(E)-3-[3-(2-Butoxyquinolin-3-yl)acryloyl]-2-hydroxy-4H-chromen-4-one
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Information
3.2. Synthesis of ((E)-3-(3-(2-Butoxyquinolin-3-yl)acryloyl)-2-hydroxy-4H-chromen-4-one (3b)
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lin, Y.M.; Zhou, Y.; Flavin, M.T.; Zhou, I.M.; Nie, W.; Chen, F.C. Chalcones and flavonoids as anti-tuberculosis agents. Bioorg. Med. Chem. 2002, 10, 2795–2802. [Google Scholar] [CrossRef]
- Won, S.-J.; Liu, C.-T.; Tsao, L.-T.; Weng, J.-R.; Ko, H.-H.; Wang, J.-P.; Lin, C.-N. Synthetic chalcones as potential anti-inflammatory and cancer chemopreventive agents. Eur. J. Med. Chem. 2005, 40, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Wilairat, P.; Go, M.-L. Antimalarial alkoxylated and hydroxylated chalcones: Structure−activity relationship analysis. J. Med. Chem. 2001, 44, 4443–4452. [Google Scholar] [CrossRef] [PubMed]
- Ávila, H.P.; Smânia, E.D.F.A.; Delle-Monache, F.; Júnior, A.S. Structure-activity relationship of antibacterial chalcones. Bioorg. Med. Chem. 2008, 16, 9790–9794. [Google Scholar] [CrossRef] [PubMed]
- Sivakumar, P.M.; Muthu-Kumar, T.; Doble, M. Antifungal activity, mechanism and QSAR studies on chalcones. Chem. Biol. Drug Des. 2009, 74, 68–79. [Google Scholar] [CrossRef] [PubMed]
- Modzelewska, A.; Pettit, C.; Achanta, G.; Davidson, N.E.; Huang, P.; Khan, S.R. Anticancer activities of novel chalcone and bis-chalcone derivatives. Bioorg. Med. Chem. 2006, 14, 3491–3495. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Ruan, J.; Zhang, X. Coumarin–chalcone hybrids: Promising agents with diverse pharmacological properties. RSC Adv. 2016, 6, 10846–10860. [Google Scholar] [CrossRef]
- Xi, G.-L.; Liu, Z.-Q. Coumarin moiety can enhance abilities of chalcones to inhibit DNA oxidation and to scavenge radicals. Tetrahedron 2014, 70, 8397–8404. [Google Scholar] [CrossRef]
- Emami, S.; Dadashpour, S. Current developments of coumarin-based anti-cancer agents in medicinal chemistry. Eur. J. Med. Chem. 2015, 102, 611–630. [Google Scholar] [CrossRef] [PubMed]
- Sashidhara, K.; Kumar, A.; Dodda, R.; Krishna, N.; Agarwal, P.; Srivastava, K.; Puri, S. Coumarin–trioxane hybrids: Synthesis and evaluation as a new class of antimalarial scaffolds. Bioorg. Med. Chem. Lett. 2012, 22, 3926–3930. [Google Scholar] [CrossRef] [PubMed]
- Marella, A.; Tanwar, O.; Saha, R.; Ali, M.; Srivastava, S.; Akhter, M.; Shaquiquzzaman, M.; Alam, M. Quinoline: A versatile heterocyclic. Saudi Pharm. J. 2013, 21, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Kotra, V.; Ganapaty, S.; Adapa, S. Synthesis of a new series of quinolinyl chalcones as anticancer and anti-inflammatory agents. Indian J. Chem. 2010, 49, 1109–1116. [Google Scholar]
- Abdullah, M.; Mahmood, A.; Madni, M.; Masood, S.; Kashif, M. Synthesis, characterization, theoretical, anti-bacterial and molecular docking studies of quinoline based chalcones as a DNA gyrase inhibitor. Bioorg. Chem. 2014, 54, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Sashidhara, K.; Avula, S.; Mishra, V.; Palnati, G.; Singh, L.; Singh, N.; Chhonker, Y.; Swami, P.; Bhatta, R.; Palit, G. Identification of quinoline-chalcone hybrids as potential antiulcer agents. Eur. J. Med. Chem. 2015, 89, 638–653. [Google Scholar] [CrossRef] [PubMed]
- Abonia, R.; Cuervo, P.; Insuasty, B.; Quiroga, J.; Nogueras, M.; Cobo, J.; Meier, H.; Lotero, E. An Amberlyst-15® mediated synthesis of new functionalized dioxoloquinolinone derivatives. Open Org. Chem. J. 2008, 2, 26–34. [Google Scholar] [CrossRef]
- Abonia, R.; Cuervo, P.; Insuasty, B.; Quiroga, J.; Nogueras, M.; Cobo, J. A simple two-step sequence for the synthesis of novel 3-aryl[1,3]dioxolobenzo[f]pyrrolo[1,2-a]azepin-11-ones from 6-amino-3,4-methylenedioxyacetophenone. Eur. J. Org. Chem. 2008, 2008, 4684–4689. [Google Scholar] [CrossRef]
- Abonia, R.; Insuasty, D.; Castillo, J.; Insuasty, B.; Quiroga, J.; Nogueras, M.; Cobo, J. Synthesis of novel quinoline-2-one based chalcones of potential anti-tumor activity. Eur. J. Med. Chem. 2012, 57, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Abdou, M.; El-Saeed, R.; Bondock, S. Recent advances in 4-hydroxycoumarin chemistry. Part 1: Synthesis and reactions. Arab. J. Chem. 2015. [Google Scholar] [CrossRef]
- Abdou, M. 3-Acetyl-4-hydroxycoumarin: Synthesis, reactions and applications. Arab. J. Chem. 2017, 10, S3664–S3675. [Google Scholar] [CrossRef]
- Please See CSEARCH-Robot-Referee by Haider, N.; Robien, W. Available online: http://nmrpredict.orc.univie.ac.at/c13robot/robot.php (accessed on 15 June 2018).
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abonia, R.; Gutiérrez, L.; Quiroga, J.; Insuasty, B. (E)-3-[3-(2-Butoxyquinolin-3-yl)acryloyl]-2-hydroxy-4H-chromen-4-one. Molbank 2018, 2018, 1001. https://doi.org/10.3390/M1001
Abonia R, Gutiérrez L, Quiroga J, Insuasty B. (E)-3-[3-(2-Butoxyquinolin-3-yl)acryloyl]-2-hydroxy-4H-chromen-4-one. Molbank. 2018; 2018(3):1001. https://doi.org/10.3390/M1001
Chicago/Turabian StyleAbonia, Rodrigo, Luisa Gutiérrez, Jairo Quiroga, and Braulio Insuasty. 2018. "(E)-3-[3-(2-Butoxyquinolin-3-yl)acryloyl]-2-hydroxy-4H-chromen-4-one" Molbank 2018, no. 3: 1001. https://doi.org/10.3390/M1001
APA StyleAbonia, R., Gutiérrez, L., Quiroga, J., & Insuasty, B. (2018). (E)-3-[3-(2-Butoxyquinolin-3-yl)acryloyl]-2-hydroxy-4H-chromen-4-one. Molbank, 2018(3), 1001. https://doi.org/10.3390/M1001