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Abstract: A new fluorinated pyrazole, 5-(4-fluorophenyl)-3-(naphthalen-1-yl)-1-phenyl-1H-pyrazole
was successfully synthesized via a two-step reaction. Firstly, the synthesis of pyrazoline was per-
formed via one-pot three-component reaction under microwave irradiation. Secondly, the synthesis
of pyrazole was performed via oxidative aromatization of pyrazoline under conventional heating.
The structure of the synthesized compound was confirmed by spectroscopic analysis, including
FT-IR, HR-MS, 1D and 2D NMR analysis. Then, molecular docking study showed that the binding
affinity of the synthesized compound to human estrogen alpha receptor (ERα) was close to 4-OHT as
a native ligand.

Keywords: fluorinated pyrazole; one-pot reaction; three-component reaction; anti-breast cancer;
molecular docking; human estrogen alpha

1. Introduction

Pyrazoles and their derivatives play an important role in some biological activities in
medicine. In particular, they are used for their antimicrobial [1], anti-tuberculosis [2], anti-
inflammatory [3], antioxidant [4], anti-tumor [5], cytotoxicity activity [6], and analgesic [7]
functions. Pyrazole can be synthesized in a variety of ways, such as by Knorr reaction
or through the pyrazoline pathway, which is the reaction of α, β-unsaturated ketone
with hydrazine derivatives [8] or semicarbazide [9], followed by oxidative aromatization
to the corresponding pyrazole molecules [10]. Some studies have also reported that
pyrazole derivatives also exhibit anti-cancer activity against breast cancer cell lines [11,12].
Furthermore, many pyrazoles have been patented as hepatic cancer (HePG-2) agents [13],
and celecoxib is a commercial drug with cyclooxygenase-2 inhibitory activity [14].

Fluorinated compounds are popular in medicinal chemistry as drug agents. The C-F
bond has greater stability than the C-H bond. Moreover, the fluorine substitution can
be used to increase the binding affinity of the protein–ligand complex. Celecoxib, which
bears a pyrazole core, also has a fluorine substitution in order to increase its metabolic
stability [15]. This makes the development of new fluorinated heterocyclic compounds of
pyrazole very interesting.

The synthesis of fluorinated pyrazoline has been reported previously by our group in
two-step reactions [16]. In this work, we synthesize a new fluorinated pyrazole through
the oxidation of pyrazoline under conventional heating. We use irradiation in a microwave
oven to synthesize pyrazoline from 1-acetylnaphthalene, 4-fluorobenzaldehyde, and phenyl
hydrazine in a one-pot three-component reaction. The structure of the new pyrazole was
characterized based on the complete assignments from IR, MS, 1D and 2D NMR analysis.
Then, a molecular docking study was performed to investigate its potential as an anti-breast
cancer agent by targeting the human estrogen receptor alpha (ERα).

Molbank 2021, 2021, M1197. https://doi.org/10.3390/M1197 https://www.mdpi.com/journal/molbank

https://www.mdpi.com/journal/molbank
https://www.mdpi.com
https://orcid.org/0000-0003-3253-8342
https://orcid.org/0000-0003-2369-6787
https://orcid.org/0000-0001-5486-4048
https://orcid.org/0000-0003-4066-877X
https://orcid.org/0000-0002-8346-3830
https://orcid.org/0000-0002-5072-1397
https://doi.org/10.3390/M1197
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/M1197
https://www.mdpi.com/journal/molbank
https://www.mdpi.com/article/10.3390/M1197?type=check_update&version=3


Molbank 2021, 2021, M1197 2 of 6

2. Results and Discussion
2.1. Synthesis

Compound 4 was synthesized using a one-pot three-component reaction under mi-
crowave irradiation with some modifications from the previous method [17–19] in 54.82%
yield. The reaction was carried out at 180 watt for 2 min under basic conditions. Then,
compound 4 was oxidized using glacial acetic acid under conventional heating at 85 ◦C for
24 h to obtain compound 5 in 35.16% yield. Compound 4 was converted into 5 through
oxidative aromatization reaction (Figure 1).
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Figure 1. Synthesis route of new fluorinated pyrazole; (i) NaOH 12% (w/v), EtOH, 2 min, 180 W, MW (ii) AcOH, 85 ◦C, 24 h.

The FT-IR analysis of compound 5 confirmed that there were no vibration bands of
aliphatic C-H. The spectrum only showed a vibration of aromatic C-H at 3049 cm−1. This
showed that the oxidative aromatization was successful. The other vibration bands of
compound 5 were similar to compound 4, including C=N and C-N vibrations appearing
at 1593 and 1495 cm−1, respectively. Then, the aromatic C=C vibration was identified at
1360 cm−1 and the presence of fluoro substituent was confirmed by the vibration band of
C-F at 1224 cm−1. Mass spectrum, as further analysis, confirmed this to be [M + H]+ m/z
365.1417 (100%).

The structure of compound 5 was characterized by the complete assignments of 1D
and 2D NMR analysis. The 1H-NMR spectra of compound 5 did not show the presence
of ABX aliphatic proton signals. The spectra specifically only showed a singlet signal at δ
6.09 ppm. This data supported the FT-IR interpretation and indicated that the pyrazoline
core was successfully converted to a pyrazole core. Furthermore, the fluoro substituent
made a specific system on the 1H and 13C-NMR spectra. Based on the reported literature,
both the 1H and 13C-NMR spectra showed that the fluoro substituent could be coupled to
proton and carbon atoms up to four bonds (4J) [20]. The 1H-NMR spectra of compound 5
showed 2JH-F as a triplet signal and 3JH-F with doublet of doublets signal, with coupling
constants of 8.6, 5.8, and 2.8 Hz, respectively. Upon further analysis, the 13C-NMR spectra
also showed a coupling of 13C to 19F with coupling constants of 248.9 Hz (1JC-F), 21.6 Hz
(2JC-F), 8.2 Hz (3JC-F), and 3.3 Hz (4JC-F).

The assignment of each signal in 1H and 13C NMR was performed based on the
2D NMR spectrum, including HSQC and HMBC. The HSQC spectra showed that C4
(δ 108.91 ppm) only had a correlation with H4 at δ 6.83 ppm. This shows that there
was a loss of one proton caused by oxidative aromatization of pyrazoline core. Then,
the HMBC spectra of compound 5 showed an important correlation between H4 at
δ 6.83 ppm with C3 and C5 signals in pyrazole core. The other important correlations
were illustrated in Figure 2. The 1D and 2D NMR spectrum were completely attached in
Supplementary Materials.
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Figure 2. 2D NMR interpretation of compound 5.

2.2. Molecular Docking

Molecular docking study was performed using the Autodock tools package. Com-
pound 5 was docked into ERα (PDB ID: 3ERT) [21]. The molecular docking study was
performed in several steps. First, we validated our docking protocol through redocking the
tamoxifen (4-OHT) as the native ligand. The validation results showed an RMSD of 1.1 Å,
which indicated that the docking protocol could be used for further investigation. An
RMSD value of <2 Å confirms the similarity in binding patterns with 4-OHT in ERα [22,23].

On the basis of Table 1, it can be concluded that compound 5 shows good potential
as an ERα inhibitor, because its binding affinity to ERα is close to that of 4-OHT as a
native ligand. Their binding affinities are −10.61 and −11.04 Kcal/mol, respectively. Sub-
sequently, the docking results showed that compound 5 also has an inhibition constant (Ki)
of 16.71 nM. The docking results showed that compound 5 can interact with amino acid
residues in the active side, such as Arg394 and Glu353. Both interactions were also found
between 4-OHT and ERα. However, the types of interactions are different. Compound 5
interacted with the two residues through van der Waals and hydrophobic interaction, re-
spectively, while 4-OHT interacted with them through hydrogen bond formation (Figure 3).
We assumed that these different kinds of interaction influenced the decreasing Ki value of
compound 5.

Table 1. The docking results of compound 5 and 4-OHT to ERα.

Compounds
∆G

(Kcal/mol) Ki (nM)
Interaction Compound—Erα

H-Bond Hydrophobic Van der Waals

5 −10.61 16.71 -

Leu391, Leu525,
Met343, Glu353,
Leu384, Leu349,
Ala350, Met388,
Met421, Leu387,
Phe404, Leu346

Thr347, Trp383,
Glu419, Ile424,
His524, Gly420,
Gly521, Arg394

4-OHT a −11.04 3.76 Arg394,
Glu353

Leu391, Leu387,
Ala350, Leu346,
Ile424, Met388,

Leu428, Leu525,
Met421

Leu384, Phe404
Met343, Gly420,
His524, Gly521,
Leu349, Thr347,
Asp351, Leu354,

Trp383
a literature [24].
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3. Materials and Methods
3.1. Materials

All chemicals and solvents used in this work were purchased from Merck and Sigma
Aldrich. The synthesis reaction was performed in an Electrolux EMS3087X microwave
oven (PT. Electrolux Indonesia, Jakarta, Indonesia). The melting point was determined
on a Fisher-Johns apparatus (Fisher Scientific, Waltham, MA, USA) (uncorr). The Thin
Layer Chromatography (TLC) analysis was performed using silica gel GF254 TLC plate
(Merck Millipore, Darmstadt, Germany) and the spots were observed under UV lamp
of 254/366 nm (Camag™, Camag Chemie-Erzeugnisse & Adsorptionstechnik AG, Mut-
tenz, Switzerland). The purity of the compound was analyzed using UFLC Prominence-
Shimadzu LC Solution with SPD 20AD as UV detector (Shimadzu Corporation, Kyoto,
Japan). The mass spectra were measured by High-Resolution Electrospray Ionization–
Time-of-Flight Mass Spectrometry (HR-ESI-TOFMS). Then, the 1D and 2D NMR spectra
recorded on an Agilent®(Agilent Technologies, Santa Clara, CA, USA), at 500 and 125 MHz
for 1H and 13C-NMR, respectively.

3.2. Synthesis of 5-(4-Fluorophenyl)-3-(naphthalen-1-yl)-1-phenyl-4,5-dihydro-1H-pyrazole 4

The mixture of 4-fluorobenzaldehyde (3 mmol), 1-acetylnaphthalene (3 mmol), 3
equivalent of phenyl hydrazine and 12% sodium hydroxide (10 mL) in absolute ethanol
was irradiated in a microwave oven at 180 W for 2 min. The reaction was monitored by
TLC every 30 s. Then, after the completion of the reaction, the mixture was left in an ice
bath for 24 h. The formed precipitate was filtered in vacuo and rinsed with cold water and
n-hexane to obtain pure compound 4 in 54.82% yield as a yellow solid (m.p. 152–153 ◦C).
The spectroscopic data of this compound were reported in our previous study [16].

3.3. Synthesis of 5-(4-Fluorophenyl)-3-(naphthalen-1-yl)-1-phenyl-1H-pyrazole 5

The mixture of compound 4 (1 mmol) and excess glacial acetic acid (5 mL) was heated
in an oil bath at 85 ◦C for 24 h. The reaction was monitored by TLC every 6 h. After the
completion of the reaction, the mixture was poured into crushed ice and then neutralized
by adding sodium hydroxide solution. The mixture was left in an ice bath for 12 h and
the formed precipitate was filtered in vacuo and rinsed by cold distilled water and n-
hexane. Then, the crude product was purified through column chromatography using
n-hexane/ethyl acetate with a gradient system.
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5-(4-fluorophenyl)-3-(naphthalen-1-yl)-1-phenyl-1H-pyrazole (5): yield 35.16%; yellow
solid (m.p. 48–50 ◦C), Retention time of HPLC at 17.776 min, FT-IR (KBr) ν (cm−1): 3049,
1593, 1495, 1360 and 1224. 1H NMR (500 MHz, CDCl3) δ 8.71 (d, 1H, J = 8.6 Hz); 7.93 (d, 1H,
J = 6.9 Hz); 7.91 (d, 1H, J = 8.9 Hz); 7.85 (d, 1H, J = 7.0 Hz); 7.60–7.51 (m, 3H); 7.45 (d, 2H,
J = 7.8 Hz); 7.40 (t, 2H, J = 7.6 Hz); 7.42–7.35 (m, 1H); 7.35 (dd, 2H, J = 5.8, J = 2.8 Hz); 7.07
(t, 2H, J = 8.2 Hz) 6.84 (s, 1H). 13C-NMR (125 MHz, CDCl3) δ 162.68 (d, 1JC-F = 248.9 Hz),
151.96, 142.62, 139.98, 134.02, 131.41, 130.67 (d, 3JC-F = 8.2 Hz), 129.00, 128.63, 128.37, 127.54,
127.23, 126.73 (d, 4JC-F = 3.3, Hz), 126.71, 126.41, 126.19, 125.82, 125.40, 125.33, 115.68 (d,
2JC-F = 21.6 Hz), 108.92. The molecular ion peak in HRMS spectra [M + H]+ found at m/z
365.1417, calculated as m/z 365.1454. The HRMS, 1D and 2D NMR spectrum were attached
in Supplementary Materials (Figures S1–S8 and Table S1).

3.4. Molecular Docking Study

The molecular docking study was performed using AutoDock 4.2.6. The ligands
and receptor were prepared using AutoDockTools (ADT) 1.5.6 (Scripps Research, San
Diego, CA, USA). The PDB file of ERα (3ERT) was taken from the RCSB data bank
(https://www.rcsb.org/structure/3ERT, accessed on 6 March 2021). The receptor was
prepared using ADT by adding Kollman charges. The ligands were prepared by adding
Gasteiger charges, and its hydrogen and minimized energy were determined to be
0.01 Kcal/mol. All of the prepared receptors and ligands were saved in pdbqt format.
The docking was performed with a grid box of 60 × 60 × 60, with a spacing of 0.375 Å.
The coordinates of the active site were set as x = 30.282, y = −1.913, z = 24.207. Then,
the docking results were visualized using BIOVIA Discovery visualizer 2020 (Dassault
Systèmes, San Diego, CA, USA).

4. Conclusions

In summary, we successfully synthesized a new fluorinated pyrazole, 5-(4-fluorophenyl)-
3-(naphthalen-1-yl)-1-phenyl-1H-pyrazole (compound 5) from a fluorinated pyrazoline
via oxidative aromatization. Moreover, all spectroscopic data successfully confirmed the
structure of the synthesized compound. Based on the molecular docking study, com-
pound 5 showed potential inhibition against Erα, with binding affinity and Ki value of
−10.61 Kcal/mol and 16.71 nM, respectively. However, in vitro and in vivo evaluations
are required to ensure its anti-breast cancer potential.

Supplementary Materials: The following are available online. Figures S1–S8: IR, HRMS, 1H, 13C,
HSQC and HMBC spectrum; Table S1: NMR spectroscopic data.
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