphaeridine (4a), and bicolorine (5a) were selected as parent structures, and a
series of their derivatives were designed, synthesized, and investigated for their anti-plant
virus effects for the first time. Compounds 13b and 18 exhibited comparable inhibitory
activities to ningnanmycin against tobacco mosaic virus (TMV). Preliminary research into
the mechanism, involving transmission electron microscopy and molecular docking studies,
suggests that compound 18 may interfere with the elongation phase of the TMV assembly
process. This study provides some important information for the research and development
of agrochemicals with phenanthridine structures.

Keywords: natural product; Amaryllidaceae alkaloids; crinasiadine; tobacco mosaic virus;
antiviral activity; mechanism research

1. Introduction
The growing global population and the decreasing amount of arable land make agri-

cultural productivity a vital challenge to address [1–3]. Plant viruses, which are among the
most devastating pathogens, cause enormous losses to agricultural industries worldwide
and continue to threaten global food security [4]. Tobacco mosaic virus (TMV), one of the
most important plant viruses, is known to infect at least 100 different plant species, includ-
ing tobacco, tomatoes, peppers, cucumbers, and a number of ornamental flowers [5–7].
Unfortunately, few chemical agents have been commercialized as effective products against
this plant virus [8,9]. Therefore, there is a critical need to discover and develop agents with
different scaffolds or modes of action.

It is well known that natural products provide an excellent source of novel chemistry
and have inspired the development of novel synthetic pesticides [10,11]. In the process
of discovering and modifying natural products as anti-plant virus agents, our research
group first found that tylophorine alkaloids—especially antofine (1a, Figure 1)—had ex-
cellent anti-TMV activities, and the structure–activity relationship studies indicated that
the phenanthrene ring and the nitrogen in the tertiary amine (2a, Figure 1) were essential
for high antiviral activity [12,13]. Subsequently, we have optimized a multi-chiral natural
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product lycorine (1b, Figure 1) to a simple phenanthridine analog (2b, Figure 1) with good
agricultural activities [14].
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Figure 1. Structures of compounds 1a, 1b, 2a, 2b, 3a~5a, and 6~9.

Indeed, phenanthridine analogs (crinasiadine (3a), trisphaeridine (4a), and bicolorine
(5a), Figure 1), as natural products, are present in many Amaryllidaceae plants [15,16],
and they have been one of the most widely studied classes of compounds due to their
biological activities [17,18]. As early as the 1930s, phenanthridinium compounds were
discovered to resist trypanosomes, and the anti-trypanosome drugs Ethidium and Samorin
were developed [19–21]. To date, these two phenanthridinium trypanocides are still widely
used to treat African trypanosomiasis in livestock [21–23]. Ethidium bromide (6, Figure 1)
can also be used as a fluorescent marker for DNA and RNA, and its derivative propidium
iodide (7, Figure 1) can be used as a cell viability probe [17]. Recent studies have found that
phenanthridine analogs can inhibit the replication of the hepatitis C virus (HCV) [23,24]
and the porcine epidemic diarrhea virus (PEDV) [25], as well as act as an activator of the
Wnt/β-catenin signaling pathway [26–30]. When one chlorine atom of the commercially
available anticancer drug cisplatin (8, Figure 1) was replaced with phenanthridine, the new
compound phenanthriplatin (9, Figure 1) was more likely to enter cancer cells with higher
efficacy and fewer side effects [31,32]. Due to their interesting biological activity, several
efforts have been made to prepare phenanthridine derivatives [18,33].

In order to continue our previous research [14] and further explore the agricultural
activities of phenanthridine compounds, in this work, crinasiadine (3a), trisphaeridine
(4a), and bicolorine (5a) were selected as parent structures, and a series of their derivatives
were designed, synthesized, and evaluated for their anti-TMV activities. In addition, the
preliminary mode of action of compound 18 against the TMV was also explored.

2. Results and Discussion
2.1. Chemistry

In this study, 35 diverse structures of phenanthridine analogs including phenanthridin-6(5H)
-one derivatives (3a~i, 13a~e), phenanthridine derivatives (4a~i), 5-methylphenanthridinium
chloride derivatives (5a~i) and phenanthridone B-ring-expanded derivatives (16~18) were
synthesized (Schemes 1 and 2). The synthetic routes are given in Schemes 1 and 2. There are
fewer substituents on the benzene ring of the natural products crinasiadine (3a), trisphaeri-
dine (4a) and bicolorine (5a). We synthesized phenanthridine compounds with a common
electron-withdrawing group (F, Br) or electron-donating group (OCH3) on the benzene
ring as compensation. Phenyl ring-substituted phenanthridin-6(5H)-ones (3a~3g) were
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synthesized from 2-bromo-N-phenylbenzamides (11a~g) in the presence of t-BuOK and a
catalytic amount of AIBN through intramolecular free radical reactions [34]. 2-Bromo-N-
phenylbenzamides (11a~g) were obtained with high yields from 2-bromobenzoic (10a~d)
and phenyl anilines [34]. Phenanthridin-6(5H)-one (3h) was easily synthesized from 9-
fluorenone (12) via Beckmann rearrangement [35]; then, compound 3h [36] reacted with
NBS to give compound 3i with good yield. Phenanthridin-6(5H)-one derivatives (3) can
be reduced by LiAlH4 to mainly give compound 4′ and a small quantity of compound 4.
However, compound 4′ was unstable and easily converted into complex compounds when
separated with a normal pressure silica gel column. We found that compound 4′ could be
aromatized to phenanthridine derivatives (4) with good yield under oxidizing and acidic en-
vironmental conditions. Therefore, the reduction products of phenanthridone analogs (3a~i)
without isolation were directly dissolved in CH2Cl2 with an amount of CF3COOH and then
stirred with air bubbling to convert them to phenanthridine derivatives (4a~i). With the
phenanthridine analogs (4a~i) in hand, it was easy to prepare 5-methylphenanthridinium
chloride (5) via dimethyl sulfate according to the procedures reported previously [37]. A
mixture of the phenanthridin-6(5H)-one (3h), Cs2CO3, haloalkanes, and anhydrous THF
was gently refluxed to give compounds 13a~e with good yield [38]. B-ring-expanded
derivatives (16~18) were synthesized to further investigate the structure–activity relation-
ships. 2-Aminobiphenyl (14) was acylated with chloroacetylchloride to give compound
15. According to the literature [39], ring closure resulting in dibenzoazepinone (16) was
achieved by an intramolecular Friedel–Crafts alkylation. Then compound 16 reacted with
CH3I to form compound 17, and compound 17 was reduced by LiAlH4 to give compound
18 with good yield.
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2.2. Antiviral Activity and Structure−Activity Relationships (SARs)

The antiviral activities of the target compounds against TMV in three modes (inacti-
vation effect, curative effect, and protection effect in vivo) with compound 2, commercial
antiviral agent ribavirin, and ningnanmycin as standards are shown in Tables 1 and 2.
Generally, the results showed that many compounds (3f, 3h, 4c, 4e, 4i, 5b, 13b, 13c, 16,
and 18) exhibited better anti-TMV activities (inactivation effect) than ribavirin at 500 mg/L.
Interestingly, the anti-TMV activities of compounds 13b and 18 were as good as those of
ningnanmycin at 100 mg/L. In terms of the phenanthridin-6(5H)-one derivatives (3a~i and
13a~e), compound 3h with no substituents on either of the benzene rings exhibited good
anti-TMV activities (inactivation effect) at 500 mg/L, while the other compounds (3a~g
and 3i), for which the benzene rings had at least one substituent, had decreased anti-TMV
activities in various degrees. This result indicated that benzene ring electron-withdrawing
substituents (F and Br) or an electron-donating substituent (OCH3) were not conducive to
the improvement in the anti-TMV activities of phenanthridin-6(5H)-one derivatives. Al-
though the anti-TMV activities (inactivation effect) of compounds 13a and 13c~e were lower
than those of 3h, the anti-TMV activity of 13b was significantly increased, especially the
protection effect; these results indicated that modification of the nitrogen atom of phenan-
thridone could enhance its anti-TMV activity. In terms of the phenanthridine derivatives
(4a~i) and 5-methylphenanthridinium chloride derivatives (5a~i), the compounds bearing
no substituents on the benzene ring (4h and 5h) exhibited weak anti-TMV activities, while
most of the compounds with substituents showed better anti-TMV activities than 4h and
5h, especially compounds 4c, 4e, 4i, and 5b. These results indicated that adding functional
groups to benzene rings could improve the anti-TMV activities of the phenanthridine
derivatives (4a~i) and 5-methylphenanthridinium chloride derivatives (5a~i). Compounds
16 and 17 were B-ring-expanded derivatives of 3h and 13a, respectively. The anti-TMV
activities of compounds 16 and 17 were slightly better than those of compounds 3h and 13a.
These results revealed that extending the size of the B-ring may not decrease their anti-TMV
activities. Satisfyingly, the reductive product 18 showed excellent anti-TMV activity; in
particular, the protection effect was near that of ningnanmycin.
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Table 1. In vivo antiviral activities (inactivation effect) of phenanthridin-6(5H)-one analogs (3a~i,
13a~e, and 16~18), phenanthridine analogs (4a~i), 5-methylphenanthridinium chloride analogs (5a~i),
compound 2, ribavirin, and ningnanmycin (NN) against TMV at 500 mg/L.

Sample Inhibition
Rate (%) a Sample Inhibition

Rate (%) a Sample Inhibition
Rate (%) a Sample Inhibition

Rate (%) a

3a 19.5 ± 1.7 4b 25.3 ± 0.6 5c 37.2 ± 2.6 13d 37.8 ± 1.1
3b 31.8 ± 2.4 4c 40.9 ± 1.1 5d 19.2 ± 4.5 13e 31.6 ± 1.1
3c 33.7 ± 1.8 4d 34.9 ± 3.5 5e 31.1 ± 0.2 16 41.2 ± 3.5
3d 31.9 ± 3.3 4e 43.0 ± 2.5 5f 36.8 ± 0.8 17 32.5 ± 1.9
3e 29.2 ± 1.1 4f 30.9 ± 4.8 5g 38.4 ± 0.3 18 49.2 ± 1.6
3f 41.3 ± 0.2 4g 33.5 ± 1.4 5h 26.3 ± 2.1 2 44.7 ± 0.5
3g 35.1 ± 2.4 4h 21.5 ± 3.4 5i 35.2 ± 1.1 ribavirin 39.5 ± 0.3
3h 46.8 ± 0.2 4i 45.9 ± 4.3 13a 27.0 ± 4.0 NN 58.8 ± 2.4
3i 37.5 ± 1.0 5a 34.0 ± 4.4 13b 59.4 ± 1.8
4a 35.2 ± 2.6 5b 49.7 ± 0.8 13c 42.9 ± 1.9

a The effect (inhibition rate) is presented as the mean ± SD (%). The deep blue color emphasizes an inhibition rate
greater than 39.5% (ribavirin).

Table 2. In vivo antiviral activities of phenanthridin-6(5H)-one analogs (3a~i, 13a~e, and 16~18),
phenanthridine analogs (4a~i), 5-methylphenanthridinium chloride analogs (5a~i), compound 2,
ribavirin, and ningnanmycin (NN) against TMV.

Sample Conc. (mg/L)
Inhibition Rate (%) a

Sample Conc. (mg/L)
Inhibition Rate (%)

Inactivation
Effect

Curative
Effect

Protection
Effect

Inactivation
Effect

Curative
Effect

Protection
Effect

3f
500 41.3 ± 0.2 46.9 ± 1.8 38.1 ± 2.3

13c
500 42.9 ± 1.9 35.4 ± 3.6 44.7 ± 1.1

100 5.8 ± 0.5 11.5 ± 2.7 7.4 ± 0.9 100 7.2 ± 0.7 6.0 ± 0.4 13.5 ± 0.2

3h
500 46.8 ± 0.2 42.1 ± 1.4 41.7 ± 0.6

16
500 41.2 ± 3.5 44.4 ± 2.0 37.9 ± 1.2

100 9.3 ± 0.7 12.5 ± 2.0 0 100 5.3 ± 1.0 8.6 ± 0.6 0

4c
500 40.9 ± 1.1 36.7 ± 1.3 47.0 ± 3.8

18
500 49.2 ± 1.6 47.3 ± 0.2 54.4 ± 2.5

100 15.1 ± 0.6 9.6 ± 1.8 17.9 ± 2.0 100 16.7 ± 1.1 19.2 ± 0.8 22.0 ± 2.1

4e
500 43.0 ± 2.5 40.1 ± 3.4 35.6 ± 4.5

2
500 44.7 ± 0.5 40.9 ± 3.3 39.1 ± 2.9

100 9.8 ± 0.9 11.0 ± 0.7 7.8 ± 1.3 100 6.6 ± 0.1 0 0

4i
500 45.9 ± 4.3 41.7 ± 2.0 47.8 ± 0.6

ribavirin
500 39.5 ± 0.3 37.2 ± 1.4 40.2 ± 0.8

100 12.1 ± 0.7 18.6 ± 3.5 9.1 ± 1.0 100 11.3 ± 0.9 13.6 ± 0.8 9.5 ± 1.2

5b
500 49.7 ± 0.8 47.1 ± 2.9 51.3 ± 3.7

NN
500 58.8 ± 2.4 55.9 ± 0.7 57.1 ± 0.6

100 17.6 ± 1.4 9.4 ± 2.5 15.2 ± 0.5 100 26.4 ± 0.9 24.0 ± 1.2 27.2 ± 1.5

13b
500 59.4 ± 1.8 55.6 ± 1.0 52.3 ± 2.5
100 15.8 ± 3.6 18.0 ± 0.4 21.5 ± 2.0

a The effect (inhibition rate) is presented as mean ± SD (%).

2.3. Preliminary Mode of Action of Anti-TMV

The study of the mode of action of a potent molecule is very important and challenging
in the development of pesticides [40]. It is known that the TMV capsid protein can turn
into a 20S disk, following which the 20S disk and TMV RNA can further assemble to form
rod-shaped TMV virus particles [41]. A preliminary study was undertaken to explore the
effect of compound 18 which showed good anti-TMV activity on the TMV assembly. First,
the effect of compound 18 on the TMV capsid protein was examined. In the control group
(blank control, Figure 2A; DMSO control, Figure 2B), the 20S disks were well formed and
were scattered around. When treated with compound 18 (Figure 2C), the 20S disks were
also formed but were aggregated to form an irregular polymer (the part circled in yellow in
Figure 2C). Subsequently, the effect of compound 18 on TMV self-assembly was explored.
TMV cannot self-assemble without RNA (Figure 3A). The control test (Figure 3B,C) showed
that TMV could self-assemble normally to form rod-shaped particles with a length of about
300 nm. When adding compound 18 (Figure 3D), the length of the rod-shaped particles was
less than 300 nm (their average length was 142 nm), which indicated that the elongation
of the assembly process was impeded. These findings suggest that compound 18 may
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interfere with the normal assembly process of TMV. However, it is important to note that
this study is preliminary, and further experiments are required to fully understand the
mode of action of compound 18. Additional studies, including the examination of other
potential targets and a comparison with other compounds, will be necessary to establish a
more comprehensive understanding of its inhibitory mechanism.
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Figure 3. Results of in vitro TMV nanorod assembly reaction under transmission electron microscope:
(A) 20S disk without RNA; (B) 20S disk with RNA; (C) 20S disk with RNA and DMSO; and (D) 20S
disk with RNA and compound 18.

2.4. Molecular Docking

To further explore the possible mechanism of action, representative compound 18
and the TMV coat protein (PDB code: 1EI7) were chosen as the ligand and the receptor,
respectively, for molecular docking studies using AutoDockTools. The experimental results
are shown in Figure 4. The A and B chains of the TMV coat protein are represented in light
blue and grey, respectively. The optimal binding mode of compound 18 to the TMV coat
protein is on chain A, with a binding energy of −5.22 kcal/mol. Compound 18 primarily
interacts with the protein through van der Waals forces with the amino acid residues ILE-21,
LEU-23, VAL-69, ILE-133, GLY-135, and SER-138, π-σ interactions with the ILE-24 residue,
alkyl interactions with the ILE-24 and π-alkyl interactions with the ILE-24, PRO-20 and
LEU-132 residues. These interactions were relatively weak. Future structural optimizations
might involve the addition of polar functional groups to enhance hydrogen bonding, which
could consequently improve the activity of the compounds.
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3. Materials and Methods
3.1. Chemicals

Reagents were purchased from commercial sources and used as received. All anhy-
drous solvents used for synthesis were dried and purified using standard techniques prior
to use.

3.2. Instruments

The melting points of the synthesized compounds were tested using an X-4 binocular
microscope (Beijing Tech Instruments Co., Beijing, China). NMR spectra were obtained
using a Bruker AV 400 spectrometer (Bruker Corp., Fallanden, Switzerland) in CDCl3,
DMSO-d6, or CD3OD solutions with tetramethylsilane (TMS) as the internal standard. The
progress of the reaction was monitored by thin-layer chromatography on silica gel GF-254
and detected by UV. High-resolution mass spectra were obtained with an ESI-FTICR MS
spectrometer (Ionspec, 7.0 T, Bruker, Saarbrucken, Germany). In vitro 20S disk inhibition
reaction and in vitro TMV nanorod assembly reaction were tested via transmission electron
microscopy (Tecnai G2 F20, TEI, Hillsboro, OR, USA).

3.3. Chemical Synthesis

Compounds 3a~g [34], 3h [35], 3i [36], 5a~i [37], 13a~e [38], and 16~18 [39] were
prepared according to the previously reported procedures with slight modification and
the detailed synthetic method and data can be found in the Supporting Information.
Compounds 4a~i were prepared using our method.

Trisphaeridine (4a)
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To a solution of 3a (1.0 g, 4.2 mmol) in dry THF (50 mL), lithium aluminum hydride
(LiAlH4, 0.26 g, 6.3 mmol) was added in several portions in an ice bath. Then, the reaction
was refluxed for 4 h, quenched with water (1 mL), and filtered. The filtrate was concentrated
under reduced pressure. The crude residue was dissolved in CH2Cl2 (100 mL) and then
trifluoroacetic acid (CF3COOH, 1 mL) was added. After stirring at room temperature with
air bubbling for 6 h, the mixture was then basified (pH = 8) with a saturated NaHCO3

solution and extracted with CH2Cl2 (30 mL × 3). The combined organic phase was washed
with brine (30 mL), dried over anhydrous Na2SO4, and concentrated. The residue was
purified using column chromatography on silica gel with petroleum ether/ethyl acetate
(10:1, v/v) to give trisphaeridine (4a, 0.65 g, 69%) as a white solid; mp 141–142 ◦C (lit. [42]
mp 140–142 ◦C); 1H NMR (400 MHz, CDCl3) δ 9.05 (s, 1H), 8.32 (d, J = 8.1 Hz, 1H),
8.13 (d, J = 8.1 Hz, 1H), 7.83 (s, 1H), 7.73–7.64 (m, 1H), 7.60 (dd, J = 11.1, 4.0 Hz, 1H),
7.27 (s, 1H), 6.12 (s, 2H).

Phenanthridine analogs 4b~i were prepared similarly to 4a.

2,4-Dimethoxyphenanthridine (4b)

White solid; mp 92–93 ◦C; yield 74%. 1H NMR (400 MHz, CDCl3) δ 9.43 (d, J = 8.7 Hz,
1H), 9.27 (s, 1H), 8.08 (t, J = 7.9 Hz, 1H), 7.92 (t, J = 7.8 Hz, 1H), 7.69 (t, J = 7.4 Hz, 1H),
7.47 (s, 1H), 6.85 (d, J = 2.4 Hz, 1H), 4.13 (s, 3H), 4.01 (s, 3H). 13C NMR (100 MHz, CDCl3)
δ 159.8, 159.2, 154.4, 147.3, 132.8, 131.3, 128.7, 126.9, 125.9, 125.8, 109.7, 102.5, 99.6, 55.8, 55.6.
HR-MS (ESI): Calcd for C15H14NO2 [M + H]+ 240.1019; found 240.1023.

8,9-Dimethoxyphenanthridine (4c)

Grey solid; mp 165–167 ◦C (lit. [42] mp 168–169 ◦C); yield 67%. 1H NMR (400 MHz,
CDCl3) δ 9.20 (s, 1H), 8.45 (d, J = 7.8 Hz, 1H), 8.19 (d, J = 7.8 Hz, 1H), 7.88 (s, 1H),
7.71 (t, J = 6.9 Hz, 1H), 7.69–7.63 (m, 1H), 7.37 (s, 1H), 4.15 (s, 3H), 4.08 (s, 3H).

2-Fluoro-8,9-dimethoxyphenanthridine (4d)

Brown solid; mp 163–164 ◦C (lit. [43] mp 161–162 ◦C); yield 48%. 1H NMR (400 MHz,
CDCl3) δ 9.10 (s, 1H), 8.13 (dd, J = 9.0, 5.7 Hz, 1H), 8.02 (dd, J = 10.2, 2.7 Hz, 1H),
7.73 (s, 1H), 7.46–7.39 (m, 1H), 7.36 (s, 1H), 4.14 (s, 3H), 4.08 (s, 3H).

2,9-Difluorophenanthridine (4e)

Yellow solid; mp 190–191 ◦C; yield 64%. 1H NMR (400 MHz, CDCl3) δ 9.21 (s, 1H),
8.21 (dd, J = 8.9, 5.6 Hz, 1H), 8.17–7.99 (m, 3H), 7.62–7.41 (m, 2H). 13C NMR (100 MHz,
CDCl3) δ 164.3 (d, JF–C = 253.7 Hz), 161.3 (d, JF–C = 248.5 Hz), 151.6, 140.9, 134.3 (dd,
JF–C = 10.0, 4.1 Hz), 132.2 (d, JF–C = 9.5 Hz), 131.8 (d, JF–C = 9.8 Hz), 125.0 (dd, JF–C = 9.0,
4.1 Hz), 123.2, 118.5 (d, JF–C = 24.2 Hz), 117.6 (d, JF–C = 24.2 Hz), 107.6 (d, JF–C = 10.0 Hz),
107.3 (d, JF–C = 10.7 Hz). HR-MS (ESI): Calcd for C13H8F2N [M + H]+ 216.0619; found 216.0624.

9-Fluoro-2,4-dimethoxyphenanthridine (4f)

Yellow solid; mp 259–260 ◦C; yield 80%. 1H NMR (400 MHz, CDCl3) δ 9.31 (s, 1H),
9.09 (dd, J = 12.6, 2.4 Hz, 1H), 8.17 (dd, J = 8.8, 6.1 Hz, 1H), 7.54 (d, J = 2.3 Hz, 1H), 7.49–7.42
(m, 1H), 6.86 (d, J = 2.4 Hz, 1H). 13C NMR (100 MHz, CDCl3) δ 165.7 (d, JF–C = 254.9 Hz),
161.5, 159.2, 150.9, 142.9, 136.1 (d, JF–C = 12.2 Hz), 132.8 (d, JF–C = 10.2 Hz), 121.7, 116.4
(d, JF–C = 25.4 Hz), 112.6 (d, JF–C = 25.8 Hz), 109.9 (d, JF–C = 4.4 Hz), 100.9, 99.5, 56.2, 56.1.
HR-MS (ESI): Calcd for C15H13FNO2 [M + H]+ 258.0925; found 258.0930.

9-Fluorophenanthridine (4g)

White solid; mp 105–106 ◦C (lit. [42] mp 106–108 ◦C); yield 45%. 1H NMR (400 MHz,
CDCl3) δ 9.25 (s, 1H), 8.46 (dd, J = 8.1, 1.1 Hz, 1H), 8.27–8.18 (m, 2H), 8.09 (dd, J = 8.8,
5.7 Hz, 1H), 7.84–7.76 (m, 1H), 7.75–7.68 (m, 1H), 7.46 (dt, J = 8.5, 2.4 Hz, 1H).
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Phenanthridine (4h)

White solid; mp 98–99 ◦C (lit. [42] mp 100–101 ◦C); yield 82%. 1H NMR (400 MHz,
CDCl3) δ 9.30 (s, 1H), 8.68–8.56 (m, 2H), 8.24–8.16 (m, 1H), 8.06 (d, J = 7.8 Hz, 1H),
7.92–7.83 (m, 1H), 7.80–7.65 (m, 3H).

2-Bromophenanthridine (4i)

Yellow solid; mp 160–161 ◦C (lit. [44] mp 162–163 ◦C); yield 67%. 1H NMR (400 MHz,
CDCl3) δ 9.25 (s, 1H), 8.66 (d, J = 2.1 Hz, 1H), 8.49 (d, J = 8.3 Hz, 1H), 8.08–8.04 (m,
1H), 8.04–8.00 (m, 1H), 7.87 (ddd, J = 8.3, 7.2, 1.3 Hz, 1H), 7.80 (dd, J = 8.7, 2.1 Hz, 1H),
7.77–7.71 (m, 1H).

3.4. Biological Assay

The activities of the target compounds were tested on representative test organisms.
To ensure the reliability of data, each bioassay was replicated at least three times. The
antiviral activity against TMV was carried out using previously reported methods [14] with
tobacco (Nicotiana tabaccum var. Xanthinc) as the test plant.

The detailed biological assay methods are also given in the Supporting Information.

3.5. Mode of Action of Anti-TMV Studies [45]

TMV was purified according to the method provided by Leberman [46]. The TMV
capsid protein (TMV CP) was purified with the acetic acid method [47]. TMV RNA was
purified using the method provided by Zimmern [48]. All the detailed methods are also
given in the Supporting Information.

3.5.1. In Vitro 20S Disk Inhibition Reaction

For drug tests, in vitro 20S disk inhibition reaction was performed at 20 ◦C for
12 h after adding 9.8 µL TMV capsid proteins (20 mg/mL) and 0.2 µL DMSO or drug
(10 nmol/mL, 0.2 µL in DMSO). After the treatment, the sample was used for transmission
electron microscope (TEM) characterization.

3.5.2. In Vitro TMV Nanorod Assembly Reaction

Before the assembly of TMV nanorods, the 20S disk was prepared by incubating TMV
capsid proteins (20 mg/mL) in 0.1 M phosphate buffer (pH 7.0) at 20 ◦C for 12 h. The TMV
nanorod assembly reaction was performed by mixing 5 µL phosphate buffer (0.1 mol/L, pH
7.0), 4 µL 20S disk (20 mg/mL), and 1 µL TMV RNA (200 ng/µL). The assembly reaction
was incubated at 20 ◦C for 12 h. For drug tests, in vitro TMV reconstitution inhibition
reactions were performed by adding 4.8 µL phosphate buffer (0.1 mol/L, pH 7.0), 4 µL 20S
disk (20 mg/mL), 1 µL TMV RNA (200 mg/mL), and 0.2 µL DMSO or drug (10 nmol/mL,
0.2 µL in DMSO). After the treatment, the sample was used for transmission electron
microscope (TEM) characterization.

3.5.3. Molecular Docking [49,50]

The structure of the TMV coat protein was downloaded from the RCSB Protein Data
Bank (PDB ID: 1EI7) [51]. The molecular file for compound 18 (CID: 13095226) was down-
loaded from PubChem. The potential binding sites on the TMV coat protein were identified
using AutoDockTools (version 1.5.7, The Scripps Research Institute, La Jolla, CA, USA), fol-
lowing Olson’s protocol [52]. The docking simulations were performed using the AutoDock
algorithm. The global docking was conducted with a grid size that encompassed the entire
protein. All other docking parameters are default values, with the following exceptions:
‘Number of GA Runs’ was set to 100, ‘Maximum Number of evals’ was set to 10,000,000,
and ‘Maximum Number of generations’ was set to 100,000. The docking results were
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visualized using PyMOL (version 3.1.3, Schrödinger, New York, NY, USA) and the 2D
ligand interaction diagrams were generated using Discovery Studio Visualizer (version
24.1.0, Build 23298, Dassault Systèmes, Vélizy-Villacoublay, France).

4. Conclusions
In summary, 35 compounds including crinasiadine (3a), trisphaeridine (4a), bicolorine

(5a), and their derivatives were synthesized, and their anti-TMV activities were investigated
for the first time. Many compounds (3f, 3h, 4c, 4e, 4i, 5b, 13b, and 13c) exhibited better
anti-TMV activities than ribavirin; in particular, compounds 13b and 18 were as effective
as ningnanmycin. The preliminary results suggested that compound 18 could impede the
elongation of the TMV assembly process. In this study, phenanthridine analogs exhibit
strong anti-TMV activities, highlighting their potential for crop protection. It is important
to note that the capacity of phenanthrene compounds to intercalate with DNA and RNA
raises substantial concerns regarding their potential toxicity to non-target organisms and
their environmental impact [17]. While certain phenanthridine derivatives have been used
safely in the treatment of livestock [21–23], the wider ecological implications of employing
these compounds in crop protection demand further study to guarantee environmental
safety. And it is believed that the phenanthridine structure is a promising small molecule,
which could play an important role in crop protection.

Supplementary Materials: The supporting information can be downloaded at https://www.mdpi.
com/article/10.3390/ijms26031103/s1. References [14,34–39,42,46,47,53–58] are cited in the supple-
mentary materials.
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