Synthesis of New 1,2,3,4-Tetrahydroquinoline Hybrid of Ibuprofen and Its Biological Evaluation
Abstract
:1. Introduction
2. Results
2.1. Synthesis
2.2. Biological Evaluation
2.3. Hydrogen Peroxide Scavenging Activity (HPSA)
2.4. Inhibition of Albumin Denaturation (IAD)
2.5. Antitryptic Activity (ATA)
2.6. Lipophilicity
3. Materials and Methods
3.1. Synthesis
3.2. Synthesis of 1-(3,4-Dihydroquinolin-1(2H)-yl)-2-(4-isobutylphenyl)propan-1-one 8
3.3. Biological Evaluation
Chemicals and Reagents
3.4. Biological Experiments
Hydrogen Peroxide Scavenging Activity (HPSA)
3.5. Inhibition of Albumin Denaturation (IAD)
3.6. Antitryptic Activity (ATA)
3.7. Physicochemical Characterization
3.7.1. Determination of Lipophilicity as RM Values
3.7.2. Prediction of Anti-Inflammatory and Anti-Arthritic Activity
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ambatkar, M.B.; Khedekar, P.B. Quinoline as TRPV1 antagonists: A new approach against inflammation. J. Drug Deliv. Therapeut. 2019, 9, 782–788. [Google Scholar] [CrossRef]
- Mukherjee, S.; Pal, M. Quinolines: A new hope against inflammation. Drug Discov. Today Off. 2013, 18, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Musiol, R. An overview of quinoline as a privileged scaffold in cancer drug discovery. Expet Opin. Drug Discov. 2017, 12, 583–597. [Google Scholar] [CrossRef] [PubMed]
- Narula, A.K.; Azad, C.S.; Nainwal, L.M. New dimensions in the field of anti-malarial research against malaria resurgence. Eur. J. Med. Chem. 2019, 181, 111353. [Google Scholar] [CrossRef]
- Vandekerckhove, S.; D’hooghe, M. Quinoline-based antimalarial hybrid compounds. Bioorg. Med. Chem. 2015, 23, 5098–5119. [Google Scholar] [CrossRef]
- Plantone, D.; Koudriavtseva, T. Current and future use of chloroquine and hydroxychloroquine in infections, immune, neoplastic, and neurological diseases: A mini review. Clin. Drug Investig. 2018, 38, 653–671. [Google Scholar] [CrossRef]
- Orjih, A.U.; Banyal, H.S.; Chevli, R.; Fitch, S.D. Hemin lyses malaria parasites. Science 1981, 214, 667–669. [Google Scholar] [CrossRef]
- Fitch, S.D.; Chevli, R.; Banyal, H.S.; Phillips, G.; Pfaller, M.A.; Krogstad, D.J. Lysis of Plasmodium falciparum by ferriprotoporphyrin IX and a chloroquine-ferriprotoporphyrin IX complex. Antimicrob. Agents Chemother. 1982, 21, 819–822. [Google Scholar] [CrossRef] [Green Version]
- Alonso, C.; Martin-Encinas, E.; Rubiales, G.; Palacios, F. Reliable synthesis of phosphino- and phosphine sulfide-1,2,3,4-tetrahydroquinolines and phosphine sulfide quinolines. Eur. J. Org. Chem. 2017, 2017, 2916–2924. [Google Scholar] [CrossRef]
- Katritzky, A.; Rachwal, S.; Rachwal, B. Recent progress in the synthesis of 1,2,3,4-tetrahydroquinolines. Tetrahedron 1996, 52, 15031–15070. [Google Scholar] [CrossRef]
- Ghanim, A.; Girgis, A.; Kariuki, B.; Samir, N.; Said, M.; Abdelnaser, A.; Nasr, S.; Bekheit, M.; Abdelhameed, M.; Almalki, A.; et al. Design and synthesis of ibuprofen-quinoline conjugates as potential anti-inflammatory and analgesic drug candidates. Bioorg. Chem. 2022, 119, 105557. [Google Scholar] [CrossRef] [PubMed]
- Behl, T.; Kaur, I.; Fratila, O.; Brata, R.; Bungau, S. Exploring the potential of therapeutic agents targeted towards mitigating the events associated with amyloid β cascade in Alzheimer’s disease. Int. J. Mol. Sci. 2020, 21, 7443. [Google Scholar] [CrossRef] [PubMed]
- Costa, T.; Fernandez-Villalba, E.; Izura, V.; Lucas-Ochoa, A.M.; Menezes-Filho, N.J.; Santana, R.C.; de Oliveira, M.D.; Araújo, F.M.; Estrada, C.; Silva, V.; et al. Combined 1-deoxynojirimycin and ibuprofen treatment decreases microglial activation, phagocytosis and dopaminergic degeneration in MPTP treated mice. J. Neuroimmune Pharmacol. 2021, 16, 390–402. [Google Scholar] [CrossRef] [PubMed]
- Mendonça, L.S.; Nobrega, C.; Tavino, S.; Brinkhaus, M.; Matos, C.; Tom´e, S.; Moreira, R.; Henriques, D.; Kaspar, B.K.; De Almeida, L.P. Ibuprofen enhances synaptic function and neural progenitors’ proliferation markers and improves neuropathology and motor coordination in Machado—Joseph disease models. Hum. Mol. Genet. 2019, 28, 3691–3703. [Google Scholar] [CrossRef]
- Ullah, N.; Huang, Z.; Sanaee, F.; Rodrigues-Dimitrescu, A.; Aldawsari, F.; Jamali, F.; Bhardwaj, A.; Islam, N.; Velazques-Martinez, C. NSAIDs do not require the presence of a carboxylic acid to exert their anti-inflammatory effect—Why do we keep using them? J. Enzyme. Inhib. Med. Chem. 2015, 31, 1018–1028. [Google Scholar] [CrossRef]
- Geng, S.; Xiong, B.; Zhang, Y.; Zhang, J.; He, Y.; Feng, Z. Thiyl radical promoted iron-catalyzed-selective oxidation of benzylic sp3 C-H bonds with molecular oxygen. Chem. Commun. 2019, 55, 12699. [Google Scholar] [CrossRef]
- Backes, B.; Ellman, J. Carbon-carbon bond-forming methods on solid support. Utilization of Kenner’s “Safety-Catch” linker. J. Am. Chem. Soc. 1994, 116, 11171–11172. [Google Scholar] [CrossRef]
- Allegretti, M.; Bertini, R.; Cesta, M.; Bizzarri, C.; Bitondo, R.; Di Cioccio, V.; Galliera, E.; Berdini, V.; Topai, A.; Zampella, G.; et al. 2-Arylpropionic CXC chemokine receptor 1 (CXCR1) ligands as novel noncompetative CXCL8 inhibitors. J. Med. Chem. 2005, 48, 4312–4331. [Google Scholar] [CrossRef]
- Galano, A.; Macías-Ruvalcaba, N.A.; Campos, O.N.M.; Pedraza-Chaverri, J. Mechanism of the OH radical scavenging activity of nordihydroguaiaretic acid: A combined theoretical and experimental study. J. Phys. Chem. B 2010, 114, 6625–6635. [Google Scholar] [CrossRef]
- Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine; Clarendon Press: Oxford, UK, 1985; Volume 12, p. 346. [Google Scholar]
- Mansouri, A.; Makris, D.P.; Kefalas, P. Determination of hydrogen peroxide scavenging activity of cinnamic and benzoic acids employing a highly sensitive peroxyoxalate chemiluminescence-based assay: Structure–activity relationships. J. Pharm. Biomed. 2005, 39, 22–26. [Google Scholar] [CrossRef]
- Khan, A.U. Singlet molecular oxygen from superoxide anion and sensitized fluorescence of organic molecules. Science 1970, 168, 467–477. [Google Scholar] [CrossRef] [PubMed]
- Kellog, E.W.; Fridovich, I. Superoxide, hydrogen peroxide, and singlet oxygen in lipid peroxidation by a xanthine oxidase system. J. Biol. Chem. 1975, 250, 8812–8817. [Google Scholar] [CrossRef]
- Sroka, Z.; Cisowski, W. Hydrogen peroxide scavenging, antioxidant and anti-radical activity of some phenolic acids. Food Chem. Toxicol. 2003, 41, 753–758. [Google Scholar] [CrossRef]
- Vane, J.R.; Botting, R.M. New insights into the mode of action of anti-inflammatory drugs. Inflamm. Res. 1995, 44, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Jayashree, V.; Bagyalakshmi, S.; Manjula Devi, K.; Richard Daniel, D. In vitro anti-inflammatory activity of 4-benzylpiperidine. Asian J. Pharm.Clin. Res. 2016, 9, 108–110. [Google Scholar] [CrossRef]
- Oyedapo, O.; Famurewa, A. Antiprotease and membrane stabilizing activities of extracts of fagara zanthoxyloides, olax subscorpioides and tetrapleura tetraptera. Int. J. Pharmacogn. 1995, 33, 65–69. [Google Scholar] [CrossRef]
- Hansch, C.; Leo, A.; Hoekman, D. Exploring QSAR: Hydrophobic, Electronic, and Steric Constants; American Chemical Society: Washington, DC, USA, 1995. [Google Scholar]
- Pontiki, E.; Hadjipavlou-Litina, D. Synthesis and pharmacochemical evaluation of novel aryl-acetic acid inhibitors of lipoxygenase, antioxidants, and anti-inflammatory agents. Bioorg. Med. Chem. 2007, 15, 5819–5827. [Google Scholar] [CrossRef]
- Fasano, M.; Curry, S.; Terreno, E.; Galliano, M.; Fanali, G.; Narciso, P.; Ascenzi, P. The extraordinary ligand binding properties of human serum albumin. IUBMB Life 2005, 57, 787–796. [Google Scholar] [CrossRef]
- Zhang, H.; Zembower, D.; Chen, Z. Structural analogues of the michellamine anti-HIV agents. Importance of the tetrahydroisoquinoline rings for biological activity. Bioorg. Med. Chem. Lett. 1997, 7, 2687–2690. [Google Scholar] [CrossRef]
- Scott, J.; Williams, R. Chemistry and Biology of the Tetrahydroisoquinoline Antitumor Antibiotics. Chem. Rev. 2002, 102, 1669–1730. [Google Scholar] [CrossRef]
- Lane, J.; Estevez, A.; Mortara, K.; Callan, O.; Spencer, J.; Williams, R. Antitumor activity of tetrahydroisoquinoline analogues 3-epi-jorumycin and 3-epi-renieramycin G. Bioorg. Med. Chem. Lett. 2006, 16, 3180–3183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruch, R.; Cheng, S.; Klaunig, J. Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chineese green tea. Carcinogenesis 1989, 10, 1003–1008. [Google Scholar] [CrossRef] [PubMed]
- Manolov, S.; Ivanov, I.; Bojilov, D. Microwave-assisted synthesis of 1,2,3,4-tetrahydroisoquinoline sulfonamide derivatives and their biological evaluation. J. Serbian Chem. Soc. 2021, 86, 139–151. [Google Scholar] [CrossRef]
- Sakat, S.; Juvekar, A.; Gambhire, M. In-Vitro antioxidant and anti-inflammatory activity of methanol extract of Oxalis corniculata linn. Int. J. Pharm. Pharm. Sci. 2010, 2, 146–155. [Google Scholar]
- Sadym, A.; Lagunin, A.; Filimonov, D.; Poroikov, V. Prediction of biological activity spectra via the Internet. SAR QSAR Environ. Res. 2003, 14, 339–347. [Google Scholar] [CrossRef]
- Filimonov, D.; Lagunin, A.; Gloriozova, T.; Rudik, A.; Druzhilovskii, D.; Pogodin, P.; Poroikov, V. Prediction of the Biological Activity Spectra of Organic Compounds Using the Pass Online Web Resource. Chem. Heterocycl. Compd. 2014, 50, 444–457. [Google Scholar] [CrossRef]
Compounds | IC50 ± SD, μg/mL | RM ± SD | cLogP | Pa | |||
---|---|---|---|---|---|---|---|
HPSA | IAD | ATA | cAnti-I | cAnti-A | |||
AA | 24.84 ± 0.35 | - | - | - | - | - | - |
Qrc | 69.25 ± 1.82 | - | - | - | - | - | - |
Ibu | - | 81.50 ± 4.95 | 259.82 ± 9.14 | 1.11 ± 0.010 | 3.72 | 0.903 | 0.573 |
Ket | - | 126.58 ± 5.00 | 720.57 ± 19.78 | 1.54 ± 0.015 | 3.59 | 0.925 | 0.469 |
H1 | 112.55 ± 2.32 | 90.23 ± 0.32 | 631.03 ± 41.88 | 1.04 ± 0.015 | 4.47 | 0.565 | - |
H2 | 103.76 ± 2.61 | 77.38 ± 0.55 | 270.36 ± 20.85 | 1.33 ± 0.015 | 5.78 | 0.526 | - |
H3 | 98.06 ± 7.17 | 92.08 ± 1.21 | 263.00 ± 14.48 | 1.14 ± 0.015 | 4.96 | 0.505 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manolov, S.; Ivanov, I.; Bojilov, D. Synthesis of New 1,2,3,4-Tetrahydroquinoline Hybrid of Ibuprofen and Its Biological Evaluation. Molbank 2022, 2022, M1350. https://doi.org/10.3390/M1350
Manolov S, Ivanov I, Bojilov D. Synthesis of New 1,2,3,4-Tetrahydroquinoline Hybrid of Ibuprofen and Its Biological Evaluation. Molbank. 2022; 2022(1):M1350. https://doi.org/10.3390/M1350
Chicago/Turabian StyleManolov, Stanimir, Iliyan Ivanov, and Dimitar Bojilov. 2022. "Synthesis of New 1,2,3,4-Tetrahydroquinoline Hybrid of Ibuprofen and Its Biological Evaluation" Molbank 2022, no. 1: M1350. https://doi.org/10.3390/M1350
APA StyleManolov, S., Ivanov, I., & Bojilov, D. (2022). Synthesis of New 1,2,3,4-Tetrahydroquinoline Hybrid of Ibuprofen and Its Biological Evaluation. Molbank, 2022(1), M1350. https://doi.org/10.3390/M1350