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Abstract: 11H-Indeno[1,2-b]quinoxaline derivatives present an important type of nitrogen-containing
heterocyclic compound that are useful intermediate products in organic synthesis and have potential
pharmaceutical applications. A new 11H-indeno[1,2-b]quinoxalin-11-one-2-(4-ethylbenzylidene)hydrazone
(compound 3) was synthesized. Compound 3 is the first example of an azine derivative based on
the 11H-indeno[1,2-b]quinoxaline system. The Z,E-isomerism of compound 3 was investigated by
DFT calculations. Bioavailability was evaluated in silico using ADME predictions. According to the
ADME results, compound 3 is potentially highly bioavailable and has potential to be used for the
treatment of neuroinflammation and ischemia–reperfusion injury.
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1. Introduction

Compounds containing a C=N bond attached to a heterocyclic moiety exhibit various
chemical reactivities and often possess pharmacological activities. Prominent representa-
tives of these compounds are azines, which can be regarded as hydrazine derivatives of
the general formula RR′C=N-N=CR′ ′R′ ′ ′. Azines have recently attracted attention owing
to their diverse therapeutic activities [1,2]. The synthesis of azines can be performed by the
condensation of hydrazine with two moles of aldehyde/ketone under reflux conditions [1].
Azines are often the major products obtained by the thermal decomposition of diazo
compounds [2]. The process is bimolecular and involves the nucleophilic attack of the
carbon atom of the first diazo compound (which gives carbene by the removal of N2) on
the terminal nitrogen of the second compound. Zhao et al. reported the formation of
symmetrical azines produced by the copper catalyzed homocoupling of oximes [3]. Nan-
jundaswamy and co-workers reported on the iodine catalyzed synthesis of symmetrical
azines by treating NH2NH2·H2O with carbonyl compounds at 0–10 ◦C [4].

A prominent drug belonging to the class of azines is Guanabenz (Figure 1) [5], which
has always been considered a guanylhydrazone derivative. Figure 1 shows two tautomeric
forms of Guanabenz (A and B), with the azine form (B) being more stable [6,7]. Addition-
ally, important examples are the antihypertensive agent bearing 2,6-dichlorophenyl and
a 1,1-diamino moieties [5], the trypanocidal agent containing the azine unit attached to
imidazopyridine [8], the antibacterial compound [9], and the anticancer agent [10] (Figure 1)
4-((E)-((E)-((4-bromophenyl)(phenyl)methylene)hydrazono)methyl)−2,6-dimethoxyphenol
(BRH) that was active against MCF-7 cancerous cell lines [11].

At present, the variation in conjugation via the azine substructure and its modulation
depending on the substituents has not been fully investigated. It is important to study
redox properties and the associated characteristics of electron exchange and their influence
on chemical bonds in these systems, especially in azines containing heterocyclic fragments
of pharmacological importance. In this work, we have synthesized the first representative
of an azine with a 11H-indeno[1,2-b]quinoxaline moiety that is contained in numerous
biologically active compounds possessing anti-inflammatory [12], antimicrobial [13], anti-
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cancer [14], and JNK inhibitory [12] properties. The bioavailability and electronic structure
of the synthesized compound were evaluated with the use of computational methods.
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For the first time, we have obtained a new functional compound, 11H-indeno[1,2-
b]quinoxalin-11-one 2-(4-ethylbenzylidene)hydrazone (3, Scheme 2), which contains an 
azine group and an indenoquinoxaline system. This compound is of interest as a potential 
biologically active compound that could find application in medicinal, organic, and ma-
terial chemistry. 

Further modification of compound 2 to the target product 3 was performed by the 
action of p-ethylbenzaldehyde (Scheme 2). The reaction proceeds for 2 h under reflux in 
ethanol in the absence of alkalis or acids. At the end of the process, complete conversion 
was observed (control by TLC, eluent hexane: ethyl acetate (2:1, v/v)). The expected crude 
azine was isolated by filtration with 89% yield. The compound was purified by recrystal-
lization from ethanol. 

Figure 1. Examples of biologically active azines.

2. Results and Discussion
2.1. Synthesis

We preliminary obtained 11H-indeno[1,2-b]quinoxaline-11-one (1) and its hydra-
zone (2). The simplest way to synthesize compound 1 consists in the condensation of
ninhydrin with o-phenylenediamine [15] (Scheme 1). The 11H-indeno[1,2-b]quinoxalin-
11-one hydrazone (2) was obtained by the nucleophilic addition of hydrazine hydrate to
ketone 1 [16] (Scheme 1).
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Scheme 1. Synthesis of compounds 1 and 2.

For the first time, we have obtained a new functional compound, 11H-indeno[1,2-b]
quinoxalin-11-one 2-(4-ethylbenzylidene)hydrazone (3, Scheme 2), which contains an azine
group and an indenoquinoxaline system. This compound is of interest as a potential
biologically active compound that could find application in medicinal, organic, and mate-
rial chemistry.
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Scheme 2. Synthesis of title compound 3.

Further modification of compound 2 to the target product 3 was performed by the
action of p-ethylbenzaldehyde (Scheme 2). The reaction proceeds for 2 h under reflux in
ethanol in the absence of alkalis or acids. At the end of the process, complete conversion
was observed (control by TLC, eluent hexane: ethyl acetate (2:1, v/v)). The expected
crude azine was isolated by filtration with 89% yield. The compound was purified by
recrystallization from ethanol.

According to the NMR data (CDCl3), the recrystallized compound 3 was obtained as
a Z,E-isomer mixture. The 1H NMR spectrum (Figure S1) contains two distinct low-field
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signals of the imine proton N=CH at 8.91 and 8.85 ppm with relative integral intensities
0.35/0.65, as well as typical signals of the ethyl group at 1.30 (two overlaid triplets from
different isomers) and 2.75 ppm (multiplet). Signals of the indenoquinoxaline heterocycle
were observed between 7.5 and 8.5 ppm. Separation of the isomers was impossible probably
due to a relatively low energy barrier for the isomerization of the carbon–nitrogen double
bond (see, e.g., [17] and our DFT results described below).

The main characteristics of the title compound 3: yellow crystals, M.p. 195–196 ◦C, solu-
ble in acetone and chloroform. The NMR data are presented in Section 3.1, Figures S1 and S2.

2.2. DFT Study of Aldazine Isomerism

Azines can exhibit Z,E-isomerism due to the presence of two C=N bonds. We studied
the relative stability of four possible geometric isomers of compound 3 in chloroform
using the DFT method. The lowest-energy conformations of the isomers were found
with B3LYP/G functional implemented in ORCA 5.0 software. The ma-def2-SVP basis
set [18] was used for final geometry optimizations. This basis set includes diffuse functions
pertinent for an adequate treatment of azine lone pair interactions. The optimized structures
of the geometric isomers are presented in Figure S3. The E,E-isomer was found to be
the most thermodynamically stable (here and below, the first symbol in isomer notation
describes the configuration of the azine C=N bond attached to the indenoquinoxaline
moiety while the second symbol refers to the C=N bond near the p-ethylphenyl fragment).
The Z,E-, E,Z- and Z,Z-isomers have the calculated Gibbs free energies 3.16, 4.91 and
7.13 kJ/mol, respectively, higher than the E,E-isomer. Based on these results, we propose
that the synthesized compound 3 consists of relatively more stable E,E- and Z,E-isomers, as
the other two isomers with Z-orientation of the p-ethylphenyl substituent are characterized
by higher Gibbs free energies. It should be noted that only the E,E-isomer has the optimized
structure with a fully coplanar arrangement of molecular moieties.

To evaluate the energy barriers for Z,E isomerization of both azine C=N bonds, we
applied the climbing image nudged elastic band (CI-NEB) methodology, which is efficient
at finding minimum energy paths and saddle points [19]. The climbing images (CIs)
obtained for E,E
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respectively. The obtained results suggest that the interconversion in both pairs of isomers
occurs via in-plane inversion of the nitrogen atom like in other similar compounds [17,20],
i.e., without rotation around C=N double bonds. Thus, the values of N-N=C valence angles
in CIs are close to 160◦ (Figure S4).

The calculated isomerization barriers are high enough to explain the distinct signals
of isomers in the NMR spectra of compound 3. However, they are close in magnitude, for
example, to the rotational barrier about the C–N bond in acetamide [21]. These data agree
with the observed difficulties in the isolation of individual isomers of the title compound.

2.3. In Silico ADME Predictions

We evaluated the ADME characteristics of the most potent JNK and cell-based sys-
tems of compound 3 using the SwissADME online tool [22]. We obtained bioavailability
radar plots that display an assessment of the drug-likeness of azine 3. Six important
physicochemical properties, including lipophilicity, size, polarity, solubility, flexibility, and
insaturation, were considered. It was found that the investigated heterocyclic azine in
general has satisfactory ADME properties as can be seen from a radar representation of
bioavailability shown in Figure S5. The only unfavorable property is a high insaturation
score of compound 3, which is true of most 11H-indeno[1,2-b]quinoxalin-11-one deriva-
tives. Noticeably, the known JNK inhibitor SP600125 of the anthrapyrazolone series [23]
also has enhanced insaturation. Compared to SP600125, compound 3 has a higher pre-
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dicted lipophilicity, which usually correlates with decreased water solubility, increased
metabolism, and slower excretion. Additionally, higher lipophilicity makes it more likely
to penetrate the skin. According to the calculated ADME parameters (Table 1) and bioavail-
ability radars for compound 3 and SP600125 (Figure S5), the synthesized azine 3 is expected
to be bioavailable.

Table 1. Physicochemical ADME properties of compound 3.

Property Compound 3

Formula C24H18N4
Molecular Weight (g/mol) 362.43

Heavy Atoms 28
Fraction Csp3 0.08

Rotatable Bonds 3
H-bond Acceptors 4

H-bond Donors 0
Molar Refractivity 114.42

Topological Polar Surface Area (tPSA), Å2 50.50
Lipophilicity (Consensus Log Po/w) 4.84

BBB Permeation Yes

3. Materials and Methods
3.1. General Information and Compound 3 Synthesis

LC/MS analysis was performed on an Agilent Infinity chromatograph (Santa Clara,
CA, USA) with an AccurateMass QTOF 6530 mass detector (Santa Clara, CA, USA). Chro-
matographic conditions: column Zorbax EclipsePlusC18 1.8 µm, 2.1 × 50 mm; eluent
H2O: ACN (85%); flow 0.2 mL/min. Ionization source: ESI in positive mode. The 1H
and 13C NMR spectra were recorded on a Bruker AVANCE III HD instrument (Billerica,
MA, USA) (operating frequency 1H—400 MHz; 13C—100 MHz). The melting point of the
obtained compound was measured using a Melting Point Apparatus SMP30 (Cole-Parmer
Instrument Company, Vernon Hills, IL, USA), heating rate 3.0 ◦C/min. IR spectra were
recorded on an FT-IR spectrometer Nicolet 5700 (Thermo Fisher Scientific Inc., Waltham,
MA, USA) with KBr pellets. The reaction was monitored by thin layer chromatography
(TLC) on Silufol UV-254 and Merck plates, silica gel 60, F254.

Known compounds 11H-indeno[1,2-b]quinoxaline-11-one (1) and its hydrazone (2)
were prepared according to methods described in the literature [15,16].

11H-indeno[1,2-b]quinoxalin-11-one 2-(4-ethylbenzylidene)hydrazone (3). p-Ethylbenzaldehyde
(0.3 mmol, 0.04 mL) was added to a solution of compound 2 (0.3 mmol, 0.074 g) in 25 mL
EtOH under permanent stirring. Then, the reaction mixture was refluxed under stirring for
2 h. The reaction was monitored by TLC (eluent: chloroform). After cooling, the precipitate
was filtered out and washed with EtOH. The title compound 3 was obtained as yellow
crystals (yield 89%); M.p. 195–196 ◦C (from ethanol).

1H NMR (400 MHz, CDCl3), δ, ppm: 1.23–1.34 (m, 3H, CH2CH3), 2.69–2.80 (m, 2H,
CH2CH3), 7.49–7.68 (m, 2H, H-2, H-3), 7.73–7.86 (m, 2H, H-7, H-8), 8.09 (d, 1H, J 4 Hz,
H-9), 8.18 (d, 1H, J 6 Hz, H-6), 8.25–8.34 (m, C6H4), 8.32 (d, 1H, J 4 Hz, H-4), 8.74 (d, 1H,
J 4 Hz, H-1), 8.85 (s, 0.15 H, H-12), 8.91 (s, 0.85 H, H-12) (atom numbering is shown in
Scheme 3). 13C NMR (100 MHz, CDCl3), δ, ppm: 15.34, 15.50, 29.16, 29.29, 122.59, 126.93,
128.14, 128.67, 128.79, 129.30, 129.49, 129.74, 129.77, 130.11, 130.46, 130.85, 130.93, 131.70,
132.18, 132.80, 134.47, 134.65, 138.32, 142.50, 142.70, 149.20, 150.83, 151.85, 151.96, 154.41,
155.77. IR (KBr), cm−1: ν(C=N) 1546, 1587. LC/MS (ESI+); m/z: 363.1605 experimental
([C24H18N4 + H]+ = 363.1604 theor.); m/z: 385.1425 exp. ([C24H18N4 + Na]+ = 385.1424 theor.);
exit time 140–170 s. The ratio of isotopic peaks corresponds to the theoretical m/z: 363.16
(100%), 364.16 (27%), 365.16 (4%).
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The 1H NMR and 13C NMR spectrum are shown in Figures S1 and S2.

3.2. DFT Calculations

The ORCA 5.0 computational chemistry software [24] was used for DFT calculations
of E,E-, E,Z-, Z,E- and Z,Z-isomers of compound 3. Before the calculations, conforma-
tion searches were performed for geometric isomers using the VConf 2.0 program of
the VeraChem suite software (VeraChem LLC, Germantown, MD, USA). For the best ten
conformations found for each isomer, singlet state geometry optimizations were carried
out with ORCA 5.0 employing the BLYP functional and def2-SVP basis set. Afterwards,
the lowest-energy conformation of each isomer was re-optimized with the use of the
B3LYP/G functional, ma-def2-SVP basis set, and D3BJ dispersion correction. Solvation
effects were taken into account using the CPCM model with chloroform as a solvent. Fre-
quency calculations were performed for the optimized geometries in order to establish the
nature of the stationary points. For CI-NEB calculations of the isomerization paths and
barriers, the DFT approximation indicated above with B3LYP/G functional was applied
using 10 intermediate images for each isomerization. Analysis and visualization of the
DFT results were made with Chemcraft 1.8 program. The ORCA 5.0 output files for the
lowest-energy conformations, CIs, and minimum energy path trajectories are available in
the Supplementary Materials.

3.3. ADME Predictions

The physicochemical properties of selected compounds were computed using Swis-
sADME (http://www.swissadme.ch) (accessed on 20 September 2021).

4. Conclusions

In this work, we presented the synthesis of the previously unknown compound 3
(11H-indeno[1,2-b]quinoxalin-11-one 2-(4-ethylbenzylidene)hydrazone). The compound
structure was confirmed by NMR, IR, and LC/MS methods. According to the DFT results,
compound 3 has a thermodynamically favorable E,E-configuration. The calculated isomer-
ization paths suggest that the E,Z-isomerization occurs via in-plane inversion of the azine
nitrogen atoms. An in silico estimation of ADME characteristics indicates that compound 3
can cross the blood–brain barrier and thus has perspectives to be used for the treatment
of neuroinflammation and ischemia–reperfusion injury like other indenoquinoxaline ana-
logues [12]. Despite using classic methods to obtain azine derivatives, we have discovered a
new class of azines based on the heterocyclic system of 11H-indeno[1,2-b]quinoxalin-11-one,
which is of great interest for further study of possible biologically active compounds.

Supplementary Materials: The following are available online. Figure S1: The 1H NMR spectrum of
recrystallized compound 3; Figure S2: The 13C NMR spectrum of compound 3; Figure S3: The struc-
tures of E,E-, Z,E-, E,Z-, and Z,Z-isomers of compound 3 optimized by the DFT method; Figure S4:
The energy diagrams and the climbing image conformations for E,E
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