Redox Behavior of Anticancer Chalcone on a Glassy Carbon Electrode and Evaluation of its Interaction Parameters with DNA
Abstract
:1. Introduction
2. Results and Discussion
2.1. Redox studies of AMC-DNA interaction
2.2. Spectroscopic studies
2.3. Viscosity measurements
3. Experimental Section
3.1. Reagents and chemicals
3.2. Apparatus and procedures
4. Conclusions
Acknowledgments
References
- Graham, TW; Solomons; Fryhle, CB. Organic Chemistry, 8 ed; Wiley and Sons, NewYork 2003; p. 1344.
- Ni, L; Meng, CQ; Sikorski, JA. Recent advances in therapeutic chalcones. Expert Opin. Ther. Pat 2004, 14, 1669–1691. [Google Scholar]
- Sasayama, T; Tanaka, K; Mizukawa, K; Kawamura, A; Kondoh, T; Hosoda, K; Kohmura, E. Trans-4-lodo,4-boranyl-chalcone induces antitumor activity against malignant glioma cell lines in vitro and in vivo. J. Neu-Onc 2007, 85, 123–132. [Google Scholar]
- Ye, CL; Liu, JW; Wei, DZ; Lu, YH; Qian, F. In vitro anti-tumor activity of 2, 4-dihydroxy-6-methoxy-3, 5-dimethylchalcone against six established human cancer cell lines. Pharmacol. Res 2004, 50, 505–510. [Google Scholar]
- Ye, CL; Liu, JW; Wei, DZ; Lu, YH; Qian, F. In vivo antitumor activity by 2, 4-dihydroxy-6-methoxy-3, 5-dimethylchalcone in a solid human carcinoma xenograft model. Canc. Chemo. Pharm 2005, 55, 447–452. [Google Scholar]
- Lee, YS; Lim, SS; Shin, KH; Kim, YS; Ohuchi, K; Jung, SH. Anti-angiogenic and anti-tumor activities of 2-hydroxy-4- methoxychalcone. Biol. Pharm. Bull 2006, 29, 1028–1031. [Google Scholar]
- Haraguchi, H; Ishikawa, H; Mizutani, K; Tamura, Y; Kinoshita, T. Antioxidative and superoxide scavenging activities of retrochalcones in Glycyrrhiza inflata. Bioorg. Med. Chem 1998, 6, 339–347. [Google Scholar]
- Hsieh, HK; Lee, TH; Wang, JP; Wang, JJ; Lin, CN. Synthesis and anti-inflammatory effect of chalcones and related compounds. Pharm. Res 1998, 15, 39–46. [Google Scholar]
- Flechtner, TW. Carbohydrate triflates: reactions with bases. Carbohydr. Res 1979, 77, 262–266. [Google Scholar]
- Chang, HJ; Yoon, G; Park, JS; Kim, MH; Baek, MK; Kim, NH; Shin, BA; Ahn, BW; Cheon, SH; Jung, YD. Induction of apoptosis by the licochalcone E in endothelial cells via modulation of NF-B and Bcl-2 family. Biological and Pharmaceutical Bulletin 2007, 30, 2290–2293. [Google Scholar]
- Rauf, S; Gooding, JJ; Akhtar, K; Ghauri, MA; Rahman, M; Anwar, MA; Khalid, AM. Electrochemical approach of anticancer drugs-DNA interaction. J. Pharm. Biomed. Anal 2005, 37, 205–217. [Google Scholar]
- Pandey, MK; Sandur, SK; Sung, B; Sethi, G; Kunnumakkara, AB; Aggarwal, BB. Butein, a tetrahydroxychalcone, inhibits nuclear factor (NF)-B and NF-B-regulated gene expression through direct inhibition of IB kinase on cysteine 179 residue. J. Biol. Chem 2007, 282, 17340–17350. [Google Scholar]
- Barton, JK. Coordination Complexes: Drugs and Probes for DNA Structure. Inorg. Chem. Commun 1985, 321–348. [Google Scholar]
- Gibson, D. Drug-DNA interactions and novel drug design. Pharmacogenomics J 2002, 2, 275–276. [Google Scholar]
- Neidle, S. The molecular basis for the action of some DNA-binding drugs. Prog. Med. Chem 1979, 16, 151–221. [Google Scholar]
- Berman, HM; Young, PR. The interaction of intercalating drugs with nucleic acids. Annu. Rev. Biophys. Bioeng 1981, 10, 87–114. [Google Scholar]
- Wilson, WD; Jones, RL. Intercalating drugs: DNA binding and molecular pharmacology. Adv. Pharmacol. Chemother 1981, 18, 177–222. [Google Scholar]
- Lippard, SJ. Platinum complexes: Probes of polynucleotide structure and antitumor drugs. Acc. Chem. Res 1978, 11, 211–217. [Google Scholar]
- Babkina, SS; Ulakhovich, NA. Complexing of heavy metals with DNA and new bioaffinity method of their determination based on amperometric DNA-based biosensor. Anal. Chem 2005, 77, 5678–5685. [Google Scholar]
- Ansari, FL; Nazir, S; Noureen, H; Mirza, B. Combinatorial synthesis and antibacterial evaluation of an indexed chalcone library. Chem. Biodiverse 2005, 2, 1656–1664. [Google Scholar]
- Sambrook, J; Fritsch, EF; Maniatis, T. Molecular cloning: a laboratory manual; Cold Spring Harbor: New York, 1989. [Google Scholar]
- Reichmann, ME; Rice, SA; Thomas, CA; Doty, P. A further examination of the molecular weight and size of desoxypentose nucleic acid. J. Am. Chem. Soc 1954, 76, 3047–3053. [Google Scholar]
- Lu, X; Zhang, M; Kang, J; Wang, X; Zhuo, L; Liu, H. Electrochemical studies of kanamycin immobilization on self-assembled monolayer and interaction with DNA. J. Inorg. Biochem 2004, 98, 582–588. [Google Scholar]
- Randles, JEB. A cathode ray polarograph. Part II. - The current-voltage curves. Trans. Faraday Soc 1948, 44, 327–338. [Google Scholar]
- Welch, TW; Thorp, HH. Distribution of metal complexes bound to DNA determined by normal pulse voltammetry. J. Phys. Chem 1996, 100, 13829–13836. [Google Scholar]
- Swiatek, J. Review: interactions of metal ions with nucleic acids and their subunits. An electrochemical approach. J. Coord. Chem 1994, 33, 191–217. [Google Scholar]
- Carter, MT; Bard, AJ. Voltammetric studies of the interaction of tris(1,10-phenanthroline)cobalt(III) with DNA. J. Am. Chem. Soc 1987, 109, 7528–7530. [Google Scholar]
- Aslanoglu, M; Oge, N. Voltammetric, UV absorption and viscometric studies of the interaction of norepinephrine with DNA. Turk. J. Chem 2005, 29, 477–485. [Google Scholar]
- Niu, J; Cheng, G; Dong, S. Study on the kinetic process of the complex reaction between bilirubin and cyclodextrins. Electrochim. Acta 1994, 39, 2455–2460. [Google Scholar]
- Nadjo, L; Savéant, JM. Linear sweep voltammetry: Kinetic control by charge transfer and/or secondary chemical reactions: I. Formal kinetics. J. Electroanal. Chem 1973, 48, 113–145. [Google Scholar]
- Lyons, LE. Electron affinities of some aromatic molecules. Nature 1950, 166, 193. [Google Scholar]
- Hedges, RM; Matsen, FA. Antisymmetrized H[u-umlaut]ckel orbital calculations of ionization potentials and electron affinities of some aromatic hydrocarbons. The J. Chem. Phys 1958, 28, 950–953. [Google Scholar]
- Rahman, A; Qureshi, R; Kiran, M; Ansari, FL. Electron affinities, solvation energies and redox potentials of some chalcones: substituents` effect and correlation with semi-empirical MO energies. Turk. J. Chem 2007, 31, 25–34. [Google Scholar]
- Bloomfield, VA; Crothersn, DM; Tinoco, I. Physical chemistry of nucleic Acids; Harper; New York, 1974. [Google Scholar]
- Dang, XJ; Tong, J; Li, HL. The electrochemistry of the inclusion complex of anthraquinone with beta-Cyclodextrin studied by means of OSWV. J. Inclusion Phenom 1996, 24, 275–286. [Google Scholar]
- Long, EC; Barton, JK. On demonstrating DNA intercalation. Acc. Chem. Res 1990, 23, 271–273. [Google Scholar]
- Fukuda, R; Takenaka, S; Takagi, M. Metal ion assisted DNA-intercalation of crown ether-linked acridine derivatives. J. Chem. Soc., Chem. Commun. 1990, 1028–1030. [Google Scholar]
- Takenaka, S; Ihara, T; Takagi, M. Bis-9-acridinyl derivative containing a viologen linker chain: electrochemically active intercalator for reversible labelling of DNA. J. Chem. Soc., Chem. Commun 1990, 1485–1487. [Google Scholar]
- Pyle, AM; Rehmann, JP; Meshoyrer, R; Kumar, CV; Turro, NJ; Barton, JK. Mixed-ligand complexes of ruthenium(II): Factors governing binding to DNA. J. Am. Chem. Soc 1989, 111, 3051–3058. [Google Scholar]
- Pang, D-W; Zhao, Y-D; Fang, P-F; Cheng, J-K; Chen, Y-Y; Qi, Y-P; Abruña, HD. Interactions between DNA and a water-soluble C60 derivative studied by surface-based electrochemical methods. J. Electroanal. Chem 2004, 567, 339–349. [Google Scholar]
- Zsila, F; Bikadi, Z; Simonyi, M. Probing the binding of the flavonoid, quercetin to human serum albumin by circular dichroism, electronic absorption spectroscopy and molecular modelling methods. Biochem. Pharmacol 2003, 65, 447–456. [Google Scholar]
- Ibrahim, MS; Shehatta, IS; Al-Nayeli, AA. Voltammetric studies of the interaction of lumazine with cyclodextrins and DNA. J. Pharm. Biomed. Anal 2002, 28, 217–225. [Google Scholar]
- Kanakis, CD; Tarantilis, PA; Polissiou, MG; Diamantoglou, S; Tajmir-Riahi, HA. Antioxidant flavonoids bind human serum albumin. J. Mol. Struct 2006, 798, 69–74. [Google Scholar]
- Satyanarayana, S; Dabrowiak, JC; Chaires, JB. Neither .DELTA.- nor .LAMBDA.-tris(phenanthroline)ruthenium(II) binds to DNA by classical intercalation. Biochemistry 1992, 31, 9319–9324. [Google Scholar]
- Lerman, LS. Structural considerations in interaction of DNA and acridines. J. Mol. Biol 1961, 3, 18–30. [Google Scholar]
- Ullah, A; Ansari, FL; Ihsanul, H; Nazir, S; Mirza, B. Combinatorial synthesis, lead identification, and antitumor study of a chalcone-based positional-scanning library. Chem. Biodiverse 2007, 4, 203–214. [Google Scholar]
- Chu, X; Shen, G-L; Jiang, J-H; Kang, T-F; Xiong, B; Yu, R-Q. Voltammetric studies of the interaction of daunomycin anticancer drug with DNA and analytical applications. Anal. Chim. Acta 1998, 373, 29–38. [Google Scholar]
- Hicks, LD; Fry, AJ; Kurzweil, VC. Ab initio computation of electron affinities of substituted benzalacetophenones (chalcones): a new approach to substituent effects in organic electrochemistry. Electrochim. Acta 2004, 50, 1039–1047. [Google Scholar]
© 2008 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/). This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Shah, A.; Khan, A.M.; Qureshi, R.; Ansari, F.L.; Nazar, M.F.; Shah, S.S. Redox Behavior of Anticancer Chalcone on a Glassy Carbon Electrode and Evaluation of its Interaction Parameters with DNA. Int. J. Mol. Sci. 2008, 9, 1424-1434. https://doi.org/10.3390/ijms9081424
Shah A, Khan AM, Qureshi R, Ansari FL, Nazar MF, Shah SS. Redox Behavior of Anticancer Chalcone on a Glassy Carbon Electrode and Evaluation of its Interaction Parameters with DNA. International Journal of Molecular Sciences. 2008; 9(8):1424-1434. https://doi.org/10.3390/ijms9081424
Chicago/Turabian StyleShah, Afzal, Asad M. Khan, Rumana Qureshi, Farzana L. Ansari, Muhammad F. Nazar, and Syed S. Shah. 2008. "Redox Behavior of Anticancer Chalcone on a Glassy Carbon Electrode and Evaluation of its Interaction Parameters with DNA" International Journal of Molecular Sciences 9, no. 8: 1424-1434. https://doi.org/10.3390/ijms9081424
APA StyleShah, A., Khan, A. M., Qureshi, R., Ansari, F. L., Nazar, M. F., & Shah, S. S. (2008). Redox Behavior of Anticancer Chalcone on a Glassy Carbon Electrode and Evaluation of its Interaction Parameters with DNA. International Journal of Molecular Sciences, 9(8), 1424-1434. https://doi.org/10.3390/ijms9081424