Synthesis of 1,5-Disubstituted Tetrazoles in Aqueous Micelles at Room Temperature
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental
3.1. Generalities
3.2. General Procedures
3.2.1. Compound M01
- Ethyl2-(4-methoxybenzyl)-2-(5-(2-(phenylamino)propan-2-yl)-1H-tetrazol-1-yl)pent-4-enoate. This compound was synthesized according tothe general procedure B, using 1.0 mmolof ethyl 2-isocyano-2-(4-methoxybenzyl) pent-4-enoate.The solvent for the flash chromatography on silicagel is a 5:5 mixture of petroleum ether anddiethyloxide. An amount of 247 mg (55%) of the desired adduct was formed.
- Rf: 0.4 (50:50 PE/Et2O)
- Mol. Wt: 449.54, Nature: Yellow oil.
- NMR 1H (400 MHz, CDCl3)δ 7.06 (t, 2H, J = 7.1 Hz, H-ar), 6.81 (t, 1H, J = 7.1 Hz, H-ar), 6.71–6.65 (m, 4H, H-ar), 6.44 (d, 2H, J = 7.6 Hz, H-ar), 5.49–5.36 (m, 1H, H-10), 5.11 (d, 1H, J = 7.0 Hz, H-11), 5.08 (d, 1H, J = 15.2 Hz, H-11), 3.80 (d, 1H, J = 14.1 Hz, H-4), 3.70 (s, 3H, H-1), 3.69–3.62 (m, 2H, H-7), 3.50 (d, 1H, J = 14.1 Hz, H-4), 3.12 (s, 1H, N-H), 3.08 (d, 1H, J = 6.3 Hz, H-9), 2.98 (dd, 1H, J = 14.9, 7.1 Hz, H-9), 1.71 (s, 3H, H-14), 1.65 (s, 3H, H-14), 0.82 (t, 3H, J = 7.3 Hz, H-8).
- NMR 13C (100.6 MHz, CDCl3)δ 169.5 (C-6), 161.1 (C-12), 159.0 (C-2), 143.7 (C-15), 131.3 (C-3), 130.9 (C-10), 128.8, 128.7, 121.4 (C-ar), 120.7 (C-11), 113.9, 113.8 (C-ar), 73.5 (C-5), 61.9 (C-7), 55.3 (C-1), 55.0 (C-13), 41.5 (C-4), 39.5 (C-9), 30.2, 29.8 (C-14), 13.6 (C-8).
- I.R. (cm−1, thin film):3501ʋN-H, 2956ʋCH3, 1739ʋC=O, 1558ʋC=N, 1504ʋC=C, 1485δN-H, 1457ʋN=N, 1350ʋC-N, 1264ʋC-O, 1088ʋN-N, 1029ʋC-N
- HRMS Calculated for C25H31N5O3: 449.2427, found: 449.2435
3.2.2. Compound M02
- N-((1-tert-butyl-1H-tetrazol-5-yl)(4-chlorophenyl)methyl)-2-methoxyethanamine. This compound was synthesized according to the general procedure B, using 1.0 mmol of 2-isocyano-2-methylpropane. The solvent for the flash chromatography on silica gel is a 5:5 mixture of petroleum ether and diethyl oxide. An amount of 214 mg (66%) of the desired adduct was formed.
- Rf: 0.5 (50:50 PE/Et2O)
- Mol. Wt: 323.82, Nature: Colorless oil.
- NMR 1H (400 MHZ, CDCl3)δ 7.36 (d, 2H, J = 8.8 HZ, H-ar), 7.32 (d, 2H, J = 8.8 HZ, H-ar), 5.46 (s, 1H, H-4), 3.54 (t, 2H, J = 5.3 HZ, H-6), 3.36 (s, 3H, H-7), 2.81–2.69 (m, 2H, H-5), 2.60 (s, 1H, N-H), 1.69 (s, 9H, H-1).
- NMR 13C (100.6 MHZ, CDCl3) δ 155.5 (C-3), 137.3 (C-8), 134.3 (C-11), 129.6 (C-9), 129.2 (C-10), 72.7 (C-6), 61.5 (C-2), 58.9 (C-7), 58.3 (C-4), 47.0 (C-5), 30.1 (C-1).
- I.R. (cm−1, thin film): 3490ʋN-H, 2959ʋCH3, 1558ʋC=N, 1506ʋC=C, 1485δN-H, 1458ʋN=N, 1271ʋC-C, 1091ʋN-N, 1035ʋC-N
- HRMS Calculated for C15H22ClN5O: 323.1513, found: 323.1505
3.2.3. Compound M03
- 4-(1-(1-tert-butyl-1H-tetrazol-5-yl)propyl)morpholine. This compound was synthesized according to the general procedure B, using 1.0 mmol of 2-isocyano-2-methylpropane. The solvent for the flash chromatography on silica gel is a 5:5 mixture of petroleum ether and diethyl oxide. An amount of 160 mg (63%) of the desired adduct was formed.
- Rf: 0.6 (50:50 PE/Et2O)
- Mol. Wt: 253.34, Nature: Brown oil.
- NMR 1H (400 MHz, CDCl3)δ 4.05–3.99 (m, 1H, H-4), 3.66–3.53 (m, 4H, H-8), 2.76–2.67 (m, 2H, H-7), 2.61–2.53 (m, 2H, H-7), 2.30–2.20 (m, 1H, H-5), 2.03–1.91 (m, 1H, H-5), 1.77 (s, 9H, H-1), 0.84 (t, 3H, J = 7.3 Hz, H-6).
- NMR 13C (100.6 MHz, CDCl3)δ 153.5 (C-3), 67.2 (C-8), 61.7 (C-2, C-4), 48.8 (C-7), 30.0 (C-1), 18.6 (C-5), 11.4 (C-6).
- I.R. (cm−1, thin film): 2959 ʋCH3, 1555 ʋC=N, 1505δCH2, 1486δCH3,as, 1448 ʋN=N, 1359δCH3,s, 1272 ʋC-C, 1097 ʋN-N, 1048 ʋC-N
- HRMS Calculated for C12H23N5O: 253.1903, found: 253.1895
3.2.4. Compound M04
- N-(2-methoxyethyl)-2-methyl-1-(1-(2,4,4-trimethylpentan-2-yl)-1H-tetrazol-5-yl)propan-1-amine. This compound was synthesized according to the general procedure B, using 1.0 mmol of 2-isocyano-2,4,4-trimethylpentane. The solvent for the flash chromatography on silica gel is a 5:5 mixture of petroleum ether and diethyl oxide. An amount of 205 mg (66%) of the desired adduct was formed.
- Rf: 0.6 (50:50 PE/Et2O)
- Mol. Wt: 311.47, Nature: Brown oil.
- NMR 1H (400 MHz, CDCl3) δ 4.10 (t, 1H, J = 6.3 Hz, H-7), 3.47–3.40 (m, 2H, H-11), 3.30 (s, 3H, H-12), 2.80–2.72 (m, 1H, H-10), 2.59–2.51 (m, 1H, H-10), 2.33–2.22 (m, 1H, H-8), 2.13–2.06 (m, 2H, H-3, N-H), 2.03–1.95 (m, 1H, H-3), 1.87 (s, 3H, H-5), 1.80 (s, 3H, H-5), 1.05 (d, 3H, J = 6.6 Hz, H-9), 0.98 (d, 3H, J = 6.6 Hz, H-9).
- NMR 13C (100.6 MHz, CDCl3)δ 156.4 (C-6), 72.6 (C-11), 65.2 (C-4), 59.4 (C-12), 58.7 (C-7), 53.8 (C-3), 45.1 (C-10), 31.7 (C-2), 31.5 (C-8), 30.7 (C-1), 30.6, 30.3 (C-5), 20.5, 17.3 (C-9).
- I.R. (cm−1, thin film): 3499 ʋN-H, 2959 ʋCH3, 1558 ʋC=N, 1501δCH2, 1489δN-H, 1455 ʋN=N, 1358δCH3,s, 1275 ʋC-C, 1064 ʋN-N
- HRMS Calculated for C16H33N5O: 311.2685, found: 311.2698
3.2.5. Compound M05
- N-((4-chlorophenyl)(1-(2,4,4-trimethylpentan-2-yl)-1H-tetrazol-5-yl)methyl)propan-1-amine. This compound was synthesized according to the general procedure B, using 1.0 mmol of 2-isocyano-2,4,4-trimethylpentane. The solvent for the flash chromatography on silica gel is a 5:5 mixture of petroleum ether and diethyl oxide. An amount of 226 mg (62%) of the desired adduct was formed.
- Rf: 0.6 (50:50 PE/Et2O)
- Mol. Wt: 363.93, Nature: Yellow oil.
- NMR 1H (400 MHz, CDCl3)δ 7.41–7.34 (m, 4H, H-ar), 5.30 (s, 1H, H-7), 2.54–2.45 (m, 2H, H-8), 2.24 (s, 1H, N-H), 1.93 (s, 2H, H-3), 1.84 (s, 3H, H-5), 1.76 (s, 3H, H-5), 1.61–1.49 (m, 2H, H-9), 0.93 (t, 3H, J = 7.3 Hz, H-10), 0.71 (s, 9H, H-1).
- NMR 13C (100.6 MHz, CDCl3)δ 155.7 (C-6), 137.3 (C-11), 134.3 (C-12), 129.7, 129.2 (C-ar), 65.1 (C-4), 58.8 (C-7), 53.6 (C-3), 50.1 (C-8), 31.6 (C-2), 30.6 (C-1), 30.5, 30.2 (C-5), 23.2 (C-9), 11.7 (C-10).
- I.R. (cm−1, thin film): 3511 ʋN-H, 2959 ʋCH3, 1558 ʋC=N, 1505 ʋC=C, 1485δN-H, 1454 ʋN=N, 1360δCH3,s, 1274 ʋC-C, 1091 ʋN-N, 1042 ʋC-N
- HRMS Calculated for C19H30ClN5: 363.2190, found: 363.2180
3.2.6. Compound M06
- N-((4-chlorophenyl)(1-cyclohexyl-1H-tetrazol-5-yl)methyl)-2-methoxyethanamine. This compound was synthesized according to the general procedure B, using 1.0 mmol of isocyanocyclohexane. The solvent for the flash chromatography on silica gel is a 5:5 mixture of petroleum ether and diethyl oxide. An amount of 210 mg (60%) of the desired adduct was formed.
- Rf: 0.6 (50:50 PE/Et2O)
- Mol. Wt: 349.86, Nature: Yellow oil.
- NMR 1H (400 MHz, CDCl3)δ 7.40–7.34 (m, 4H, H-ar), 5.36 (s, 1H, H-3), 4.41–4.31 (m, 1H, H-cy), 3.59–3.54 (m, 2H, H-5), 3.38 (s, 3H, H-6), 2.86–2.78 (m, 1H, H-4), 2.77–2.69 (m, 1H, H-4), 2.61–2.42 (m, 1H, N-H), 1.97–1.84 (m, 4H, H-cy), 1.77–1.60 (m, 3H, H-cy), 1.36–1.24 (m, 1H, H-cy).
- NMR 13C (100.6 MHz, CDCl3)δ 154.3 (C-7), 136.7 (C-2), 134.4 (C-1), 129.2, 128.6 (C-ar), 71.9 (C-5), 58.9 (C-6), 58.1 (C-3), 56.9 (C-cy), 47.2 (C-4), 32.7, 32.6, 25.4, 24.8 (C-cy).
- I.R. (cm−1, thin film): 3515 ʋN-H, 2959 ʋCH3, 1561ʋC=N, 1502ʋC=C, 1483δN-H, 1359δCH3,s, 1263 ʋC-C, 1091 ʋN-N, 1041 ʋC-N
- HRMS Calculated for C17H24ClN5O: 349.1669, found: 349.1660
3.2.7. Compound M07
- N-((1-(4-chlorobenzyl)-1H-tetrazol-5-yl)(2-bromophenyl)methyl)-2-methoxyethanamine. This compound was synthesized according to the general procedure B, using 1.0 mmol of 1-chloro-4-(isocyanomethyl) benzene. The solvent for the flash chromatography on silica gel is a 5:5 mixture of petroleum ether and diethyl oxide. An amount of 253 mg (58%) of the desired adduct was formed.
- Rf: 0.5 (50:50 PE/Et2O)
- Mol. Wt: 436.73, Nature: Yellow oil.
- NMR 1H (400 MHz, CDCl3)δ 7.52 (d, 1H, J = 7.8 Hz, H-ar), 7.27–7.20 (m, 4H, H-ar), 7.18–7.13 (m, 1H, H-ar), 7.04 (d, 2H, J = 8.3 Hz, H-ar), 5.60 (s, 1H, H-5), 5.53 (s, 2H, H-3), 3.51 (m, 2H, H-9), 3.29 (s, 3H, H-10), 2.74 (t, 2H, J = 5.1 Hz, H-8), 2.44 (s, 1H, N-H).
- NMR 13C (100.6 MHz, CDCl3)δ 155.4 (C-4), 136.6 (C-6), 134.7 (C-2), 133.3 (C-ar), 131.6 (C-1), 130.2, 129.2, 129.1, 129.0, 128.4 (C-ar), 124.1 (C-7), 72.0 (C-9), 58.8 (C-10), 56.0 (C-5), 50.3 (C-3), 46.9 (C-8).
- I.R. (cm−1, thin film): 3510 ʋN-H, 2951 ʋCH3, 1649, 1551 ʋC=N, 1500 ʋC=C, 1482δN-H, 1359δCH3,s, 1268 ʋC-C, 1079 ʋN-N, 1033 ʋC-N
- HRMS Calculated for C18H19BrClN5O: 435.0462, found: 435.0453.
3.2.8. Compound M08
- 2-(1-(4-methoxybenzyl)-1H-tetrazol-5-yl)-N,N-divinylpropan-2-amine. This compound was synthesized according to the general procedure B, using 1.0 mmol of 1-(isocyanomethyl)-4-methoxybenzene. The solvent forthe flash chromatography on silica gel is a 5:5 mixture of petroleum ether and diethyl oxide. An amount of 191.6 mg (64%) of the desired adduct was formed.
- Rf: 0.5 (50:50PE/Et2O)
- Mol. Wt: 299.37, Nature: Yellow oil.
- NMR 1H (400 MHz, CDCl3)δ 7.22 (d, 2H, J = 8.1 Hz, H-ar), 6.92 (d, 2H, J = 8.1 Hz, H-ar), 5.97 (s, 2H, H-4), 5.91–5.78 (m, 2H, H-8), 5.15 (d, 2H, J = 5.1 Hz, H-9), 5.13 (d, 2H, J = 13.4 Hz, H-9), 3.85 (s, 3H, H-1), 1.54 (s, 6H, H-7).
- NMR 13C (100.6 MHz, CDCl3)δ 159.8 (C-2), 159.5 (C-5), 136.4 (C-8), 128.9 (C-ar), 126.7 (C-3), 117.2 (C-9), 114.3 (C-ar), 58.7 (C-1), 55.4 (C-6), 52.2 (C-4), 24.0 (C-7).
- I.R. (cm−1, thin film): 2959 ʋCH3, 1650, 1558 ʋC=N, 1537, 1503 ʋC=C, 1485δCH3,as, 1454 ʋN=N, 1359δCH3,s, 1268 ʋC-C, 1092 ʋN-N, 1043 ʋC-N
- HRMS Calculated for C16H21N5O: 299.1746, found: 299.1735
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dippold, A.A.; Izsák, D.; Klapötke, T.M.; Pflüger, C. Combining the Advantages of Tetrazoles and 1,2,3-Triazoles: 4,5-Bis(tetrazol-5-yl)-1,2,3-triazole, 4,5-Bis(1-hydroxytetrazol-5-yl)-1,2,3-triazole, and their Energetic Derivatives. Chem. A Eur. J. 2016, 22, 1768–1778. [Google Scholar] [CrossRef]
- Rajasekaran, A.; Thampi, P. Synthesis and analgesic evaluation of some 5-[β-(10-phenothiazinyl)ethyl]-1-(acyl)-1,2,3,4-tetrazoles. Eur. J. Med. Chem. 2004, 39, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Häbich, D. Synthesis of 3′-(5-Amino-1,2,3,4-tetrazol-1-yl)-3′-deoxythymidines. Synthesis 1992, 1992, 358–360. [Google Scholar] [CrossRef]
- Uchida, M.; Komatsu, M.; Morita, S.; Kanbe, T.; Yamasaki, K.; Nakagawa, K. Studies on gastric antiulcer active agents. III. Synthesis of 1-substituted 4-(5-tetrazolyl)thio-1-butanones and related compounds. Chem. Pharm. Bull. 1989, 37, 958–961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waisser, K.; Adamec, J.; Doležal, R.; Kaustová, J. 1-Aryl-5-benzylsulfanyltetrazoles, a new group of antimycobacterial compounds against potentially pathogenic strains. Folia Microbiol. 2005, 50, 195–197. [Google Scholar] [CrossRef]
- Kalitin, K.Y.; Grechko, O.Y.; Spasov, A.A.; Sukhov, A.G.; Anisimova, V.A.; Matukhno, A.E. GABAergic Mechanism of Anticonvulsive Effect of Chemical Agent RU-1205. Bull. Exp. Biol. Med. 2018, 164, 629–635. [Google Scholar] [CrossRef]
- Myznikov, L.V.; Hrabalek, A.; Koldobskii, G.I. Drugs in the tetrazole series. (Review). Chem. Heterocycl. Compd. 2007, 43, 1–9. [Google Scholar] [CrossRef]
- Herr, R. 5-Substituted-1H-tetrazoles as carboxylic acid isosteres: Medicinal chemistry and synthetic methods. Bioorganic Med. Chem. 2002, 10, 3379–3393. [Google Scholar] [CrossRef]
- Neochoritis, C.G.; Zhao, T.; Dömling, A. Tetrazoles via Multicomponent Reactions. Chem. Rev. 2019, 119, 1970–2042. [Google Scholar] [CrossRef] [Green Version]
- Sarvary, A.; Maleki, A. A review of syntheses of 1,5-disubstituted tetrazole derivatives. Mol. Divers. 2015, 19, 189–212. [Google Scholar] [CrossRef]
- Gutmann, B.; Roduit, J.-P.; Roberge, D.; Kappe, C.O. Synthesis of 5-Substituted 1H-Tetrazoles from Nitriles and Hydrazoic Acid by Using a Safe and Scalable High-Temperature Microreactor Approach. Angew. Chem. Int. Ed. 2010, 49, 7101–7105. [Google Scholar] [CrossRef] [PubMed]
- Luther, A.; Moehle, K.; Chevalier, E.; Dale, G.; Obrecht, D. Protein epitope mimetic macrocycles as biopharmaceuticals. Curr. Opin. Chem. Biol. 2017, 38, 45–51. [Google Scholar] [CrossRef]
- Hanessian, S.; Deschênes-Simard, B.; Simard, D. Exploring the unique reactivities of heterobicyclic tetrazoles—access to functionally diverse and versatile heterocyclic scaffolds. Tetrahedron 2009, 65, 6656–6669. [Google Scholar] [CrossRef]
- Ek, F.; Wistrand, L.-G.; Frejd, T. Synthesis of fused tetrazole- and imidazole derivatives via iodocyclization. Tetrahedron 2003, 59, 6759–6769. [Google Scholar] [CrossRef]
- Hernández, A.S.; Cheng, P.T.; Musial, C.M.; Swartz, S.G.; George, R.J.; Grover, G.; Slusarchyk, D.; Seethala, R.K.; Smith, M.; Dickinson, K.; et al. Discovery, synthesis, and structure–activity studies of tetrazole based growth hormone secretagogues. Bioorganic Med. Chem. Lett. 2007, 17, 5928–5933. [Google Scholar] [CrossRef]
- And, O.G.M.; Bolm, C. Synthesis ofN-(1H)-Tetrazole Sulfoximines. Org. Lett. 2007, 9, 2951–2954. [Google Scholar] [CrossRef]
- Burg, D.; Hameetman, L.; Filippov, D.V.; Van Der Marel, G.A.; Mulder, G.J. Inhibition of glutathione S-transferase in rat hepatocytes by a glycine-tetrazole modified S-alkyl-GSH analogue. Bioorganic Med. Chem. Lett. 2002, 12, 1579–1582. [Google Scholar] [CrossRef]
- Demko, Z.P.; Sharpless, K.B. A Click Chemistry Approach to Tetrazoles by Huisgen 1,3-Dipolar Cycloaddi-tion: Synthesis of 5-Sulfonyl Tetrazoles from Azides and Sulfonyl Cyanides. Angew. Chem. Int. Ed. 2002, 41, 2110–2113. [Google Scholar] [CrossRef]
- Himo, F.; Demko, Z.P.; Noodleman, L.; Sharpless, K.B. Why Is Tetrazole Formation by Addition of Azide to Organic Nitriles Catalyzed by Zinc(II) Salts? J. Am. Chem. Soc. 2003, 125, 9983–9987. [Google Scholar] [CrossRef]
- Himo, F.; Demko, Z.P.; Noodleman, L.; Sharpless, K.B. Mechanisms of Tetrazole Formation by Addition of Azide to Nitriles. J. Am. Chem. Soc. 2002, 124, 12210–12216. [Google Scholar] [CrossRef]
- Ugi, I.; Meyr, R.; Isonitrile, V. Erweiterter Anwendungsbereich der Passerini-Reaktion. Eur. J. Inorg. Chem. 1961, 94, 2229–2233. [Google Scholar] [CrossRef]
- Ugi, I.; Steinbrückner, C. Isonitrile, II. Reaktion von Isonitrilen mit Carbonylverbindungen, Aminen und Stickstoffwasserstoffsäure. Eur. J. Inorg. Chem. 1961, 94, 734–742. [Google Scholar] [CrossRef]
- Rb, N.B.; Varma, R.S.; Luque, R.; Colmenares, J.C. Solvent-free synthesis. In An Introduction to Green Chemistry Methods; Future Science Ltd.: London, UK, 2013; pp. 18–38. [Google Scholar]
- Shinde, P.V.; Kategaonkar, A.H.; Shingate, B.B.; Shingare, M.S. Surfactant catalyzed convenient and greener synthesis of tetrahydrobenzo[a]xanthene-11-ones at ambient temperature. Beilstein J. Org. Chem. 2011, 7, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Chandgude, A.L.; Li, J.; Dömling, A. 2-Nitrobenzyl Isocyanide as a Universal Convertible Isocyanide. Asian J. Org. Chem. 2017, 6, 798–801. [Google Scholar] [CrossRef]
- Zhao, T.; Kurpiewska, K.; Kalinowska-Tłuścik, J.; Herdtweck, E.; Dömling, A. α-Amino Acid-Isosteric α-Amino Tetrazoles. Chem. A Eur. J. 2016, 22, 3009–3018. [Google Scholar] [CrossRef] [Green Version]
- Kroon, E.; Kurpiewska, K.; Kalinowska-Tłuścik, J.; Dömling, A. Cleavable β-Cyanoethyl Isocyanide in the Ugi Tetrazole Reaction. Org. Lett. 2016, 18, 4762–4765. [Google Scholar] [CrossRef]
- Pharande, S.G.; Escobosa, A.R.C.; Gámez-Montaño, R. Endogenous water-triggered and ultrasound accelerated synthesis of 1,5-disubstituted tetrazoles via a solvent and catalyst-free Ugi-azide reaction. Green Chem. 2017, 19, 1259–1262. [Google Scholar] [CrossRef]
Entry | Solvent | Temp (°C) | Time (h) | Yields (%) |
---|---|---|---|---|
1 | H2O | 25 | 24 | NR |
2 | H2O | 80 | 24 | NR |
3 | H2O/TTAB | 25 | 12 | 43 |
4 | MeOH | 25 | 12 | 55 |
Entry | Products (a5) | Yield (%) (a) | Yield (%) (b) |
---|---|---|---|
1 | 55 | 43 | |
2 | 66 | 48 | |
3 | 63 | 51 | |
4 | 66 | 56 | |
5 | 62 | 50 | |
6 | 60 | 47 | |
7 | 58 | 47 | |
8 | 64 | 56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdessalam, M.; Sidhoum, M.A.; Zradni, F.-Z.; Ilikti, H. Synthesis of 1,5-Disubstituted Tetrazoles in Aqueous Micelles at Room Temperature. Molbank 2021, 2021, M1194. https://doi.org/10.3390/M1194
Abdessalam M, Sidhoum MA, Zradni F-Z, Ilikti H. Synthesis of 1,5-Disubstituted Tetrazoles in Aqueous Micelles at Room Temperature. Molbank. 2021; 2021(1):M1194. https://doi.org/10.3390/M1194
Chicago/Turabian StyleAbdessalam, Mohammed, Madjid Ait Sidhoum, Fatima-Zohra Zradni, and Hocine Ilikti. 2021. "Synthesis of 1,5-Disubstituted Tetrazoles in Aqueous Micelles at Room Temperature" Molbank 2021, no. 1: M1194. https://doi.org/10.3390/M1194
APA StyleAbdessalam, M., Sidhoum, M. A., Zradni, F. -Z., & Ilikti, H. (2021). Synthesis of 1,5-Disubstituted Tetrazoles in Aqueous Micelles at Room Temperature. Molbank, 2021(1), M1194. https://doi.org/10.3390/M1194