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Abstract: Spatial transcriptomics has transformed our understanding of gene expression
by preserving the spatial context within tissues. This review focuses on the application
of spatial transcriptomics in human cardiac tissues, exploring current technologies with a
focus on commercially available platforms. We also highlight key studies utilizing spatial
transcriptomics to investigate cardiac development, electro-anatomy, immunology, and
ischemic heart disease. These studies demonstrate how spatial transcriptomics can be used
in conjunction with other omics technologies to provide a more comprehensive picture of
human health and disease. Despite its transformative potential, spatial transcriptomics
comes with several challenges that limit its widespread adoption and broader application.
By addressing these limitations and fostering interdisciplinary collaboration, spatial tran-
scriptomics has the potential to become an essential tool in cardiovascular research. We
hope this review serves as a practical guide for researchers interested in adopting spatial
transcriptomics, particularly those with limited prior experience, by providing insights into
current technologies, applications, and considerations for successful implementation.

Keywords: spatial transcriptomics; cardiovascular diseases; Visium; STomics; CurioSeeker;
Xenium; GeoMX; CosMX; Molecular Cartography; MERSCOPE

1. Introduction
The human heart is a highly complex organ composed of a heterogeneous population

of cells that function in coordination. When this well-orchestrated system is disturbed,
people develop cardiovascular diseases (CVDs). Despite advancements in sciences and
medicine, CVDs remain the leading cause of death globally, contributing to 32% of all
global deaths in 2019 [1]. Understanding cardiac cell biology, cell-cell interactions, and
how cells interact with their microenvironment is essential to understand normal cardiac
function and how these functions are altered in disease states.
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Traditional studies of cardiac physiology and pathology have been conducted using animal
models, particularly rodents [2]. While studies using animal models have provided invaluable
insights into the cardiovascular system, intrinsic differences in anatomy and physiology between
animal models and humans prevent them from fully replicating the intricacies of human cardiac
function. Other platforms, such as stem cell-derived models and cardiac organoids, are recent
advancements contributing to our understanding of human heart biology [3,4]. However, they
are limited by their ability to mimic the interconnected nature of cardiac tissue, where multiple
cell types interact within a complex three-dimensional microenvironment. As a result, human
tissue, although hard to come by, remains the best resource for studying human cardiac disease.

While traditional bulk omics approaches have provided invaluable understanding of
the underlying cardiac pathophysiology, they only measure the average gene expression
and fail to detect the heterogeneity within cardiac tissue. Single-cell RNA sequencing
(scRNA-seq) and single-nuclei RNA sequencing have revolutionized the field by providing
information on gene expression and regulation at the single-cell level. For simplicity, both
methodologies will be collectively referred to as single-cell RNA sequencing (scRNA-seq)
throughout this paper. ScRNA-seq technologies have revealed a comprehensive atlas of
the human heart by identifying rare cell populations and their gene signatures, which are
instrumental in advancing our understanding of cardiac development and disease [5].

Despite significant advancements in scRNA-seq, one critical limitation with this technology
remains: the lack of spatial context. ScRNA-seq requires the dissociation of tissue, which
disrupts the connections between cells and their extracellular environment. However, no cell
exists in isolation, and the function and regulation of each cell are determined by its interaction
with neighboring cells and its microenvironment. Spatial transcriptomics (ST) bridges this gap
by providing high-resolution data while preserving the spatial context of tissue. This novel
approach offers invaluable insights into the molecular signatures underlying cardiac tissue in
both healthy and diseased states.

This paper aims to review the current technologies in spatial transcriptomics with a
focus on commercially available platforms, discuss their applications in cardiac research
using human tissue, evaluate associated challenges and limitations, and provide insights
into emerging opportunities in the field.

2. Spatial Transcriptomics: Current Technologies, Platforms, and
Experimental Considerations

Spatial transcriptomics seeks to quantify the number of gene transcripts at specific spatial
positions within a tissue. Multiple methods exist, which differ in terms of capture area size,
resolution, and number of target genes [6–8]. Table 1 highlights key parameters of currently
available commercial ST platforms. There is often a trade-off between the number of genes
that can be analyzed and the size of the tissue that can be captured. Depending on how the
spatial location is retained and how RNA is quantified within each location, ST technology
can be broadly categorized into two main methods: sequencing-based and imaging-based
technologies [9,10]. Sequencing-based approaches use spatial barcodes to map the spatial
position of each transcript and next-generation sequencing followed by alignment to a reference
genome, generating a gene expression matrix [10]. Imaging-based approaches image RNA in
situ via microscopy. Within imaging-based technologies, there are two ways to distinguish
different RNA species: hybridization, where RNA species are hybridized to fluorescent probes
(in situ hybridization or ISH), or in situ sequencing (ISS), where transcripts are directly sequenced
inside a tissue section using sequencing by ligation (SBL) technology [11–13]. Figure 1 illustrates
the workflow of these ST technologies from tissue preparation to the generation of spatially-
resolved gene expression matrix. Clearly, this classification is not always distinct, as methods
may combine elements from multiple technologies.
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Table 1. Key parameters of commercially available spatial transcriptomic platforms.

No Platform Method Species
Compatibility

Tissue
Compatibility Capture Area Size RNA Targets Resolution Tissue Section

1 10x Genomics
Visium Sequencing-based Human, mouse Fresh frozen, fixed

frozen, FFPE 6.5 mm × 6.5 mm Whole transcriptome Single cell, 2 × 2 µm Standard glass slides

2 STomics Stereo-seq Sequencing-based Human, mouse,
others Fresh frozen 1 cm × 1 cm, up to 13 cm × 13 cm Whole transcriptome Subcellular Stereo-seq chip slides

3 Curio Bioscience
CurioSeeker Sequencing-based Human, mouse,

others Fresh frozen 3 mm × 3 mm or 10 mm × 10 mm Whole transcriptome Single cell CurioSeeker tiles

4 10x Genomics
Xenium Imaging-based Human, mouse Fresh frozen, FFPE 22.5 mm × 10.5 mm 5000 genes Subcellular Xenium slides

5 NanoString CosMX Imaging-based Human, mouse Fresh frozen, FFPE 20 mm × 15 mm 6000 genes Subcellular Standard glass slides

6
Resolve Biosciences

Molecular
Cartography

Imaging-based Human, mouse,
others Fresh frozen, FFPE

8 placement areas, each area 1 cm2,
in total maximum 26 mm2 across

all samples
100 genes Subcellular Molecular

Cartography slides

7 Vizgen MERSCOPE Imaging-based Human, mouse Fresh frozen, fixed
frozen, FFPE 3 cm2 1000 genes Subcellular MERSCOPE slides

8 NanoString GeoMx Hybrid Human, mouse Fresh frozen, fixed
frozen, FFPE 35.3 mm × 14.1 mm Whole transcriptome Area of illumination,

minimum 5 µm × 5 µm Standard glass slides
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Figure 1. Workflow of spatial transcriptomics, outlining tissue preparation, slide preparation, data
acquisition, data analysis, and downstream biological applications. The process begins with tissue
preparation from fresh frozen, fixed frozen, or formalin-fixed paraffin-embedded (FFPE) samples.
Sequencing-based methods use spatial barcodes to preserve spatial locations of transcripts and next-
generation sequencing (NGS) to identify transcripts. In situ sequencing (ISS) relies on rolling circle
amplification (RCA) to anchor and amplify complementary DNA (cDNA) while retaining the spatial
context. Fluorescently labeled oligonucleotide probes then hybridize to cDNA using sequencing by
ligation. In situ hybridization (ISH) methods detect target sequences by hybridization of complemen-
tary fluorescent probes. The product of spatial transcriptomics is the gene expression matrix with
spatial reconstruction to address key biological questions such as cell composition, cell-cell interac-
tions, and molecular interactions. FFPE, formalin-fixed paraffin-embedded; ISH, in situ hybridization;
ISS, in situ sequencing; NGS, next-generation sequencing; RCA, rolling circle amplification.

2.1. Imaging-Based Technologies

ISH-based methods build upon the foundation of single-molecule fluorescence in
situ hybridization (smFISH), a technique where nucleic acid sequences are labeled with
complementary fluorescent probes, allowing individual transcripts to appear as distinct
spots under a microscope [14]. Expanding on smFISH, ISH-based technologies use multiple
rounds of hybridization in order to profile a larger number of genes. Sequential fluorescence
in situ hybridization (seqFISH) is a technique that utilizes iterative rounds of hybridization,
each time with a different fluorophore [15]. Between each round, fluorescent signals are cap-
tured, stripped, and replaced with a new set of fluorophores, generating unique fluorescent
signatures specific to each gene. Molecular Cartography (MC), a spatial transcriptomics
platform developed by Resolve Biosciences, leverages the principles of seqFISH to detect
transcripts with high sensitivity and specificity. However, seqFISH is practically limited by
optical crowding if too many transcripts are profiled simultaneously [16]. Currently, the
MC platform can detect up to 100 genes with subcellular resolution, suitable for analysis of
rare transcripts in the cells.

Each round of hybridization in ISH-based methods carries a risk of error due to factors
such as non-specific bindings, mismatches, and probe degradation. The likelihood of
errors increases exponentially as more rounds are performed. To address this problem,
multiplexed error-robust fluorescence in situ hybridization (MERFISH) employs a differ-
ent strategy to reduce such errors [17]. MERFISH also relies on sequential hybridization;
however, the technology uses binary-coded secondary probes that are either fluorophore-
labelled or unlabeled [18–20]. Successive rounds of hybridization are imaged to detect
the presence or absence of fluorescent signals, and transcript identities are decoded using
error-robust barcodes, which help detect and correct errors during hybridization [17]. Fur-
thermore, this approach also mitigates optical crowding, allowing for a higher number
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of transcripts to be processed at the same time [20]. MERFISH-based technology is com-
mercially available through platforms like MERSCOPE from Vizgen, which can image up
to 1000 genes with subcellular resolution and capture an area of up to 3 cm². Likewise,
the CosMx Spatial Molecular Imager (CosMx SMI) from Nanostring uses a hybridization
strategy similar to MERSCOPE in principle. Current CosMx SMI supports the imaging and
quantification of up to 6000 genes at subcellular resolution.

ISS-based methods enable the direct readout of transcript sequences within tissue
samples, preserving their spatial information. The process begins with RNA being reverse-
transcribed into cDNA, followed by rolling circle amplification (RCA), which anchors and
amplifies the cDNA while retaining its spatial context [21]. Subsequently, fluorescently
labeled oligonucleotide probes hybridize to the RCA-amplified cDNA at complementary
sequences using DNA ligase, a process called sequencing by ligation. This step enables
visualization and eventually identification of RNA species at their spatial locations. An
application of ISS is CARTANA technology, which was acquired by 10x Genomics and
further developed into the current Xenium platform.

The Xenium platform integrates both ISS and ISH technologies to retain spatial con-
text and identify RNA species. The workflow begins with gene-specific barcoded probes
hybridized directly onto RNA in the tissue using the proprietary Xenium slide. Xenium’s
padlock probes provide highly specific target detection by requiring both probe arms to
hybridize to the target sequence. If only one arm hybridizes, the probe remains unstable
and will be washed off in the post-hybridization wash. Targeted RNAs are then amplified
via RCA followed by sequential rounds of hybridization using fluorophore-labeled oligonu-
cleotide probes. This iterative imaging process generates a unique imaging signature,
allowing accurate gene identification. The Xenium platform supports the detection of up
to 5000 genes with subcellular resolution, covering a capture area of 22.5 mm × 10.5 mm,
making it a powerful tool for spatial transcriptomic studies.

2.2. Sequencing-Based Technologies

Sequencing-based spatial transcriptomics techniques extend the principles of scRNA-seq
by introducing spatial barcoding prior to library preparation [10]. These methods use spa-
tially barcoded slides to capture polyadenylated RNA, preserving the spatial location of tran-
scripts during reverse transcription [22,23]. The RNA species are then identified through
next-generation sequencing (NGS), allowing whole transcriptome profiling. An example of this
technology is Visium by 10x Genomics, which enables whole transcriptome analysis with near
single-cell resolution over a capture area of 6.5 mm × 6.5 mm.

An alternative to spatial barcodes involves depositing barcoded beads onto a slide for
mRNA capture, as demonstrated in the Slide-seq method [24]. Spatial information of each
random barcode is determined through in situ indexing. Platforms like CurioSeeker by Curio
Bioscience employs bead-based technology, supporting whole-transcriptome analysis over cap-
ture areas of 3 mm × 3 mm or 10 mm × 10 mm. Another advanced sequencing-based approach
is Stereo-seq (spatial enhanced resolution omics-sequencing), which uses randomly barcoded
DNA nanoballs arranged in an array to achieve nanoscale resolution [25]. The STomics plat-
form, utilizing Stereo-seq technology, facilitates whole-transcriptome profiling with subcellular
resolution in fresh frozen tissues, accommodating capture regions as large as 13 cm × 13 cm.
These innovations provide versatile and scalable solutions for spatial transcriptomics, catering
to a range of experimental needs and resolutions.

The GeoMx Digital Spatial Profiler (DSP), an ST platform developed by Nanostring
Technologies, uses a hybrid strategy combining aspects of sequencing-based and imaging-
based ST approaches. The typical workflow using this platform includes hybridization of
gene-specific probes to RNA targets on the tissue sample. These probes are linked to unique
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barcodes through UV-cleavable linkers. The tissue slide is then stained with fluorescently
labeled imaging probes to visualize specific cell types of interest, followed by imaging with
the GeoMx DSP instrument. Based on the imaging results, researchers can select regions of
interest (ROIs) for further analysis. UV light is then applied to these ROIs to release the
barcodes, which are subsequently collected for library construction and sequencing. This
targeted library preparation is more cost-effective. Furthermore, more samples on the same
slide can be processed without being limited by predesigned capturing areas as in other
array-based platforms [26].

2.3. Considerations for Selecting a Spatial Transcriptomic Method
2.3.1. Biological Question: Hypothesis Testing vs. Hypothesis Generation

The choice of ST method depends largely on whether the study is hypothesis gener-
ating or hypothesis testing. Sequencing-based approaches are well-suited for hypothesis
generation because they capture all polyadenylated transcripts, providing an unbiased
view of the entire transcriptome. Imaging-based methods, on the other hand, are often
preferred for hypothesis testing since they typically require prior knowledge of target
genes. However, advancements in imaging-based technologies now allow profiling of up
to 6000 genes, thus broadening their applications.

An important consideration is the trade-off between sensitivity and gene throughput.
Imaging-based methods generally offer higher sensitivity compared to sequencing-based
methods, which achieve their unbiased whole transcriptomic coverage at the expense of
sensitivity. For imaging-based platforms, the number of genes to be profiled is another
factor to consider. Technologies like MC by Resolve Biosciences can profile up to 100 genes,
while platforms such as Xenium by 10x Genomics can profile up to 5000 genes.

2.3.2. Species and Tissue Compatibility

The species and tissue types available for the study also play an important role in the
process of platform selection. Most commercially available ST platforms are compatible
with human and mouse tissues. Researchers also need to consider the specific tissue
types available for their experiment—whether fresh frozen, fixed frozen, or formalin-fixed
paraffin-embedded (FFPE)—as each platform is compatible with certain tissue types. For
FFPE tissues, RNA quality is an additional consideration. Some platforms recommend
assessing RNA integrity prior to proceeding with the workflow, often suggesting that more
than 50% of RNA fragments be above 200 nucleotides for optimal results.

2.3.3. Tissue Size

The size of the tissue to be analyzed is another important factor, as all platforms have
constraints based on their capture area sizes. For example, 10x Visium supports tissue
sections of up to 6.5 mm × 6.5 mm, with two sections per slide. In comparison, 10x Xenium
offers a larger capture area of 22.5 mm × 10.5 mm per slide, with two slides processed per
run. Meanwhile, STomics’s Stereo-seq accommodates significantly larger tissue sections,
up to 13 cm × 13 cm, making it ideal for studies requiring larger spatial coverage.

2.3.4. Spatial Resolution

Imaging-based methods generally offer better resolution than sequencing-based meth-
ods, often achieving subcellular resolution. Among sequencing-based platforms, 10x
Visium is the most commonly used platform. Visium’s resolution has improved to almost
single-cell scale, with data output at 2 × 2 µm, although the recommended starting bin size
for analysis is 8 × 8 µm. Bins provide the benefit of containing a higher average number of
transcripts per unit area. An 8 µm bin captures 16 times more transcripts compared to a
2 µm square, therefore enhancing the signal-to-noise ratio while preserving single-cell scale
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resolution. Sequencing-based approaches are often combined with scRNA-seq to achieve
single-cell resolution while preserving all the advantages that NGS technology can offer.

Overall, designing an ST experiment involves balancing sensitivity, resolution, and
tissue compatibility with the study’s biological question, tissue type, and size availability.
Beyond these considerations, adhering to best practices is important to ensure reliable
results. First of all, RNA integrity is essential for a successful ST experiment. Tissue
handling and preparation should follow platform-specific guidelines, including proper
fixation, freezing, and sectioning with RNA quality checks before processing. Maintaining
an RNase-free lab space dedicated to ST work is critical [27]. Furthermore, the retrieval,
collection, and storage of tissue samples significantly influence RNA quality. Proper
training and communication are essential to limit ischemic time and reduce contamination
risks during sample handling.

Integrating spatial transcriptomic data with histological information such as hema-
toxylin and eosin staining can provide additional spatial context, allowing for the cor-
relation of molecular data with tissue architecture. Preservation of spatial orientation
across tissue samples is equally crucial to ensure consistency among experimental groups.
Researchers should always consult vendor protocols and platform-specific guidelines to
align workflows with established standards in order to optimize their results.

3. Spatial Transcriptomics Data Analysis
The analysis of spatial transcriptomic data can be divided into two phases: pre-

processing and downstream data analysis. Multiple previous papers have comprehensively
reviewed the data analysis workflows for ST [6,7,26,28]. In this paper, we aim to provide
an overview of the key steps and tools available for each step.

3.1. Pre-Processing

Pre-processing is the first step in ST analysis and involves converting raw imaging
or sequencing data into a matrix of transcript counts by spatial capture areas. For image-
based data, this step identifies location, type, and expression levels of RNA within the
tissue image. Corrections for variations in background and noise are needed to ensure
data accuracy. Various software packages are used for this purpose, such as DeepBlink,
BarDensr, or graph-ISS [29–31].

For sequencing-based data, pre-processing begins with tissue image registration,
where the tissue area is divided into spatial spots to generate a location index matrix
corresponding to each region. A gene expression matrix is created by aligning sequenced
reads to a reference genome. These two matrices are then combined to produce a spatially
indexed transcript count matrix. A commonly used tool for this workflow is SpaceRanger
from the 10X Visium platform.

Segmentation is an optional step in spatial transcriptomic data analysis. Segmentation
aims to reconstruct single-cell transcriptomes from ST data with subcellular resolution.
This approach utilizes references from scRNA-seq data, previous information from nuclear
staining, or inference based on clustering of transcript species. Tools like Baysor, Sparcle, or
Spage2vec are commonly used for this purpose [32–34]. Segmentation ensures that ST data
retains the structural context needed for meaningful downstream analysis.

Normalization is an essential step in pre-processing and addresses technical vari-
ability across spatial spots due to differential mRNA capture rates across the tissue. The
most common normalization approach divides each spot’s gene expression values by
the total transcript count in the spot, as implemented in tools such as Scanpy, Giotto, or
Seurat [35–37]. However, this approach uses the assumption that all regions within the tis-
sue have uniform mRNA abundance, which may not always be true. Other methods, such
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as the sctransform algorithm in Seurat or the spatial and morphological expression (SME)
method in stLearn, account for spatial context and variability in tissue composition [38].
Interestingly, unnormalized data can also provide valuable insights, as information on cell
density and mRNA abundance is preserved; however, their suitability for downstream
analysis may be limited [38].

3.2. Downstream Data Analysis
3.2.1. Dimensionality Reduction and Clustering

Dimensionality reduction and clustering are foundational methods for identifying distinct
spatial regions within tissues. Dimensionality reduction techniques such as principal component
analysis (PCA) or uniform manifold approximation and projection (UMAP) are utilized to
reduce data noise and highlight key biological patterns, facilitating downstream clustering [39,
40]. Spatial clustering uses spatial transcriptomic information to categorize tissue locations into
multiple domains. Machine learning-based clustering algorithms such as Louvain clustering,
Leiden clustering, or k-means clustering are commonly used for this purpose [28].

3.2.2. Integration with Single Cell RNA Sequencing Data

Spatial cell type annotation incorporates scRNA-seq data with ST data to identify
and label specific cell types or states within the tissue. This integration bridges the high-
resolution cellular data from scRNA-seq with spatially resolved expression patterns from ST
data. Methods such as imputation, deconvolution, and mapping achieve this integration.
Imputation involves predicting missing or unobserved values in ST datasets by using
information from neighboring spots or scRNA-seq references. This step essentially “fills
in the gaps”, thereby enhancing spatial resolution, particularly for methods with low
sensitivity. Deconvolution, on the other hand, uses machine learning, deep learning, and
statistical models to estimate the proportion of different cell types or cell states within
spatial spots. This step is important in methods that do not reach single-cell resolution, as
each spatial spot may contain multiple cells. Mapping assigns scRNA-seq-derived cell types
or states to individual spatial spots by aligning known cellular annotations from scRNA-seq
data to ST profiles. This mapping step is commonly used for data generated via image-
based technologies. Examples of platforms for these steps include Seurat or Giotto [36,37].

3.2.3. Interaction Analysis

A common goal of transcriptomic studies is to infer cellular and molecular interactions.
Similar to scRNA-seq data analysis, there are multiple software packages that are designed
for this purpose. Cell-cell interaction analysis examines how cells interact spatially, inte-
grating spatial metrics with gene expression data. Tools such as SpOTsc and DIALOGUE
facilitate this type of analysis [41,42]. Gene-gene interaction analysis explores molecular
mechanisms underlying cellular interactions by using gene expression and positional ma-
trices. Methods like GCNG and ScHOT are used to analyze gene co-expression patterns
and their spatial relationships [41,42]. Although numerous packages are available, they pri-
marily differ in functionality and the size of their user communities. For novice researchers,
Seurat and Scanpy are highly recommended due to their comprehensive documentation
and active, supportive user bases.

4. Applications of Spatial Transcriptomics in Human Cardiac Research
The following section reviews key studies that have used ST on various human cardiac

tissues. These papers demonstrate the diverse applications of ST in uncovering spatial gene
expression patterns and their implications in disease mechanisms. Table 2 summarizes the
studies, with a focus on the techniques, platforms, and associated methods used in each.
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Table 2. Summary of studies using spatial transcriptomics in human cardiac tissues. FFPE, formalin-fixed paraffin-embedded; GeoMx DSP, GeoMx Digital Spatial
Profiler; hPSC, human pluripotent stem cell; ISH, in situ hybridization; ISS, in situ sequencing; MERFISH, multiplexed error-robust fluorescence in situ hybridization;
OCT, optimal cutting temperature; scATAC-seq, single-cell assay for transposase-accessible chromatin sequencing; scCITE-seq, single-cell cellular indexing of
transcriptomes and epitopes sequencing; scRNA-seq, single-cell RNA sequencing; ST, spatial transcriptomics.

Topics Author Year Tissue Type ST Technology Commercial ST
Platform Other Omics Technology (Platform) In Vitro/In Vivo Verification

Cardiac
development

Asp et al. [43] 2022 Fresh frozen
Sequencing-based -

scRNA-seq (10x Genomics) -
Imaging-based (ISS) -

Farah et al. [44] 2024 FFPE Imaging-based
(MERFISH) - scRNA-seq (10x Genomics) Yes (hPSC model,

mouse model)

Lazar et al. [45] 2024 Fresh frozen
Sequencing-based Visium

scRNA-seq (10x Genomics) -
Imaging-based (ISS) -

Cardiac
electro-anatomy

and immunology

Kanemaru et al. [46] 2023 Fresh frozen, OCT
frozen, FFPE Sequencing-based Visium scRNA-seq, scATAC-seq

(10x Genomics) Yes (hPSC model)

Vyas et al. [47] 2024 FFPE Hybrid GeoMx DSP scRNA-seq, scCITE-seq
(10x Genomics) Yes (hPSC model)

Amrute et al. [48] 2024 Used previously published ST datasets scRNA-seq, scCITE-seq, scATAC-seq
(10x Genomics)

Yes (human fibroblast models,
mouse models)

Ischemic heart
disease

Kuppe et al. [49] 2022 Fresh frozen Sequencing-based Visium scRNA-seq, scATAC-seq
(10x Genomics)

Yes (immortalized human cell
line, mouse model)

Lina-Kuosmanen et al. [50] 2024 Fresh frozen
Sequencing-based Visium

scRNA-seq (10x Genomics) Yes (human vascular cell lines)
Imaging-based (ISH) Molecular Cartography

Ninh et al. [51] 2024 Used previously published ST datasets - Yes (hPSC model,
mouse model)

Gastanadui et al. [52] 2024 FFPE Hybrid GeoMx DSP - -
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4.1. Cardiac Development

Asp et al. used a combination of three technologies: NGS-based ST, scRNA-seq,
and ISS-based ST to study the spatial and temporal differential gene expression patterns
during human heart development [43]. The authors were able to characterize different
developmental stages at an organ-wide level with single-cell resolution. NGS-based ST
was used to explore spatial genome-wide expression patterns common to the three stages:
4.5–5, 6.5, and 9 weeks post-conception (WPC). This analysis was conducted using the
method described by Stahl et al. in 2016, which was later commercialized as the Visium
platform by 10x Genomics [53].

To delineate cell type heterogeneity, scRNA-seq was then applied to the intermediate
developmental stage using the 10x Genomics platform. Results from NGS-based ST and
scRNA-seq revealed distinct cell populations and their unique expression profiles. Building
on these results, as well as prior knowledge of critical genes for cardiac embryogenesis, the
group designed a custom panel of 69 genes and used ISS-based ST to further map cellular
expression with subcellular resolution. The protocol was based on the method described
by Ke et al. in 2013 using RCA and ISS [21]. Validation of these findings was performed
using smFISH.

The study revealed that spatial gene expression patterns are established early on and
maintained across three stages. Additionally, distinct spatiotemporal expression patterns
were identified in various cell populations, such as cardiac neural crest cells and Schwann
progenitor cells, and new cell types involved in heart development were discovered.
Findings from this study were used to create a publicly accessible web resource for the
human embryonic heart, providing a valuable tool for future research in the field.

More recently, Farah et al. utilized scRNA-seq and MERFISH to further investigate
the development of the human heart [44]. The study focused on human hearts between 9
and 16 WPC. For scRNA-seq, each heart was dissected into chambers and interventricular
septum before the 10x Genomics platform was used, which revealed 12 major cell classes,
39 populations, and 75 subpopulations corresponding to their anatomical locations and
developmental stages. MERFISH was then performed on hearts from 12–13 WPC to
spatially resolve the findings from scRNA-seq. A list of 238 genes was selected based on
scRNA-seq results and prior knowledge. Using FFPE samples, MERFISH results provided
high-resolution spatial mapping of individual cells, enabling the generation of a detailed
cardiac cell atlas.

Among the key findings, ventricular cardiomyocyte subpopulations were found to have
an unexpectedly complex organization across the ventricular wall. Furthermore, distinct ligand-
receptor signaling pairs expressed between spatially neighboring cell populations were iden-
tified. In particular, plexin-semaphorin (PLXN-SEMA) signaling pathways were found to be
essential in directing multicellular interactions during ventricular wall morphogenesis. The
role of PLXN-SEMA signaling was further explored using in vitro pluripotent stem cell mod-
els and mouse models. These experiments revealed previously uncharacterized multicellular
interactions among PLXNA2+ PLXNA4+ ventricular cardiomyocytes, SEMA3C+ SEMA3D+

fibroblasts, and SEMA6A+ SEMA6B+ endothelial cells, which potentially control the allocation
of cardiomyocytes during ventricular wall compaction.

Another study by Lazar and colleagues also utilized ST and scRNA-seq to study
the spatial dynamics of the developing human heart [45]. Using NGS-based ST on six-
teen fresh-frozen human hearts collected between the 6th and 12th WPC, thirty-eight
heart sections were generated with at least two biological replicates per sample. These
sections were analyzed using the Visium platform, revealing previously unappreciated
transcriptomic signatures in the developing heart, especially in the papillary muscles and
atrioventricular regions.
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To complement the ST data, ISS was performed on five hearts targeting 150 selected
transcripts. The protocol used for ISS was based on the previously published pipeline by
Lee et al. [54]. In addition, to deconvolute the ST data and gain better resolution, scRNA-seq
was performed on 15 hearts using the 10x Genomics platform. This analysis identified 31
coarse and 72 fine-grained cell states, offering further insight into the cellular landscape of
the developing human heart.

By integrating ST and scRNA-seq, Lazar et al. were able to find novel insights into
the development of multiple cardiac components, such as pacemaker conduction system,
cardiac autonomic innervation, and structural regions such as the heart valves or atrial
septum. The study also delineates the heterogeneity of the cardiac fibroblast population
and presents the first spatial account of chromaffin cells in the fetal human heart.

4.2. Cardiac Electro-Anatomy and Immunology

A study conducted by Kanemaru et al. combined ST and single-cell multiomics to
investigate the cellular architecture of the human heart [46]. Using flash-frozen, optimal
cutting temperature (OCT)-frozen, and FFPE tissues, ST was performed across eight cardiac
anatomical regions using the Visium platform. The data were integrated with scRNA-seq
data and single-nucleus assay for transposase-accessible chromatin sequencing (snATAC-
seq) to analyze cellular profiles as well as the regulatory mechanisms governing cardiac cell
identity. Key findings were verified using human-induced pluripotent stem cell-derived
cardiomyocytes (hiPSCs).

The study provided insights into the human cardiac conduction system, identifying
distinctive ion channels, G protein receptors, and regulatory networks specific to pacemaker
cells with FOXP2 found to be important in their phenotype. The sinoatrial node was found
to be compartmentalized, with a core of pacemaker cells surrounded by fibroblasts and
glial cells that support glutamatergic interactions. Furthermore, the study also identified
immune niches in the epicardium that are enriched in both IgA and IgG that may contribute
to infection defense. Another highlight of the study was the development of drug2cell,
a platform that integrates single-cell profiles with drug-target databases to predict drug
effects on specific cardiac cell types.

A recent study published in 2024 by Vyas and colleagues investigated the role of tissue-
resident memory T (TRM) cells in the epicardial adipose tissue (EAT) and their contribution
to atrial fibrillation (AF) [47]. Initial results from flow cytometry identified an enrichment
of TRM cells in patients with AF. To confirm the identity of these TRM cells, cellular in-
dexing of transcriptomes and epitopes by sequencing (CITE-seq) was used to delineate
both transcriptomes and surface protein expression, a function that cannot be achieved
by scRNA-seq alone. CITE-seq revealed two distinct TRM populations differentiated by
activation states and effector functions. Single-cell T cell receptor sequencing then showed
significant clonal expansion and overlap between EAT and atrial tissue, suggesting that
TRM cells migrate between the two regions.

Next, ST, using the GeoMx DSP platform on FFPE tissues, revealed the border zone
between EAT and the atrium to have intense inflammation and fibrotic activity, with
upregulation of multiple pro-inflammatory cytokines and genes associated with tissue
remodeling. The findings were validated in vitro by co-culturing human iPSCs with TRM

cells, which demonstrated that TRM cells alter calcium flux, as well as inflammatory and
apoptotic signaling pathways. The study offers insights into the immune-driven mechanism
underlying AF, uncovering potential pathways for therapeutic interventions.

Researchers can leverage previously generated ST datasets to enhance their own
studies, as demonstrated in the paper by Amrute et al. [48]. This study investigates the
role of cardiac fibrosis in heart failure using a multiomics approach on human cardiac
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tissues from 45 healthy donors, acutely infarcted, and chronically failing human hearts.
ScRNA-seq, ATAC-seq, and CITE-seq were employed for comprehensive cellular and
epigenetic characterization. Incorporating ST data from a previous study, the authors found
a fibroblast trajectory marked by fibroblast activator protein (FAP) and periostin (POSTN)
expression, which was governed by inflammatory cytokines derived from monocytes and
macrophages [49]. Mesenchyme homeobox 1 (MEOX1) was also identified as an important
transcription factor in the pathogenesis of cardiac fibrosis.

An important aspect of the field is the selection of appropriate experimental models
to study human cardiac fibroblasts and fibrosis. Using scRNA-seq, the study found that
in vivo mouse models contain many of the fibroblast populations found in the human heart
and are better than cultured human primary cardiac, dermal, or immortalized fibroblasts.
Furthermore, cell interaction analysis identified enrichment of interleukin-1 beta (IL-1β)
and transforming growth factor beta (TGF-β) signaling in fibroblasts in heart failure. IL-1β
was found to be selectively expressed by C-C chemokine receptor 2 (CCR2+) monocytes and
macrophages in the human heart. This was confirmed with an in vivo study, which showed
that IL-1β signaling from CCR2+ macrophages to fibroblasts is causally linked to cardiac
fibrosis. The study highlights the therapeutic potential of modulating immune–fibroblast
communication in the treatment of heart failure.

4.3. Ischemic Heart Disease

Kuppe et al. constructed a comprehensive spatial multiomics map of human myocar-
dial infraction using scRNA-seq, scATAC-seq, and NGS-based ST [49]. By profiling human
tissues from control and infarcted hearts, the authors identified unique cell types and states
and signaling pathway activities across the spectrum of cardiac tissue zones. Integrating
these findings with ST, the study found multiple regulatory networks that drive the tissue
remodeling process post-myocardial infarction, identifying important transcription factors
such as myocyte enhancer factor 2D (MEF2D) and nuclear receptor subfamily 3 group C
member 2 (NR3C2) that regulate cardiomyocyte stress states and runt-related transcription
factor 1 (RUNX1) in fibroblast activation. Pathways such as transforming growth factor
beta (TGFβ) and nuclear factor kappa B (NFκB) were also found to play essential roles in
fibrotic and inflammatory processes.

The multiomic data revealed the transition from injured cardiomyocytes to stressed
states, reflecting their proximity to inflammatory zones. In addition, fibroblast-to-
myofibroblast differentiation was found to be important in fibrosis and late-stage remodel-
ing after myocardial infarction. Furthermore, endothelial cell subtypes were resolved with
specific spatial roles in vascular remodeling and immune modulation. The main findings
of the study were validated through in vitro and in vivo studies, confirming the role of key
pathways and regulatory factors in post-myocardial infarction remodeling. Overall, this
study provides a comprehensive map to the pathogenesis of human myocardial infarction,
paving the way for further mechanistic and therapeutic studies in the field. ST datasets
generated from this study have been used in other research on myocardial infarction and
heart failure, allowing other researchers to integrate these data into their studies without
the need to repeat often costly experiments [48,51].

An example of how previous ST datasets can be incorporated into new studies is
demonstrated in the work by Ninh et al. [51]. Reanalyzing human ST data together with
generating their own multiomics data from mice, the authors discovered novel spatially
clustered interferon-induced cell colonies (IFNICs) in the infarct border zones. Importantly,
cardiomyocytes were found to be the main drivers of this process, which was proposed to
be mediated by interferon regulatory factor 3 (IRF3). This work highlights how existing
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human ST datasets can provide new insights into disease mechanisms without the need to
replicate resource-intensive experiments.

A recent study by Linna-Kuosmanen and colleagues investigated human ex vivo
right atrial (RA) tissue from 39 patients with ischemic heart disease at multiple stages of
progression to heart failure, along with 10 controls [50]. Using scRNA-seq and sequencing-
based ST through Visium, as well as imaging-based ST through Molecular Cartography,
the study identified pro-inflammatory microvascular dysfunction and changes in RA tissue
composition as critical factors in disease progression.

Mapping of vascular cell subtypes in human ex vivo RA tissues revealed differences
in gene and spatial expression across various cell types and disease states. Transcription
factor Krüppel-like factor 2 (KLF2) was found to play an important role in maintaining
homeostasis in vascular endothelial cells. Further analysis showed metabolic reprogram-
ming in both ischemic heart failure and non-ischemic heart failure driven by IL-1β. Chronic
inflammation was marked by the accumulation of immune cells, in particular, macrophages.
Two populations of lipid-associated macrophages were identified, with each population
closely linked to ischemic heart disease and non-ischemic heart failure. Analysis of paired
tissue and pericardial fluids indicated the association of interferon-responsive macrophages
with advanced disease and chronic inflammation state.

The study also demonstrated how disease-associated genetic variants affect disease
processes across cell types. Two key genes, supervillin (SVIL) and junctional cadherin
5 associated (JCAD), were identified as examples of how such variants can modulate gene
expression in multiple cells. The integration of scRNA-seq and ST provided a detailed
cellular and spatial map of RA tissue in various disease stages. Furthermore, this study
also underscores the importance of extending research on human heart diseases beyond the
most apparent sites of pathology to include functionally critical but less-studied regions.

Another study by Gastanadui et al. used GeoMx DSP to investigate the molecular
signature of unstable plaques in coronary artery disease using FFPE samples collected
post-mortem [52]. Combining histology and ST, the study showed that unstable plaques
were enriched in proinflammatory and prothrombotic pathways such as interferon-gamma
(IFN-γ), tumor necrosis factor-alpha (TNF-α), cytokine signaling, vascular wall interaction,
and hemostasis. Interestingly, the intima and media also have differential gene expression in
prothrombotic, proinflammatory, and cell stress pathways. In addition, CD68+ macrophage-
like cells within unstable plaques displayed significant heterogeneity, including a subset of
hybrid cells that have both smooth muscle and endothelial characteristics.

The authors also investigated the transcriptional profiles of calcified and non-calcified
unstable plaques. Smooth muscle cells from heavily calcified plaques were enriched in
pathways related to amino acid metabolism and vascular signaling, while CD68+ cells
from non-calcified plaques displayed upregulation of pathways related to stress response
and extracellular matrix (ECM) regulation. Together, these findings provide insights into
the regional transcriptional alterations present in unstable plaques, paving the way for
preventive and therapeutic interventions.

5. Current Limitations
Spatial transcriptomics has revolutionized the field, offering invaluable insights into

human biology and disease mechanisms. However, several limitations exist, particularly
when it comes to human samples. These limitations include cost, technical requirements,
accessibility, sample availability, and data analysis.
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5.1. Cost, Technical Requirements, and Accessibility

Spatial transcriptomics is a relatively new method that is resource-intensive. Generat-
ing data from tissue samples requires specialized equipment, highly trained personnel, and
significant financial cost. These barriers limit access to ST, especially in places without the
required infrastructure and personnel expertise. The cost of ST poses a significant barrier,
further compounded by the rarity of high-quality human tissue, which leaves very small
margin for error. In addition, there are limitations in terms of technical requirements that
need to be addressed. The trade-off between resolution and sensitivity often constrains
the ability to capture highly resolved spatial information while maintaining robust tran-
script detection. However, this is being rapidly overcome with new platforms that yield
higher resolution and higher throughput. Furthermore, imaging-based platforms, despite
being powerful, are time-consuming to process, thus limiting the number of samples that
can be analyzed within a reasonable timeframe. The growing integration of multiomics
approaches, such as pairing ST with scRNA-seq and proteomics, can overcome some of
these challenges and provide more comprehensive insight into the complex biological
mechanisms underlying cardiac diseases.

5.2. Human Sample Limitations

The availability of high-quality human tissues remains a challenge. The main sources
of these samples have been from patients undergoing open heart surgery, tissue biopsies,
and explanted hearts. Large cardiovascular biobanks often rely on autopsy hearts, as
freshly isolated hearts are rare. For instance, the Bruce McManus Cardiovascular Biobank
in British Columbia is one of the few in Canada that collects such samples. Biopsies, on
the other hand, present significant challenges due to their small sizes, and the priority is
on patient diagnosis. Furthermore, RNA integrity preservation is a significant challenge
for ST, especially in the context of explanted donor hearts, where variable ischemic times
can subject RNA to degradation. This highlights the importance of tissue biobanks in
standardizing and coordinating the sample collection and preservation process. Effective
collaboration between heart surgeons, researchers, and biobanks is essential to streamline
the workflow. Although ST was initially restricted to fresh frozen samples, recent compati-
bility with formalin-fixed, paraffin-embedded (FFPE) samples has broadened the range of
usable specimens, making retrospective samples accessible. Currently, most ST platforms
are primarily compatible with human and murine tissues, limiting their application to
other organisms. Expanding compatibility to a broader range of tissues and organisms can
open more doors for new areas of research.

Another challenge with human samples is the significant heterogeneity among in-
dividuals. Existing work addresses this issue through several strategies. One common
approach is the integration of scRNA-seq data with ST, where scRNA-seq serves as a high-
resolution reference for consistent cell type and state annotation. This enables mapping and
deconvoluting spatial spots to identify comparable cellular compositions among samples,
despite individual variability. Researchers also use multiple biological replicates to assess
reproducibility and similarities between datasets by calculating Pearson correlations of
gene expression levels [43,45]. Furthermore, reference atlases, mostly from scRNA-seq
data and, to a lesser extent, spatial data, provide baseline profiles against which individual
sample variability can be measured. These approaches help address heterogeneity and
allow reliable comparisons across samples.

5.3. Data Analysis

The massive amount of data generated from ST and the complexity of data analysis
is a major challenge for researchers without expertise in bioinformatics. Current analysis
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pipelines often require familiarity with programming languages (R/Python) and complex
syntaxes [55]. Building on previous studies that have identified novel cell populations
and niches, with data made available by the authors, there is an opportunity to develop
computational tools that could automate the identification of these cardiac cell populations,
similar to cellxgene [56]. Furthermore, these shared datasets could be used to train machine
learning algorithms for pattern recognition, which might reduce the bioinformatic burden
for researchers. Despite multiple analysis platforms existing, a streamlined and user-
friendly one is currently lacking. Furthermore, with the large amount of data generated
from each ST study, there is a need for a unified, open-source platform for data sharing and
integration [57,58]. Such a platform would enable researchers studying similar topics to
access and use shared data, thus fostering collaboration and accelerating discoveries.

6. Conclusions
Spatial transcriptomics has become an essential tool for studying spatially resolved

gene expression patterns, enabling major discoveries in understanding the complexity of
human cardiac diseases. Our review highlighted the current technologies, particularly in
commercially available ST platforms, to serve as a practical guide for researchers seeking to
adopt ST into their studies. By employing ST technologies, multiple studies have uncovered
spatial gene expression profiles that are critical for our understanding of human diseases,
paving the way for the identification of novel therapeutic targets. Emerging platforms such
as Stereo-seq, with its superior resolution and the ability to capture a significantly wider
imaging area, or hybrid technologies such as GeoMX, which is selective in targeting specific
imaging areas, further expand the range of ST applications in cardiovascular research.
Ongoing innovations in ST technologies and platform design promise greater resolution,
sensitivity, and efficiency, broadening the scope of ST applications.

The integration of ST with multiomics approaches, such as scRNA-seq and proteomics,
offers opportunities for a more comprehensive understanding of molecular mechanisms.
Emerging spatially resolved proteomics, which enables researchers to visualize and quan-
tify proteins while preserving the spatial context, holds significant promise for spatial-omics
analyses. This comprehensive approach allows for the simultaneous mapping of gene
expression and protein localization, providing a more holistic understanding of biological
complexity. As these technologies continue to advance, they have the potential to trans-
form our understanding of health and disease, paving the way for novel diagnostic and
therapeutic strategies that address unmet clinical needs.
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