Energy Product Options for Eucalyptus Species Grown as Short Rotation Woody Crops
Abstract
:1. Introduction
2. Experimental Section
2.1. Wood and Fiber Properties
2.2. Silvichemicals
2.3. Biofuels
3. Results and Discussion
3.1. Wood and Fiber Properties
3.2. Silvichemicals
3.3. Biofuels
4. Conclusions
Acknowledgments
References
- Rocha, JD; Coutinho, AR; Luengo, CA. Biopitch produced from eucalyptus wood pyrolysis liquids as a renewable binder for carbon electrode manufacture. Braz. J. Chem. Eng 2002, 19, 127–132. [Google Scholar]
- Sims, REH; Hastings, A; Schlamadinger, B; Taylor, G; Smith, P. Energy crops: current status and future prospects. Global Change Biology 2006, 12(11), 2054–2076. [Google Scholar]
- Kheshgi, HS; Prince, RC; Marland, G. The potential of biomass fuels in the context of global climate change: Focus on transportation fuels. Ann. Rev. Energy Environ 2000, 25, 199–244. [Google Scholar]
- Sims, REH. Bioenergy to mitigate for climate change and meet the needs of society, the economy and the environment. Mitigation and Adaptation Strategies for Global Change 2003, 8(4), 349–370. [Google Scholar]
- .
- .
- Rockwood, DL. 1988, 16, pp. 40–41.
- Meskimen, GF; Rockwood, DL; Reddy, KV. Development of Eucalyptus clones for a summer rainfall environment with periodic severe frosts. New Forests 1987, 3, 197–205. [Google Scholar]
- Campinhos, E, Jr. Sustainable plantations of high-yield shape Eucalyptus trees for production of fiber: the Aracruz case. New Forests 1999, 17(1–3), 129–143. [Google Scholar]
- Alencar, GSBde; Ernestro, L; Barrichelo, G; da Silva, FG, Jr. Wood quality of a E. grandis x E. urophylla hybrid for genetic selection. ABTCP 35th Annual Pulp and Paper Conference, São Paulo - Brasil, October 14–17, 2002.
- Gion, J-M; Rech, P; Grima-Pettenati, J; Verhaegen, D; Plomion, C. Mapping candidate genes in Eucalyptus with emphasis on lignification genes. Molecular Breeding 2000, 6, 441–449. [Google Scholar]
- MacRae, S; van Staden, J. Transgenic Eucalyptus. In Transgenic Trees: Biotechnology in Agriculture and Forestry; Volume 44, Bajaj, YPS, Ed.; Springer-Verlag: Berlin, 2000; pp. 88–114. [Google Scholar]
- McComb, JA; Oddie, RLA; Chapman, SR; Calver, MC; Rasmussen, GF; Hingston, TL; et al. Salt tolerant hybrid eucalypts for wood fibre production. In Hybrid Breeding and Genetics of Forest Trees, Proceedings of QFRI/CRC-SPF Symposium, Noosa, Queensland, Australia; Dungey, HS, Dieters, MJ, Nikles, DG, Eds.; Department of Primary Industries: Brisbane, 2000; pp. 252–258. [Google Scholar]
- Tournier, V; Grat, S; Marque, C; El Kayal, W; Penchel, R; de Andrade, G; Boudet, AM; Teulieres, C. An efficient procedure to stably introduce genes into an economically important pulp tree (Eucalyptus grandis x Eucalyptus urophylla). Transgenic Research 2003, 12(4), 403–411. [Google Scholar]
- Valério, L; Carter, D; Rodrigues, JC; Tournier, V; Gominho, J; Marque, C; Boudet, A-M; Maunders, M; Pereira, H; Teulières, C. Down regulation of Cinnamyl Alcohol Dehydrogenase, a lignification enzyme, in Eucalyptus camaldulensis. Molecular Breeding 2003, 12(2), 157–167. [Google Scholar]
- Rockwood, DL. 1997, p. 6.
- Langholtz, M; Carter, D; Alavalapati, J; Rockwood, D. The economic feasibility of reclaiming phosphate mined lands with short-rotation woody crops in Florida. J. For. Econ 2007, 12(4), 237–249. [Google Scholar]
- .
- Gorrini, B; Poblete, H; Hernandez, G; Dunn, F. Particleboard and MDF using Eucalyptus nitens: Industrial scale experiments. Bosque 2004, 25(3), 89–97. [Google Scholar]
- Krzysik, AM; Muehl, JH; Youngquist, JA; Franca, FS. Medium density fiberboard made from Eucalyptus saligna. Forest Products Journal 2001, 51(10), 47–50. [Google Scholar]
- Eusebio, D; Cabangon, R; Soriano, F; Evans, PD. Manufacture of low-cost wood-cement composites in the Philippines using plantation grown Australian species I. Eucalypts. Proceedings 5th Pacific Rim Biobased Composites Symposium, Canberra, Australia, 10–13 December, 2000; p. 9.
- Coutts, RSP. A review of Australian research into natural fibre cement composites. Cement and Concrete Composites 2005, 27(5), 518–526. [Google Scholar]
- Foley, W; Lassak, E. The potential of bioactive constituents of Eucalyptus foliage as non-wood products from plantations. Rural Industries Research and Development Corporation. Publication 2004, 154, 4. [Google Scholar]
- Nishimura, H; Noma, Y; Mizutani, J. Eucalyptus as biomass. Novel compounds from microbial conversion of 1, 8-Cineole. Agricultural and Biological Chemistry 1982, 46(10), 2601–2604. [Google Scholar]
- Barton, A.
- Ogunwande, IA; Olawore, NO; Schmidt, JM; Setzer, WN; Walker, TM; Silifat, JT; Olaleye, ON; Aboaba, SA. In vitro cytotoxicity activities of essential oils of Eucalyptus torreliana F. v. Muell (leaves and fruits). Journal of Essential Oil-Bearing Plants 2005, 8(2), 110–119. [Google Scholar]
- Rockwood, DL; Naidu, CV; Carter, DR; Rahmani, M; Spriggs, T; Lin, C; Alker, GA; Isebrands, JG; Segrest, SA. Short-rotation woody crops and phytoremediation: Opportunities for agroforestry? In New Vistas in Agroforestry; , A Compendium for the 1st World Congress of Agroforestry, Nair, PKR, Rao, MR, Buck, LE, Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004. [Google Scholar]
- Langholtz, M; Carter, DR; Rockwood, DL; Alavalapati, JRR; Green, AES. Effect of dendroremediation incentives on the profitability of short-rotation woody cropping of Eucalyptus grandis. Forest Policy and Economics 2005, 7(5), 806–817. [Google Scholar]
- Tancredi, NC; Cordero, T; Rodriguez-Mirasol, J; Rodriguez, JJ. Activated carbons from Uruguayan eucalyptus wood. Fuel 1996, 75(15), 1701–1706. [Google Scholar]
- Purdy, KR; Elston, LW; Hurst, DR; Knight, JA. Pyrolysis of Eucalyptus grandis and melaleuca whole-tree chips. Final report, project A-2148. 1978; Georgia Institute of Technology, Engineering Experiment Station: Atlanta; p. 34. [Google Scholar]
- Segrest, SA; Rockwood, DL; Carter, DR; Smith, WH; Green, AES; Stricker, JA. Short rotation woody crops for cofiring in central Florida. Proc. 29th International Technical Conference on Coal Utilization & Fuel Systems, Clearwater, FL; Coal Technology Association, April 18–22, 2004.
- Davis, MW. A rapid modified method for compositional carbohydrate analysis of lignocellulosics by HPAEC/PAD. J. Wood Chem. Technol 1998, 18, 235–252. [Google Scholar]
- Rockwood, DL; Squillace, AE. Increasing alcohol production from wood by utilizing genetic variation in wood characteristics. Proc. 1981 TAPPI Ann. Meet. 1981; pp. 307–316. [Google Scholar]
- Rockwood, DL; Dinus, RJ; Kramer, JM; McDonough, TJ; Raymond, CA; Owen, JV; Devalerio, JT. Genetic variation for rooting, growth, frost hardiness, and wood, fiber, and pulping properties in Florida-grown Eucalyptus amplifolia. Proceedings 22nd. Southern Forest Tree Improvement Conference, Atlanta, GA, 14–17 June 1993; pp. 81–88.
- Rockwood, DL; Dinus, RJ; Kramer, JM; McDonough, TJ. Genetic variation in wood, pulping, and paper properties of Eucalyptus amplifolia and E. grandis grown in Florida USA. Proceedings CRC-IUFRO Conference Eucalypt Plantations: Improving Fibre Yield and Quality, Hobart, Australia, 19–24 February 1995; pp. 53–59.
- Mori, FA; Mendes, LM; Trugilho, PF; Cardoso, MG. Use of wood of Eucalyptus sp and native in the storage of the sugar cane spirit. Ciênc. Tecnol. Aliment 2003, 23(3), 396–400. [Google Scholar]
- Seca, AML; Domingues, FMJ. Basic density and pulp yield relationship with some chemical parameters in eucalyptus trees. Pesq. Agropec. Bras 2006, 41(12), 1687–1691. [Google Scholar]
- Christensen, JH; Baucher, M; O’Connell, A; van Montagu, M; Boerjan, W. Control of lignin biosynthesis. In Molecular biology of woody plants; Jain, SM, Minocha, SC, Eds.; Kluwer Academic Publishers: Dordrecht, Netherlands, 2000; Volume 1, pp. 227–267. [Google Scholar]
- Hillis, WE. Eucalypts: Chemistry, Uses. Proceedings of the 6th International Symposium on Wood and Pulping Chemistry; 1991; 1. [Google Scholar]
- Jewell, IJ; Cavell, KJ; Blackman, AJ. The chemistry of Eucalyptus regnans extractives and effects on peroxide bleaching. Proceedings of the 6th International Symposium on Wood and Pulping Chemistry; 1991; 1. [Google Scholar]
- Eschler, BM; Pass, DM; Willis, M; Foley, WJ. Distribution of foliar formylated phloroglucinol derivatives amongst Eucalyptus species. Biochem. Syst. Ecol 2000, 28(90), 813–824. [Google Scholar]
- Ye, D; Montané, D; Farriol, X. Preparation and characterisation of methylcellulose from annual cardoon and juvenile eucalyptus. Carbohydr. Polym 2005, 61(4), 446–454. [Google Scholar]
- Garrote, G; Domínguez, H; Parajó, JC. Generation of xylose solutions from Eucalyptus globulus wood by autohydrolysis-posthydrolysis processes: posthydrolysis kinetics. Bioresour. Technol 2001, 79(2), 155–164. [Google Scholar]
- Felipe, MGA; Alves, LA; Silva, SS; Roberto, IC; Mancilha, IM; Almeida e silva, JB. Fermentation of eucalyptus hemicellulosic hydrolysate to xylitol by Candida guilliermondii. Biores. Technol 1996, 56, 281–283. [Google Scholar]
- Ferrari, MD; Neirotti, E; Albornoz, C; Saucedo, E. Ethanol production from eucalyptus wood hemicellulose hydrolysate by Pichia stipitis. Biotechnol. Bioeng 1992, 40(7), 753–759. [Google Scholar]
- Gregg, DJ; Saddler, JN. Factors affecting cellulose hydrolysis and the potential of enzyme recycle to enhance the efficiency of an integrated wood to ethanol process. Biotechnol. Bioeng 1996, 51(4), 375–383. [Google Scholar]
- Parajó, JC; Santos, V; Vázquez, M. Production of carotenoids by Phaffia rhodozyma growing on media made from hemicellulosic hydrolysates of Eucalyptus globulus wood. Biotechnol. Bioeng 1998, 59(4), 501–506. [Google Scholar]
- Sun, Y; Cheng, J. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol 2002, 83(1), 1–11. [Google Scholar]
- Pindoria, RV; Lim, JY; Hawkes, JE; Lazaro, M-J; Herod, AA; Kandiyoti, R. Structural characterization of biomass pyrolysis tars/oils from eucalyptus wood waste: effect of H2 pressure and sample configuration. Fuel 1997, 76(11), 1013–1023. [Google Scholar]
- Bridgwater, AV; Carson, P; Coulson, M. A comparison of fast and slow pyrolysis liquids from mallee. Int. J. Global. Energ. Issues 2007, 27(2), 204–216. [Google Scholar]
- Kabel, MA; Schols, HA; Voragen, AGJ. Complex xylo-oligosaccharides identified from hydrothermally treated Eucalyptus wood and brewery’s spent grains. Carbohydr. Polym 2002, 50(2), 191–200. [Google Scholar]
- Pimentaa, AS; Vitala, BR; Bayonabr, JM; Alzagab, R. Characterisation of polycyclic aromatic hydrocarbons in liquid products from pyrolysis of Eucalyptus grands by supercritical fluid extraction and GWMS determination. Fuel 1998, 77(11), 1133–1139. [Google Scholar]
- Silva, MC; Lopes, OR; Colodette, JL; Porto, AO; Rieumont, J; Chaussy, D; Belgacem, MN; Silva, GG. Characterization of three non-product materials from a bleached eucalyptus kraft pulp mill, in view of valorising them as a source of cellulose fibres. Industrial Crops and Products 2008, 27, 288–295. [Google Scholar]
- Wright, L. Worldwide commercial development of bioenergy with a focus on energy crop-based projects. Biomass and Bioenergy 2006, 30, 706–714. [Google Scholar]
- Overend, R. Biomass gasification - the enabling technology. Renewable Energy World 2000, 3(3), 42–47. [Google Scholar]
- Pinatti, DG; Couto, L; Soares, ÁG; Vieira, CA; Conte, RA.
- Hamelinck, CN; Faaij, APC. Future prospects for production of methanol and hydrogen from biomass. Proceedings of 12th European Conference on “Biomass for Energy, Industry and Climate Protection”, Amsterdam, ETA-Florence and WIP-Munich, 17–21 June 2002; pp. 1170–1173.
- Bjorndal, KA; Moore, JE. Prediction of fermentability of biomass feedstocks from chemical characteristics. In Biomass Energy Development; Smith, WH, Ed.; Plenum Press: N.Y., 1985; pp. 497–454. [Google Scholar]
- Bjorndal, KA; Moore, JE. Chemical characteristcs and their relation to fermentability of potential biomass feedstocks. In Methane from Biomass: A Systems Approach; Smith, WH, Frank, JR, Eds.; Elsevier Applied Science: N.Y., 1988; pp. 355–365. [Google Scholar]
- Zhang, S; Yan, Y; Li, T; Ren, Z. Upgrading of liquid fuel from the pyrolysis of biomass. Bioresour. Technol 2005, 96(5), 545–550. [Google Scholar]
- Rexen, F; Blicher-Mathiesen, U. Whole crop utilisation - biorefineries. Sustainable agriculture for food. In Energy and Industry; James & James: London, 1998; pp. 825–828. [Google Scholar]
- Sims, REH; Rogner, H-H; Gregory, K. Carbon emission and mitigation cost comparisons between fossil fuel, nuclear and renewable energy resources for electricity generation. Energy Policy 2003, 31, 1315–1326. [Google Scholar]
- Hall, DO. Biomass energy in industrialised countries-a view of the future. Forest Ecology and Management 1997, 91(1), 17–45. [Google Scholar]
Area (1,000 ha) by Age Class (years) | |||||||
---|---|---|---|---|---|---|---|
Country | Species | 0–5 | 5–10 | 10–20 | 20–30 | 30–40 | >40 |
RSA | nitens | 109.7 | 99.3 | 19.4 | 0.7 | 1.8 | |
grandis | 144.1 | 140.7 | 44.9 | 3.7 | 1.7 | ||
Sudan | spp | 118.2 | 189.1 | 165.5 | 8.0 | ||
China | spp | 683.0 | 576.4 | 982.7 | 154.4 | ||
India | spp | 43.0 | 64.4 | 103.2 | |||
spp* | 656.1 | 984.2 | 1,576.0 | ||||
Myanmar | camaldulensis | 1.1 | 2.1 | 2.2 | 1.1 | 0.5 | |
Vietnam | spp | 222.4 | 286.5 | 67.1 | 7.0 | 3.0 | |
Iran | spp | 24.6 | 6.2 | ||||
Italy | spp | 7.0 | 8.2 | 8.2 | |||
Australia | regnans | 5.2 | 0.2 | 2.8 | 3.7 | 4.7 | 1.1 |
globulus | 131.2 | 260.1 | 48.7 | 1.1 | 0.4 | ||
pilularis | 5.2 | 5.5 | 0.5 | 1.4 | 4.6 | 0.4 | |
dunnii | 5.3 | 12.2 | 0.2 | ||||
grandis | 5.2 | 5.5 | 0.5 | 1.4 | 4.6 | 0.4 | |
Argentina | grandis | 15.8 | 32.6 | 34.5 | 11.8 | 3.9 | |
Brazil | spp | 2118.1 | 756.5 | 121.0 | 30.3 | ||
Chile | spp | 353.4 | 204.1 | 85.4 | 7.2 | 2.0 | |
Subtotal | 4,648.6 | 3,633.8 | 3,262.8 | 231.8 | 27.2 | 1.9 | |
Total | 11,806.1 |
Species | Genotype (Age, No of trees, No of Logs) | Disks | Batches |
---|---|---|---|
EG | 2805 (11.8,1,1), 2814(6.7,1,1), 2817(13.3,1,1) | 3 | EG1, EG2, EG3 |
EA | 4836 (8.3,1,5), 4543 (8.3,1,1), 4853 (8.3,1,1), 4875 (8.3,1,1) | 6 | EA1, EA2, EA3, EA4, EA5, EA6 |
CT | ? (∼15,1,1), ? (∼15,1,1), ? (∼15,1,1), ? (∼15,1,1) | 4 | CT1, CT2, CT3, CT4 |
Species | Genotype (Batch) | Age (yrs) | No of Trees | Specific Gravity | Moisture Content | Fines | pH | Fiber Length |
---|---|---|---|---|---|---|---|---|
EG | 3 clones | 10.6 | 3 | 544 | 107 | 38.9 | 4.05 | |
2805 (EG1) | 11.8 | 1 | 522 | 104 | 30.3 | 3.96 | - | |
2814 (EG2) | 6.7 | 1 | 470 | 129 | 32.1 | 4.30 | .673 | |
2817 (EG3) | 13.3 | 1 | 640 | 89 | 54.1 | 3.92 | - | |
EA | 4 progenies | 8.3 | 4 | 508 | 108 | 59.5 | 3.97 | |
4836 (EA5) | 8.3 | 1 | 527 | 107 | 53.1 | 3.89 | - | |
4843 (EA6) | 8.3 | 1 | 469 | 115 | 53.5 | 3.89 | - | |
4853 (EA1) | 8.3 | 1 | 506 | 109 | 70.7 | - | - | |
4875 (EA4) | 8.3 | 1 | 529 | 88 | 60.5 | 4.11 | .502 | |
CT | 4 trees | 15 | 4 | 526 | 101 | 50.0 | 4.20 | |
? (CT1) | 15 | 1 | 526 | 80 | 48.6 | 4.17 | - | |
? (CT2) | 15 | 1 | 610 | 98 | 52.6 | 4.20 | - | |
? (CT3) | 15 | 1 | 555 | 94 | 37.1 | 4.23 | .472 | |
? (CT4) | 15 | 1 | 411 | 131 | 61.5 | 4.21 | - |
Species Batch | AI Ash | K. Lignin | ASL | Arabinan | Galactan | Rhamnan | Glucan | Xylan | Mannan |
---|---|---|---|---|---|---|---|---|---|
EG1 | −0.001 | 0.324 | 0.034 | 0.003 | 0.009 | 0.002 | 0.397 | 0.114 | 0.003 |
EA4 | −0.002 | 0.345 | 0.034 | 0.004 | 0.013 | 0.002 | 0.374 | 0.111 | 0.005 |
Region | Energy crop area (ha × 103) under four IPCC scenarios | |||
---|---|---|---|---|
B1 | A1b | B2 | A2 | |
North America | 14992 | 31004 | 41132 | 34985 |
Central America | 3406 | 6489 | 10047 | 7550 |
South America | 8521 | 8722 | 15687 | 8219 |
Northern Africa | 182 | 0 | 0 | 0 |
Western Africa | 182 | 257 | 142 | 102 |
Eastern Africa | 101 | 137 | 80 | 53 |
Southern Africa | 549 | 791 | 1376 | 706 |
OECD Europe | 7266 | 19681 | 17886 | 15092 |
Eastern Europe | 514 | 1826 | 2715 | 1647 |
Former USSR | 3534 | 8916 | 7296 | 6092 |
Middle East | 526 | 0 | 0 | 0 |
South Asia | 5788 | 12469 | 12726 | 5171 |
East Asia | 10068 | 18097 | 21609 | 12163 |
Southest Asia | 1854 | 4501 | 7406 | 3521 |
Oceania | 198 | 537 | 1594 | 1057 |
Japan | 650 | 1150 | 1510 | 855 |
World | 58332 | 114577 | 141206 | 97212 |
© 2008 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/). This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Rockwood, D.L.; Rudie, A.W.; Ralph, S.A.; Zhu, J.Y.; Winandy, J.E. Energy Product Options for Eucalyptus Species Grown as Short Rotation Woody Crops. Int. J. Mol. Sci. 2008, 9, 1361-1378. https://doi.org/10.3390/ijms9081361
Rockwood DL, Rudie AW, Ralph SA, Zhu JY, Winandy JE. Energy Product Options for Eucalyptus Species Grown as Short Rotation Woody Crops. International Journal of Molecular Sciences. 2008; 9(8):1361-1378. https://doi.org/10.3390/ijms9081361
Chicago/Turabian StyleRockwood, Donald L., Alan W. Rudie, Sally A. Ralph, J. Y. Zhu, and Jerrold E. Winandy. 2008. "Energy Product Options for Eucalyptus Species Grown as Short Rotation Woody Crops" International Journal of Molecular Sciences 9, no. 8: 1361-1378. https://doi.org/10.3390/ijms9081361
APA StyleRockwood, D. L., Rudie, A. W., Ralph, S. A., Zhu, J. Y., & Winandy, J. E. (2008). Energy Product Options for Eucalyptus Species Grown as Short Rotation Woody Crops. International Journal of Molecular Sciences, 9(8), 1361-1378. https://doi.org/10.3390/ijms9081361