3-[(1*H*-Benzo[*d*][1,2,3]triazol-1-yl)oxy]propyl 9-hydroxy-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)icosahydro-3a*H*-cyclopenta[*a*]chrysene-3a-carboxylate

Jiang Ai¹, Margrate Anyanwu², Leong Ka Fai¹, Li Jinxin¹, Alessandra Gianoncelli², Paolo Coghi^{1,*} and Giovanni Ribaudo^{2,*}

- ¹ School of Pharmacy, Macau University of Science and Technology, Macau, China; 1809853jpa11002@student.must.edu.mo (J.A.); 1809853apa11006@student.must.edu.mo (L.K.F.); 17098537@student.must.edu.mo (L.J.)
- ² Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy; margrate.anyanwu@unibs.it (M.A.); alessandra.gianoncelli@unibs.it (A.G.)
- * Correspondence: giovanni.ribaudo@unibs.it (G.R.); coghips@must.edu.mo (P.C.); Tel.: +853-68145596 (P.C.)

Supplementary Material

Table of content

NMR spectrometry
Figure S1. ¹ H NMR spectrum (CDCl3, 600 MHz) of Betulinic acid (BA)4
Figure S2. ¹³ C NMR spectrum (CDCl3, 150 MHz) of Betulinic acid (BA)
Figure S3. ¹ H NMR spectrum (CDCl₃, 600 MHz) of compound 26
Figure S4. ¹³ C NMR spectrum (CDCl ₃ , 150 MHz) of compound 27
Figure S5. ¹ H NMR spectrum (CDCl₃, 600 MHz) of compound 38
Figure S5a. Expanded view of ¹ H NMR spectrum (CDCl ₃ , 150 MHz) of compound 39
Figure S6. ¹³ C NMR spectrum (CDCl ₃ , 150 MHz) of compound 310
Figure S6a. Expanded view of ¹³ C NMR spectrum (CDCl ₃ , 150 MHz) of compound 311
Figure S7. HSQC spectrum (CDCl ₃ , 600 MHz) of compound 312
Figure S7a. Expanded view of HSQC spectrum (CDCl3, 600 MHz) of compound 313
Table S1. ¹ H and ¹³ C-nuclear magnetic spectroscopy (NMR) chemical shifts and the structure of 3. [1,2]
Figure S8. DEPT-135 spectrum (CDCl3, 600 MHz) of compound 316
Figure S9. DEPT-90 spectrum (CDCl3, 600 MHz) of compound 317
Mass spectrometry
Figure S10. Mass spectrum and UPLC-UV chromatogram (254 nm) of compound 318
IR spectrometry
Figure S11. IR spectrum (KBr) of compound 319
UV-VIS spectrometry
Figure S12. UV spectrum of compound 3 (range 200-400 nm in CH ₂ Cl ₂)20
Computational studies
Figure S13. Interaction of PF-04447943 with PDE9A21
Figure S14. Interaction of compound 3 with PDE9A22
Figure S15. Residues interacting with compound 323
Table S2. Interactions of PF-04447943 and compound 3 with PDE9A24
Table S3. Physico-chemical properties of compound 3 calculated by SwissADME
REFERENCES

NMR spectrometry

Figure S2. ¹³C NMR spectrum (CDCl₃, 150 MHz) of Betulinic acid (**BA**).

Figure S3. ¹H NMR spectrum (CDCl₃, 600 MHz) of compound **2**.

Figure S4. 13 C NMR spectrum (CDCl₃, 150 MHz) of compound **2**.

Figure S5. ¹H NMR spectrum (CDCl₃, 600 MHz) of compound **3**.

(Traces: MeOH at δ 3.5, water at δ 1.6, $CH_2Cl_2\,\delta$ 5.3)

Figure S5a. Expanded view of ¹H NMR spectrum (CDCl₃, 150 MHz) of compound **3**.

Figure S6. 13 C NMR spectrum (CDCl₃, 150 MHz) of compound **3**.

Figure S6a. Expanded view of 13 C NMR spectrum (CDCl₃, 150 MHz) of compound **3**.

Figure S7. HSQC spectrum (CDCl₃, 600 MHz) of compound $\mathbf{3}$.

Table S1. ¹H and ¹³C-nuclear magnetic spectroscopy (NMR) chemical shifts and the structure of **3**. [1,2]

¹ H 3	¹³ C 3	Assignment 3	¹ H BA ²	¹³ C BA ¹
0.96	14.6	C-27 (CH₃)	0.96	15
0.75	15.3	C-24 (CH₃)	0.73	15.5
0.79	15.9	C-25 (CH₃)	0.80	16.4
0.86	16.1	C-26 (CH₃)	0.91	16.7
1.35 - 1.37	18.2	C-6 (CH ₂)	1.50 (6a)	18.4
1.68	19.4	C-29 (CH₃)	1.67	19.6
1.38	20.8	C-11 (CH ₂)	1.37 (11a)	21
1.03	25.5	C12 (CH ₂)	1.04 (12a)	25.7
1.49	27.4	C-2 (CH ₂)	1.52 (2a)	27.6
2.22	27.8	C-8' (CH ₂)		
0.95	27.9	C-23 (CH₃)	0.95	27.9
1.14 - 1.16	29.7	C-15 (CH ₂)	1.14 (15a)	30.2
1.84 - 1.91	30.6	C-21 (CH ₂)	1.99 (21a)	30.6
1.25 - 1.27	32.1	C-16 (CH ₂)	1.27	32.9
1.30 -1.33	34.3	C-7 (CH ₂)	1.35 (7a)	34.5
1.89	37	C-22 (CH ₂)	1.96 (22a)	37
	37.1	C-10		37.3
2.18-2.21	38.3	C-13 (CH)	2.20	38.1
1.64	38.7	C-1 (CH ₂)	1.64 (1a)	39
	38.8	C-4		39.1
	40.7	C-8		40.8
	42.4	C-14		42.5
2.97 - 3.02	46.9	C-19 (CH)	3	49.2
1.62	49.4	C-18 (CH)	1.61	48.1
1.25	50.5	C-9 (CH)	1.25	50.7
0.66	55.3	C-5 (CH)	0.66	55.5
	56.6	C-17		47.1
4.35 - 4.43	59.8	C-7'(CH2)		
4.66	77.4	C-9'(CH2)		
3.18	78.9	C-3 (CH-OH)	3.17	78.2
7.59	108.5	C-4'(H _{aromat})		
4.60 br - 4.72 br	109.7	C-30 (CH ₂ =)	4.58 - 4.61	108.9
8.02	120.3	C-1'(H _{aromat})		
7.39	124.7	C-3' (Haromat)		
	127.2	C-5' (aromat)		
7.51	128.1	C-2' (Haromat)		
	143.5	C-6' (aromat)		
	150.3	C-20 (C=)		150.1
	175 0	CO (C28)		180 2/COOH)

Figure S8. DEPT-135 spectrum (CDCl₃, 600 MHz) of compound $\mathbf{3}$.

Figure S9. DEPT-90 spectrum (CDCl₃, 600 MHz) of compound **3**.

Mass spectrometry

Figure S10. Mass spectrum and UPLC-UV chromatogram (254 nm) of compound 3.

Mass spectrum and UPLC-UV chromatogram (254 nm) of compound **3**. The spectrum was recorded in positive ionization mode (ESI). Analysis was performed using a solvent mixture containing acetonitrile/water at a flow rate of 0.5 mL/min. The mobile phase was isocratic (water + 0.01% TFA; CH₃CN).

IR spectrometry

No.	Peak	Intensity	Corr.	Page (III)	Base (L)	Area	Corr. Area	Area color	Comment
			Intensity	base (n)					
1	285.46	89.77	576.34	324.04	262.32	-23909.630	15263.344	Auto	
2	347.19	10.41	755.12	408.91	324.04	-3441.928	35829.170	Auto	
3	1373.32	755.75	66.07	1427.32	1334.74	-64856.682	2401.745	Auto	
4	1450.47	787.98	97.09	1504.48	1427.32	-58748.637	3401.013	Auto	
5	1689.64	896.30	324.51	1820.80	1666.50	-168804.006	12424.150	Auto	
6	2870.08	1161.45	63.27	2885.51	2546.04	-455266.402	-24275.586	Auto	
7	2939.52	896.47	360.74	3039.81	2885.51	-157318.701	24351.645	Auto	
8	3448.72	1121.83	15.15	3471.87	3433.29	-39694.826	302.169	Auto	
9	3549.02	1047.86	165.47	3603.03	3495.01	-113152.742	7102.857	Auto	

() SHIMADZU

UV-VIS spectrometry

Figure S12. UV spectrum of compound **3** (range 200-400 nm in CH₂Cl₂)

Spectrum Peak Pick Report

06/02/2022 04:47:35 PM

Data Set: betulinic acid derivative - RawData

Computational studies

Figure S13. Interaction of PF-04447943 with PDE9A Artworks were made with Chimera [3].

Figure S14. Interaction of compound **3** with PDE9A Artworks made with Chimera [3].

Figure S15. Residues interacting with compound **3**

Interactions are depicted with different colours, as reported in the following: π - π interactions (green dashed line), hydrogen bond (blue line), and hydrophobic interaction (grey dotted line) [4].

Table S2. Interactions of PF-04447943 and compound **3** with PDE9A

	Hydrophobic interactions	Pi-stacking interactions (centdist)	Hydrogen bonds
PF-04447943	PF-04447943 Ile403 (3.95 Å) Ph Val417 (3.87 Å) Ph Phe456 (3.99 Å) Ph		Tyr424 (2.37/2.98Å) Gln453 (2.06/3.01 Å)
compound 3	Asn300 (3.42 Å) Met365 (3.66 Å) Ile403 (3.63 Å) Tyr424 (3.98 Å) Tyr424 (3.76 Å) Phe441 (3.83 Å) Phe441 (3.65 Å) Phe441 (3.72 Å) Phe456 (3.69 Å) Phe456 (3.12 Å) Phe456 (3.88 Å) Val460 (3.66 Å)	Phe251 (5.24 Å)	Gln453 (2.91/3.86 Å)

Interactions achieved with Protein-Ligand Interaction Profiler tool (PLIP) [4].

Table S3. Physico-chemical properties of compound **3** calculated by SwissADME Physico-chemical properties of compound **3** were obtained with SwissADME [5].

	MW	HBA	HBD	TPSA	nRtB
Compound 3	631.89 g/mol	6	1	86.74 Å	8

REFERENCES

1. Chirchir, K.D.; Cheplogoi, K.P.; Omolo, O.J.; Langat, K.M. Chemical Constituents of *Solanum Mauense* (Solanaceae) and *Dovyalis Abyssinica* (Salicaceae). *Int. J. Bio. Chem. Sci* **2018**, *12*, 999, doi:10.4314/ijbcs.v12i2.29.

2. Noviany; Osman, H. Structure Elucidation of Betulinic Acid from *Sesbania Grandiflora* Root. *J. Phys.: Conf. Ser.* **2021**, *1751*, 012090, doi:10.1088/1742-6596/1751/1/012090.

3. Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera?A Visualization System for Exploratory Research and Analysis. *J. Comput. Chem.* **2004**, *25*, 1605–1612, doi:10.1002/jcc.20084.

4. Adasme, M.F.; Linnemann, K.L.; Bolz, S.N.; Kaiser, F.; Salentin, S.; Haupt, V.J.; Schroeder, M. PLIP 2021: Expanding the Scope of the Protein–Ligand Interaction Profiler to DNA and RNA. *Nucleic Acids Research* **2021**, *49*, W530–W534, doi:10.1093/nar/gkab294.

5. Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. *Sci Rep* **2017**, *7*, 42717, doi:10.1038/srep42717.