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Abstract: This study presents an advanced approach for the comprehensive analysis of
low-abundance proteins in soybean seeds, addressing challenges posed by high-abundance
storage proteins. We compared the effectiveness of Data-Dependent Acquisition (DDA),
Data-Independent Acquisition (DIA), and BoxCar mass spectrometry techniques to identify
low-abundance proteins in two types of soybean seeds: High-Oil and High-Protein seeds.
The results indicate that the DIA method, and particularly the BoxCar methods, significantly
improve the detection of low-abundance proteins compared to DDA, offering deeper
insights into soybean seed biology. Specifically, BoxCar-based analysis revealed distinct
proteomic differences between High-Oil and High-Protein seeds, highlighting more active
metabolic processes in High-Oil seeds. Additionally, several key proteins were identified
and annotated as uniquely expressed in either High-Oil or High-Protein seeds. These
findings emphasize the importance of advanced proteomic techniques, such as BoxCar, in
deepening our understanding of soybean seed biology and supporting breeding strategies
to improve nutritional qualities.

Keywords: soybean seeds; proteomics; BoxCar; DIA; DDA

1. Introduction
Soybeans are nutrient-dense legumes containing 18–20% oil and 38–56% plant proteins,

making them a crucial global crop for human nutrition and animal feed [1,2]. As the global
population grows, the demand for soybeans continues to increase [3]. However, the existing
levels of soybean production are insufficient to meet this demand [3]. Enhancing oil and
protein yield in soybean seeds has therefore become a critical focus in breeding research.
Recent advancements in proteomics have significantly improved our understanding of
soybean seed protein composition [4–7]. Nonetheless, the prevalence of high-abundance
proteins presents significant challenges, making the in-depth proteomic analysis of soybean
seeds particularly difficult [8,9].

Mass spectrometry (MS) analysis in proteomics typically utilizes two main techniques:
Data-Dependent Acquisition (DDA) [10–13] and Data-Independent Acquisition (DIA) [14,15].
In DDA, MS/MS analysis is performed on the top precursor ions that exhibit the highest
intensities in the MS1 scan. Although this approach effectively detects abundant proteins, it
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may not capture lower-abundance species that could be biologically important. By contrast,
DIA acquires MS/MS data on all ions within a specified mass range, enabling the analysis
of highly complex samples and improving the detection of low-abundance proteins [16–18].
However, this broader coverage can diminish the quality of fragment ion spectra and affect
accurate protein identification and quantification.

To overcome these limitations, Mann et al. developed the BoxCar method, which sub-
stantially increases dynamic range and detection sensitivity via segmented acquisition [19].
Since its introduction, BoxCar has been applied successfully for the proteomic analysis of
samples with high dynamic ranges, such as urine and blood. For instance, Ye et al. used
BoxCar to analyze urine samples from healthy individuals and diabetic patients, demon-
strating that it detects more low-abundance proteins (thus expanding the dynamic range)
and achieves robust reproducibility in identifying these proteins [20]. In another study, Niu
et al. employed BoxCar for blood samples from patients with non-alcoholic fatty liver, quan-
tifying 503 proteins across a dynamic range spanning six orders of magnitude [21]. Multiple
studies have demonstrated that BoxCar excels at analyzing low-abundance proteins and
serves as a critical complement to both DDA and DIA techniques.

Many studies have evaluated the strengths and weaknesses of three primary methods
in proteomic studies. For instance, Bekker-Jensen et al. compared DDA and DIA techniques
for analyzing the yeast phosphoproteome [22]. They found that DIA identified 1.8 times
more phosphorylated peptides and captured ions at a rate 6 times higher than DDA. In
another study, Liu et al. explored the plasma proteome and noted that DIA improved
protein identification by 41% compared to DDA and significantly reduced the proportion of
missing protein identifications from 22% to just 1% [23]. Additionally, Ye et al. investigated
the BoxCar and DDA methods using urine samples from both healthy individuals and
diabetes patients, demonstrating that BoxCar increased protein and peptide identification
by 24.8% and 16.5%, respectively, and greatly improved the detection of low-abundance
proteins [20]. Mehta et al. further advanced the field by combining BoxCar and DIA
technologies to develop the BoxCarDIA acquisition method, showing that the library-
free BoxCarDIA approach outperforms both DDA and directDIA methods with HeLa
and Arabidopsis cell samples. Notably, BoxCarDIA achieved a 40% boost in protein
quantification compared to DDA, without requiring offline fractionation or additional mass
spectrometer acquisition time [24]. Despite these advancements, no systematic evaluation
has yet offered a comprehensive comparison of all three methods. Moreover, the differences
among these techniques in analyzing the soybean proteome remain largely unexplored.

In this study, we utilized two distinct types of soybean seeds, High Oil and High
Protein, to systematically compare the DDA, DIA, and BoxCar methods. Our goal was
to determine the most suitable technique for proteomic analyses of soybean seeds. Each
method was assessed based on its depth of proteome coverage, reproducibility of protein
identification, and ability to detect low-abundance proteins. The results indicated that
BoxCar provided the best performance for constructing proteome maps of soybean seeds.
By employing this method, we successfully generated and analyzed differential expression
proteome maps for both High-Oil and High-Protein soybean seeds, enabling an in-depth
investigation of their essential proteins.

2. Results
2.1. Evaluating Proteomic Methods: DDA, DIA, and BoxCar Workflow

Based on data from the China Seed Industry Big Data Platform (http://202.127.42.1
45/bigdataNew/home/index, accessed on 10 January 2023), Huaxia-2 (HX2) seeds were
designated as High-Oil seeds because they contain 21.9% oil and 41.7% protein, whereas
Huaxia-14 (HX14) seeds, which contain 18.35% oil and 45.40% protein, were classified

http://202.127.42.145/bigdataNew/home/index
http://202.127.42.145/bigdataNew/home/index
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as High-Protein seeds. To systematically evaluate the DDA, DIA, and BoxCar methods
for soybean seed proteomic analyses, we applied all three to investigate the proteomic
differences between HX2 and HX14 seed types (Figure 1).
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Proteins were extracted from both High-Oil and High-Protein seeds, and high-
abundance storage proteins were removed using protamine sulfate precipitation. The 
resulting peptides, prepared by the Filter-Aided Sample Preparation (FASP) method 
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specific MS spectral library to support DIA and BoxCar analyses, while the other batch 
was used directly for DDA, DIA, and BoxCar runs (Tables S1–S3). 

Figure 1. Workflow for DDA, DIA, and BoxCar proteomic methods applied to soybean seeds. The
upper panel outlines the initial steps, starting with the removal of high-abundance proteins from
soybean seeds using protamine sulfate, followed by protein extraction and peptide generation from
the treated seeds. In the middle panel, the left side details the construction of a soybean-specific
spectral library, which is essential for subsequent proteomic analyses. The right side illustrates
the distinct processes involved in the three proteomic methods: DDA, DIA, and BoxCar. The
lower panel focuses on the analysis of raw mass spectrometry data using MaxQuant software,
highlighting the distinct processing of spectral data by each method (DDA, DIA, and BoxCar) to
achieve comprehensive protein identification and quantification.

Proteins were extracted from both High-Oil and High-Protein seeds, and high-
abundance storage proteins were removed using protamine sulfate precipitation. The
resulting peptides, prepared by the Filter-Aided Sample Preparation (FASP) method [25,26],
were divided into two batches. One batch was used for constructing a soybean-specific
MS spectral library to support DIA and BoxCar analyses, while the other batch was used
directly for DDA, DIA, and BoxCar runs (Tables S1–S3).

During spectral library construction, the peptides were fractionated using three tip-
based methods, including C18-Tip [27,28], SCX-Tip (Strong Cation Exchange) [29], and
SDB-RPS-Tip (Styrene-Divinylbenzene Reverse Phase Sulfonate) [15], to enhance peptide
coverage and improve library robustness. This library enabled precise protein identi-
fication and quantification for DIA and BoxCar. DIA utilized the library for efficient
high-throughput quantification, while BoxCar leveraged it for an improved dynamic range
and sensitivity. To ensure reproducibility, each method was repeated five times, refining
data accuracy and minimizing variability.
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2.2. Spectral Library Construction for Soybean Proteomic Analysis

High-abundance storage proteins were removed from soybean seeds using protamine
sulfate treatment [30], after which proteins were enzymatically digested using the FASP
method [24]. The resultant peptides were pooled in equal amounts and fractionated using
C18-Tip, SCX-Tip, and SDB-RPS-Tip (Figure 1). The fractionated samples were subjected
to DDA to generate a comprehensive spectral library for DIA and BoxCar analyses. The
library, processed with MaxQuant [30,31], identified 17,960 peptides and 4122 proteins
(Table S4). Among these, 5345 peptides were consistently detected across all fractionation
methods, comprising 29.76% of the total (Figure 2A). Notably, the C18-Tip method uniquely
identified 6578 peptides (36.63% of the total), while SCX-Tip and SDB-RPS-Tip collectively
contributed an additional 17.09% (Figure 2A). At the protein level, 1983 proteins (48.11%
of the total) were shared among all methods, while the C18-Tip method uniquely iden-
tified 1155 proteins (28.02%). SCX-Tip and SDB-RPS-Tip each contributed fewer unique
proteins (Figure 2B).
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Figure 2. A comparative analysis of the C18-Tip, SCX-Tip, and SDB-RPS-Tip methods. (A) A Venn
diagram showing the overlap of peptide identifications among the C18-Tip (pink), SCX-Tip (blue),
and SDB-RPS-Tip (yellow) methods, highlighting unique and shared peptides identified by each
technique. (B) A Venn diagram illustrating the overlap of protein identifications between the three
methods, demonstrating common and unique proteins detected by each method. (C,D) Linear
correlation analyses of peptide ((C) yellow and protein (D) pink) abundance identifications between
the methods: C18-Tip vs. SCX-Tip, C18-Tip vs. SDB-RPS-Tip, and SCX-Tip vs. SDB-RPS-Tip.

Correlation analysis indicated variable but generally strong concordance among the
fractionation approaches (Figure 2C,D). For peptides, the correlation between C18-Tip and
SCX-Tip was 0.67, and between C18-Tip and SDB-RPS-Tip, it was 0.65, whereas SCX-Tip and
SDB-RPS-Tip exhibited a stronger correlation of 0.81 (Figure 2C). At the protein level, the
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correlations were generally higher: 0.81 between C18-Tip and SCX-Tip, 0.77 between C18-
Tip and SDB-RPS-Tip, and 0.86 between SCX-Tip and SDB-RPS-Tip (Figure 2D). Together,
these results demonstrate that combining multiple fractionation approaches, C18-Tip, SCX-
Tip, and SDB-RPS-Tip, enhances spectral library coverage.

2.3. Comparative Analysis of DDA, DIA and BoxCar Methods

Using the spectral library as a reference, we compared the DDA, DIA, and BoxCar
methods. In the High-Oil group, DDA identified 4602 peptides and 1415 proteins, while
DIA and BoxCar identified 6993 peptides/2039 proteins and 8448 peptides/2578 proteins,
respectively. In the High-Protein group, DDA identified 3683 peptides and 1155 proteins,
while DIA and BoxCar identified 5804 peptides/1760 proteins and 7680 peptides/2442 pro-
teins, respectively (Figure 3A,B). Notably, BoxCar yielded 82.2% more protein identifica-
tions in High-Oil seeds and 132.0% more in High-Protein seeds compared to DDA.
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Figure 3. A comparative analysis of DDA, DIA, and BoxCar methods in High-Oil and High-Protein
soybean groups. (A,B) The number of peptides (A) and proteins (B) identified by the DDA (yellow),
DIA (blue), and BoxCar (red) methods in both High-Oil and High-Protein soybean groups. The
data are presented as mean ± sd. (C,D) Venn diagrams illustrating the overlap of peptide (C) and
protein (D) identifications among the DDA (yellow), DIA (blue), and BoxCar (red) methods in the
High-Oil and High-Protein groups, highlighting unique and shared peptides and proteins detected
by each method.

The Venn diagrams further highlight unique identifications by each method
(Figure 3C,D). As illustrated in Figure 3C, DDA uniquely identifies 318 peptides (2.2% of
the total) in the High-Oil group and 204 peptides (1.5% of the total) in the High-Protein
group. After employing DIA and BoxCar methods, the percentage of specifically identified
peptides in the High-Oil group increases to 11.0% (1564 of the total) and 24.5% (3486 of
the total), respectively, while in the High-Protein group, it rises to 9.4% (1248 of the total)
and 31.1% (4133 of the total) (Figure 3C). A similar pattern is observed at the protein level:
DIA and BoxCar increase the proportions of uniquely identified proteins to 8.9% (346 of
the total) and 25.7% (1002 of the total) in the High-Oil group and to 7.8% (290 of the total)
and 30.2% (1122 of the total) in the High-Protein group (Figure 3D).



Int. J. Mol. Sci. 2025, 26, 949 6 of 16

Overall, these results demonstrate that BoxCar markedly enhanced peptide and pro-
tein identifications in soybean seeds.

2.4. Evaluating the Reproducibility of DDA, DIA, and BoxCar Methods

To assess reproducibility, we examined the peptide sequence coverage and consistency
of protein identification. In the High-Oil and High-Protein seeds, BoxCar identified 777
and 709 proteins, respectively, with >20% peptide coverage. In contrast, DDA identified
488 and 382 proteins above the same threshold, while DIA identified 982 and 851 proteins
(Figure 4A; Table S5). Although DIA excelled in the >20% peptide coverage category,
BoxCar captured more proteins in the 10–20% and <10% coverage ranges, suggesting
superior detection in low-abundance regions (Figure 4E).
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Figure 4. A reproducibility evaluation of the DDA, DIA, and BoxCar methods in High-Oil and
High-Protein soybean groups. (A) Peptide coverage rates for proteins identified by the DDA, DIA,
and BoxCar methods in both High-Oil and High-Protein groups, illustrating the depth of analysis
provided by each method. (B) The frequency of protein identifications by the DDA, DIA, and
BoxCar methods, showing the detection frequency of proteins across multiple samples in each group.
(C) The distribution of coefficient of variation (CV) values for protein identifications by each method,
assessing the consistency and reliability of protein quantification. (D) The distribution of protein
abundances identified by each method across the High-Oil and High-Protein groups, providing
insights into the range of protein concentrations detected. The data are presented as mean ± sd.
(E) The distribution of protein abundances uniquely identified by the BoxCar method, demonstrating
the extension of the detectable range for low-abundance proteins. The data are presented as mean ±
sd.
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Statistical analyses of five replicate runs further underscore BoxCar’s consistency. In
the High-Oil group, BoxCar identified 1861 proteins in all five replicates, while in the
High-Protein group, 1719 proteins were consistently detected (Figure 4B; Table S5). DIA
also exhibited good reproducibility (1571 proteins in the High-Oil group and 1307 in the
High-Protein group across all replicates), surpassing DDA in both seed types.

Additionally, examining CV values revealed that BoxCar identified 1929 proteins in
the High-Oil group and 1759 in the High-Protein group with CV < 5%. DIA identified
1658 and 1377 proteins, respectively, under the same CV threshold (Figure 4C; Table S5),
whereas DDA identified only 1170 and 904 proteins. These outcomes confirm that BoxCar
not only achieves greater depth but also higher reproducibility in soybean seed proteomics.

2.5. Evaluating the Abundance Range of Proteins Identified by DDA, DIA, and BoxCar Methods

Next, we evaluated the distribution of protein abundances identified by the DDA, DIA,
and BoxCar methods. As illustrated in Figure 4D, BoxCar predominantly captured proteins
with intensities below 109, whereas high-abundance proteins (exceeding 109) accounted for
only 5.7% (147 of 2578) in the High-Oil group and 4.9% (120 of 2442) in the High-Protein
group (Table S5). DIA, by contrast, displayed a more uniform distribution spanning 107

to 1010, with high-abundance proteins comprising 25.5% (520 of 2039) in the High-Oil
group and 24.6% (433 of 1760) in the High-Protein group. Similarly, DDA identified most
proteins in the 107 to 1010 range, with high-abundance proteins representing 21.6% (305 of
1415) in the High-Oil group and 19.3% (223 of 1155) in the High-Protein group. A further
examination of proteins uniquely identified by BoxCar revealed that they predominantly
clustered in the lower abundance region below 108 (Figure 4E). These findings highlight
the strength of the BoxCar method in detecting low-abundance proteins.

2.6. Application of BoxCar in Proteomic Analysis of Soybean Seeds

The BoxCar method, with its ability to detect low-abundance proteins (Figure 4E),
was used for an in-depth proteomic analysis of High-Oil and High-Protein soybean seeds.
The comparative results revealed that the High-Oil group exhibited a substantially larger
number of differentially expressed proteins, including 627 upregulated and 72 downregu-
lated proteins compared to the High-Protein group (Figure 5A, Table S6). Among these,
46 proteins were exclusively detected in the High-Oil group, whereas 19 were unique to the
High-Protein group (Table S6). The hierarchical clustering of these differentially expressed
proteins clearly distinguished the two groups into separate clusters (Figure 5B).

Through pathway enrichment analysis, we discovered that the upregulated proteins
in the High-Oil soybean seeds predominantly localized to the cytoplasm, proteasome,
ribosome, and mitochondria (Figure 5C and Table S6). These proteins are involved in
several key metabolic pathways, including glycolysis, gluconeogenesis, carbon metabolism,
the pentose phosphate pathway, and amino acid biosynthesis (Figure 5C,D), suggesting
that High-Oil seeds exhibit more robust metabolic processes. Furthermore, protein domain
analysis revealed the significant enrichment of N-terminal nucleophile aminohydrolases,
NAD(P)-binding Rossmann-fold domains, and GroEL domain like proteins (Figure 5D),
highlighting the specialized biochemical attributes of High-Oil soybeans in protein folding,
metabolic regulation, and energy conversion.



Int. J. Mol. Sci. 2025, 26, 949 8 of 16

Int. J. Mol. Sci. 2025, 26, x FOR PEER REVIEW 9 of 17 
 

 

 

Figure 5. Proteomic differences between High-Oil and High-Protein soybean groups. (A) A volcano 
plot illustrating protein expression differences between the High-Oil and High-Protein groups. 
Proteins upregulated in the High-Oil group are marked in red (627 proteins), while those 
downregulated are shown in blue (72 proteins). p-values were calculated using a t-test. (B) The 
Principal Component Analysis (PCA) results demonstrating the two groups based on the 
differentially expressed proteins. (C,D) The enrichment results of signaling pathways for proteins 
upregulated in the High-Oil group. (C) shows the Gene Ontology Cellular Component (GO-CC, 
black) and Biological Process (GO-BP, pink) categories, while (D) displays Gene Ontology 
Molecular Function (GO-MF, yellow), KEGG pathways (orange), and SUPFAM domains (gray). (E) 
The pathway enrichment results for proteins upregulated in the High-Protein group. (F) A list of 

Figure 5. Proteomic differences between High-Oil and High-Protein soybean groups. (A) A volcano
plot illustrating protein expression differences between the High-Oil and High-Protein groups. Pro-
teins upregulated in the High-Oil group are marked in red (627 proteins), while those downregulated
are shown in blue (72 proteins). p-values were calculated using a t-test. (B) The Principal Component
Analysis (PCA) results demonstrating the two groups based on the differentially expressed proteins.
(C,D) The enrichment results of signaling pathways for proteins upregulated in the High-Oil group.
(C) shows the Gene Ontology Cellular Component (GO-CC, black) and Biological Process (GO-BP,
pink) categories, while (D) displays Gene Ontology Molecular Function (GO-MF, yellow), KEGG
pathways (orange), and SUPFAM domains (gray). (E) The pathway enrichment results for proteins
upregulated in the High-Protein group. (F) A list of major specifically expressed proteins in both the
High-Oil and High-Protein groups, highlighting the unique proteins that characterize each group.
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In contrast, only 72 proteins were upregulated in the High-Protein group, resulting in
fewer enriched pathways. These proteins predominantly localized to the cytoplasm, protein
storage vacuole, and endoplasmic reticulum (Figure 5E and Table S6) and are involved
in processes such as nucleotide sugar biosynthesis, protein processing in the ER, protein
oligomerization, fatty acid biosynthesis, and nutrient storage (Figure 5E). Domain analysis
identified the enrichment of HSP20-like chaperones, RmlC-like cupins, lipoxygenases,
acid proteases, and NAD(P)-binding Rossmann-fold domains (Figure 5E). Notably, the
High-Protein group features protein storage vacuoles, although they appear to exhibit less
dynamic metabolic activity compared to those in High-Oil seeds.

2.7. Major Difference Between High-Oil and High-Protein Groups

In total, 46 proteins were uniquely expressed in High-Oil seeds and 19 in High-
Protein seeds (Table S6), highlighting distinct metabolic strategies employed by each
seed type. Among the High-Oil-specific proteins, we identified 3 proteasome proteins,
8 chloroplastic/mitochondrial proteins, 11 cytoplasmic proteins, and 13 nucleic acid process-
related proteins.

For example, cytoplasmic proteins such as glutathione transferase, histone deacetylase,
cytosolic Fe-S cluster assembly factor NBP35, and auxin-induced protein PCNT115-like
(Figure 5F) are involved in detoxification, gene expression regulation, energy metabolism,
and hormonal signaling. These functions collectively support seed health and survival by
mitigating oxidative stress, modulating gene expression in response to metabolic needs,
and regulating energy production pathways critical for oil biosynthesis.

Additionally, chloroplastic and mitochondrial proteins including TIC110, peroxire-
doxin, and chaperonin CPN60-2 (Figure 5F) are upregulated, enhancing photosynthetic
capacity and antioxidative defenses. Enhanced photosynthesis provides the necessary
energy and carbon skeletons for lipid synthesis, while antioxidative defenses protect the
developing seeds from oxidative damage, thus promoting seed viability and developmen-
tal potential. Of particular note is GmTic110a, a critical chloroplast development protein
whose mutation reduces chlorophyll levels and adversely affects photosynthesis, ultimately
leading to fewer pods and a lower seed weight [32]. Peroxiredoxin contributes to main-
taining oxidative homeostasis during seed maturation and dormancy, underscoring the
importance of these subcellular proteins in High-Oil seeds.

By contrast, the High-Protein group primarily contained cytoplasmic proteins, includ-
ing four key enzymes (Table S6). Notably, late embryogenesis abundant protein LEA-1,
ATP-dependent 6-phosphofructokinase, and tau class glutathione S-transferase were up-
regulated, collectively improving stress tolerance, energy support, and metabolic efficiency.
LEA proteins are known to protect cellular structures during desiccation and stress condi-
tions, enhancing seed viability under adverse environmental conditions. ATP-dependent
6-phosphofructokinase plays a crucial role in glycolysis, providing energy and metabolic
intermediates necessary for protein synthesis and accumulation.

Moreover, proteins such as UDP-D-apiose/UDP-D-xylose synthase 2, bifunctional
dihydroflavonol 4-reductase/flavanone 4-reductase-like, and tetraketide alpha-pyrone re-
ductase 2 (Figure 5F) play critical roles in reinforcing seed structural integrity, synthesizing
defensive compounds, and bolstering chemical defenses. UDP-D-apiose/UDP-D-xylose
synthase 2 is involved in cell wall biosynthesis, contributing to the structural robustness
of seeds, while bifunctional dihydroflavonol 4-reductase/flavanone 4-reductase-like par-
ticipates in flavonoid biosynthesis, which is essential for defense against pathogens and
environmental stressors. Seed maturation protein PM25 offers additional biochemical and
physiological protection during seed maturation, ensuring effective germination across
various environmental conditions (Figure 5F).
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Taken together, these findings demonstrate how High-Oil and High-Protein seeds
employ distinct sets of proteins to optimize developmental processes, metabolic regulation,
and environmental adaptation. High-Oil seeds enhance their metabolic capacity for oil
biosynthesis and stress resistance, while High-Protein seeds focus on efficient protein
accumulation and structural integrity to thrive in varying environmental conditions.

3. Discussion
This study demonstrates the clear advantages of the BoxCar method over the DDA and

DIA methods in soybean proteomics. Notably, BoxCar significantly enhances sensitivity for
detecting low-abundance proteins, advancing our understanding of the soybean proteome.
This advantage could also extend to other crops with similarly wide dynamic ranges in
protein content.

In particular, BoxCar achieved 82.2% and 132.0% more protein identifications in High-
Oil and High-Protein seeds, respectively, compared to DDA. Similar improvements have
been reported in urine proteomics [19]. Furthermore, BoxCar uniquely detected over 25.7%
of proteins in High-Oil seeds (1002 proteins) and 30.2% in High-Protein seeds (1122 pro-
teins), far exceeding the detection rates of DIA and DDA (Figure 3). Beyond improved
identification depth, BoxCar also exhibits high reproducibility, with lower coefficients of
variation (CVs) and more consistent results across replicates (Figure 4). The abundance
distribution data confirm that BoxCar uniquely identifies proteins predominantly below
10ˆ8 in intensity (Figure 4E), emphasizing its utility for low-abundance protein detection.
These advancements provide deeper insights into the soybean proteome and have potential
applications for proteomic analyses in other crops and tissues.

When comparing our findings to the existing literature, the enhanced sensitivity of
BoxCar is not limited to soybean seeds. In Arabidopsis proteomics, BoxCar identified 8%
more proteins than direct DIA and better quantified low-abundance proteins like kinases,
phosphatases, and transcription factors [24]. BoxCar has also been applied successfully in
several other Arabidopsis proteomic studies. For example, the loss of RVE8-like proteins in
Arabidopsis led to altered carbohydrate, organic acid, and lipid metabolism, as well as a
starch excess phenotype at dawn [31]. In another study, BoxCar technology quantified 6400
and 8500 protein groups in Arabidopsis seedlings under salt stress, respectively [32]. Simi-
larly, in canola, BoxCar revealed that nutrient deficiency downregulated oxidative stress
response proteins in roots, with calcium signaling playing a crucial role in the response [33].

In biomedical research, BoxCar has proven beneficial in diabetic urine proteomics,
where it identified a larger proportion of low-abundance peptides (<107 intensity) compared
to DDA. BoxCar also significantly increased the number and sequence coverage of known
diabetic biomarkers, including α-1-acid glycoprotein (ORM1/ORM2), α-2-macroglobulin
(A2M), and β-2-microglobulin (B2M) [20]. In prostate cancer cell line proteomics, BoxCar
showed improved protein identification depth and fewer missing values compared to
DDA [34]. Moreover, BoxCar identified twice as many proteins in microvesicles from
high-speed centrifugation, covering over 90% of DDA-identified proteins [35]. These result
suggest that BoxCar is particularly effective for both deep proteome identification and the
quantification of low-abundance proteins.

In our soybean seed proteomics, BoxCar revealed specific proteins and metabolic path-
ways associated with High-Oil and High-Protein traits (Figure 5). In High-Oil seeds, the
upregulation of enzymes like TIC110 and peroxiredoxin highlights the importance of chloro-
plastic and mitochondrial pathways in oil biosynthesis and seed viability [34–36]. In High-
Protein seeds, proteins such as tau class glutathione S-transferase and ATP-dependent 6-
phosphofructokinase emerged as potential targets for optimizing protein accumulation [37,38].
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When comparing our findings to the existing literature, it is clear that the enhanced
sensitivity of BoxCar is not limited to soybean seeds. In the proteomic study of Arabidopsis,
compared to direct DIA, BoxCar can not only identify 8% more proteins but also better
quantify low-abundance proteins such as kinases, phosphatases, and transcription fac-
tors [24]. This suggests that BoxCar is effective in improving deep proteome identification
and quantifying low-abundance proteins. BoxCar has already been applied in several
studies in the field of plants. BoxCar proteomic analyses in Arabidopsis revealed that loss
of RVE8-like proteins results in altered carbohydrate, organic acid, and lipid metabolism,
including a starch excess phenotype at dawn [31]. Using BoxCar DIA technology, 6400 and
8500 protein groups were quantified from the shoots and roots of Arabidopsis seedlings
under salt stress, respectively [32]. In addition, the quantitative proteomic analysis of
canola based on BoxCar DIA technology revealed that nutrient deficiency led to the down-
regulation of oxidative stress response proteins in canola roots, with calcium signaling
proteins playing a key role in the response of canola roots to nutrient deficiency [33].

In biomedical research, in a proteomic study of diabetic urine samples, the proportion
of relatively low-abundance peptides (intensity < 107) was larger in the BoxCar results
compared to DDA, while BoxCar significantly increased the number and sequence coverage
of seven previously reported potential diabetic biomarkers, including α-1-acid glycoprotein
(ORM1/ORM2), α-2-macroglobulin (A2M), and β-2-microglobulin (B2M) [20]. In the study
of proteins from the prostate cancer 3 cell line, BoxCar demonstrated improved protein
identification depth and reduced missing values compared to the DDA method [34]. The
number of proteins identified in the microvesicles obtained from high-speed centrifugation
using the BoxCar method was twice that of DDA, covering over 90% of the proteins
identified by DDA [35].

In the analysis of soybean seed differences, the comprehensive proteomic profiles
enabled by BoxCar revealed specific proteins and metabolic pathways associated with
High-Oil or High-Protein traits (Figure 5). For High-Oil seeds, the upregulation of en-
zymes such as TIC110 and peroxiredoxin underscores the importance of chloroplastic
and mitochondrial pathways in oil biosynthesis and seed viability [34–36]. In High-
Protein seeds, the elevation of proteins like tau class glutathione S-transferase and ATP-
dependent 6-phosphofructokinase indicates potential molecular targets for optimizing
protein accumulation [37,38].

In conclusion, BoxCar significantly enhances the detection of low-abundance proteins
in soybean seeds, providing greater depth and accuracy in proteomic analyses. This
improvement facilitates a deeper understanding of the molecular mechanisms driving High-
Oil and High-Protein traits in soybean seeds and provides a powerful tool for advancing
soybean seed biology and optimizing crop nutritional qualities.

4. Materials and Methods
4.1. Soybean Seed Collection and Protein Extraction

Huaxia-2 (HX2, High-Oil) and Huaxia-14 (HX14, High-Protein) soybeans were culti-
vated at the experimental farm of South China Agricultural University, located at 23◦15′ N,
113◦34′ E in Guangzhou, Guangdong Province, China. Mature soybean seeds were har-
vested approximately 70 days post planting.

To extract proteins, the harvested soybean seeds were first chopped into small pieces
using a scalpel. The pieces were then rapidly frozen in liquid nitrogen to preserve cellular
integrity and subsequently ground into a fine powder using a mortar and pestle. This
powder was transferred into a 15 mL centrifuge tube, to which 10 mL of Tris-Mg/NP-40
buffer (0.5 M Tris-HCl, pH 8.3; 2% (v/v) NP-40; 20 mM MgCl2) was added. The mixture
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was subjected to ultrasonic disruption in a cell disrupter for 5 min, with an intermittent
cycle of 2 s on and 2 s off, to ensure thorough cell lysis.

Following this, the lysate was centrifuged at 16,000× g for 20 min at 4 ◦C. The clear
supernatant was carefully decanted into a new tube. To precipitate and remove high-
abundance storage proteins, protamine sulfate was added to the supernatant to a final
concentration of 0.05% (w/v). The mixture was incubated on ice for 30 min [30].

After incubation, the sample was centrifuged again at 16,000× g for 20 min at 4 ◦C.
The supernatant was transferred to another new tube and mixed with four volumes of
acetone and then left to precipitate proteins overnight at −20 ◦C. Following incubation, the
mixture was centrifuged at 16,000× g for 10 min at 4 ◦C. The supernatant was discarded,
and the precipitate was left to air-dry in a fume hood. The dry protein pellet was then
re-solubilized in Tris-Mg/NP-40 buffer.

Finally, the protein concentration of the solution was quantified using the Bicinchoninic
Acid (BCA) method [36], ensuring readiness for further analysis. This method ensures the
efficient extraction of proteins from soybean seeds while minimizing protein degradation
and contamination.

4.2. Peptide Preparation Using the FASP Method

For protein digestion, the Filter-Aided Sample Preparation (FASP) protocol was ap-
plied [25]. Begin by measuring 500 µg of protein and transferring it into a 30 kDa ultrafil-
tration tube. Centrifuge at 14,000× g for 15 min to remove any waste liquid. Subsequently,
add 200 µL of 8 M urea (UA) solution, prepared with 100 mM Tris-HCl at pH 8.0, to wash
the proteins.

Next, for the reduction and alkylation steps, add a solution containing 5 mM Tris(2-
carboxyethyl)phosphine (TCEP) and 25 mM chloroacetamide (CAA). Allow the mixture to
react at room temperature for 1 h. Following this, wash the proteins sequentially with 8 M
UA and then with 50 mM ammonium bicarbonate (NH4HCO3), centrifuging after each
wash to remove the previous solution.

After the washing steps, add trypsin at an enzyme-to-protein mass ratio of 1:20. Incubate
the mixture at 37 ◦C for 16 h to facilitate enzymatic digestion. Once digestion was complete,
centrifuge to collect the peptides from the filter. Dry the collected peptides in a vacuum
centrifugal concentrator and store them at −80 ◦C until needed for LC-MS/MS analysis.

4.3. Peptide Fractionation Using C18-Tip, SCX-Tip and SDB-RPS-Tip Methods

C18-Tip fractionation strategy. Begin by weighing 10 mg of C18 beads and trans-
ferring them into a 100 µL tip lined with a C8 membrane. Rinse the C18-Tip three times
with acetonitrile, ensuring complete filling during the final rinse, and allow it to stand at
room temperature for 2 h. After incubation, centrifuge the tip to remove the acetonitrile.
Next, wash the C18-Tip with NH3·H2O (pH = 10) to prepare for peptide loading. Transfer
peptides dissolved in NH3·H2O (pH = 10) into the C18-Tip and centrifuge to discard the
waste. Desalt the peptides with additional NH3·H2O (pH = 10). Elute the peptides using a
gradient of acetonitrile in NH3·H2O (pH = 10) at increasing concentrations (6%, 9%, 12%,
15%, 18%, 21%, 25%, 30%, 35%, and 50%).

SCX-Tip fractionation strategy. First, dissolve the peptide sample in 1% trifluo-
roacetic acid (TFA) and transfer it to a 100 µL Tip column equipped with five layers of
SCX membrane. After centrifugation to remove waste, wash the peptides with 0.2% TFA.
Sequentially elute the peptides with solutions containing ammonium acetate (AA) in 20%
acetonitrile (ACN) and 0.5% formic acid (FA), at concentrations of 50 mM, 75 mM, 125 mM,
200 mM, and 300 mM, followed by a final elution with 80% ACN and 5% NH3·H2O. Dry
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the eluted peptides in a vacuum centrifugal concentrator and store them at −80 ◦C for
future LC-MS/MS analysis.

SDB-RPS-Tip fractionation strategy. Start by assembling five layers of SDB-RPS
membranes into a 100 µL Tip column. Dissolve the peptides in 0.1% TFA and load them
onto the SDB-RPS-Tip column. After centrifugation to eliminate waste liquid, perform a
washing step with 0.2% TFA. Sequentially elute the peptides with increasing concentrations
of ammonium formate (AF) in ACN and 0.5% FA (100 mM AF/40% ACN, 150 mM AF/60%
ACN), followed by a final elution with 80% ACN and 5% NH3·H2O. Heat and dry the
peptides in a vacuum centrifugal concentrator before storing them at−80 ◦C for subsequent
LC-MS/MS analysis.

4.4. LC-MS/MS Analysis

All samples were analyzed using an EASY-nLC 1200 system coupled to an Orbitrap
Fusion Lumos Tribrid mass spectrometer (Thermo Fisher Scientific, San Jose, CA, USA).
The peptides were separated on a homemade C18 column (100 µm ID × 30 cm length).
The mobile phases consisted of 0.1% formic acid in water (Phase A) and 0.1% formic acid
in 80% acetonitrile (Phase B). Peptides were eluted at a flow rate of 600 nL/min using a
linear gradient of acetonitrile in 0.1% formic acid over 78 min, with the gradient schedule
as follows: 0–5 min (4–10% B), 5–48 min (10–22% B), 48–66 min (22–35% B), 66–76 min
(35–90% B), and 76–78 min (90% B).

DDA MS acquisition strategy. MS and MS/MS scans were conducted using an
Orbitrap mass analyzer (Thermo Fisher Scientific, San Jose, CA, USA). Full MS scans
covered a range of 350–1550 m/z at a resolution of 120,000. The automatic gain control
(AGC) target was set at 4e5 with a maximum ion injection time (MIT) of 50 ms for full scans.
Precursor ions selected for MS/MS had an isolation width of 1.6 m/z and were fragmented
at a normalized collision energy of 30%. MS2 resolution was set at 15,000, with an AGC
target of 5e4 and an MIT of 30 ms for MS/MS scans. Dynamic exclusion was set for 18 s.

DIA MS acquisition strategy. Similar to DDA, the full scan range was 350–1550 m/z
at a resolution of 120,000. AGC was set to 4e5 with an MIT of 60 ms for full scans. MS2

scans were performed at a higher resolution of 30,000, with an AGC target of 5e4 and an
MIT of 54 ms. Stepped collision energy was configured at 27 (±3%). Thirty variable DIA
windows spanned from 350 to 1550 m/z (Table S7).

BoxCar MS acquisition strategy. The full scan range was extended to 350–1650 m/z
at a high resolution of 240,000. AGC was set at 1e6 for full MS scans, with an automatic
MIT. The cycle included three BoxCar scans using 10 boxes each (1 Th overlap) (Table S7).
Precursor ions for MS/MS were isolated with a width of 1.4 m/z and fragmented using
a normalized collision energy of 27%. MS2 resolution remained at 15,000, with an AGC
target of 5e4 and dynamic MIT settings. Dynamic exclusion lasted for 30 s.

4.5. Data Analysis

All MS raw files were analyzed using MaxQuant [37,38] software, version 2.0.3.0.
Peptide lists were searched against the species-level Uniprot TrEMBL&Swiss-Prot Glycine
max database [39]. Protein N-terminal acetylation and methionine oxidation were set as
variable modifications, while the carbamidomethylation of cysteine was set as a fixed
modification. The maximum number of allowed missing cleavage sites was set to two.
Precursor spectra were searched with an accuracy of 4.5 ppm, and fragment spectra were
searched with an accuracy of 20 ppm.

Protein data preprocessing and differential analysis were performed using Perseus [40].
Missing values were imputed in Perseus using a normal distribution (width: 0.3, downshift:
1.8, mode: separately for each column). Proteomes of High-Oil and High-Protein soybean
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seeds were analyzed for differential expression using a t-test. Proteins with |log2(fold
change)| ≥ 1.5 and p-value ≤ 0.05 were defined as significantly differentially expressed
genes (DGEs). Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analyses for DEGs were performed using DAVID
2021 (Dec. 2021). Specifically expressed proteins in the High-Oil and High-Protein groups
were annotated using the DAVID database. GraphPad Prism software (version 9.5.1) was
used for data visualization.
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