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Abstract: 1-(4-Fluorobenzoyl)-9H-carbazole (1) was synthesized, starting from 9H-carbazole and
4-fluorobenzonitrile, by Friedel–Crafts acylation, using boron trichloride to direct the substitution in
1-position. Single-crystal X-ray diffraction analysis unambiguously revealed the molecular structure
of 1.
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1. Introduction

9H-Carbazole, an aromatic three-membered heterocycle, is a structural motif that is
present in several bioactive natural compounds [1]. Thus, methods for the synthesis and
functionalization of this heterocycle are important.

In general, access to 1-aroyl-substituted carbazoles was reported, using lithiation as
a key step [2], a Suzuki–Miyaura type coupling reaction starting from 1-(9H-carbazole)-
boronic acid [3], and ruthenium-catalyzed [4,5] or photochemical [6] rearrangements.
The Friedel–Crafts reaction between carbazole and benzoyl chloride was utilized, but
resulted in a mix of four benzoylated products with 3,6-di-benzoyl-9H-carbazole as the main
product [7]. Recently, intramolecular cyclization using metal-free CH-bond activation [8] or
palladium-catalyzed oxidative acylations [9], leading to N-pyridinyl-protected carbazoles,
was reported, offering access to 1-aroyl-substituted carbazoles after deprotection.

Based on our interest in the development of 18F-labeled COX-2 inhibitors [10–12], we
were interested in using 1-(4-fluorobenzoyl)-9H-carbazole (1) as a building block to design
a new class of cyclooxygenase-2 inhibitors. We decided to utilize BCl3-mediated Friedel–
Crafts acylation for the synthesis of 1, because the use of BCl3 allows for the selective
ortho-benzoylation of primary and secondary aromatic amines and has been successfully
used in the synthesis of 1-cyano- and 1-alkylthiocarbonyl-substituted 9H-carbazoles [13].
Herein, we report the synthesis and structural characterization of 1.

2. Results and Discussion

In analogy to a procedure described by Lo et al. [14], 1 was successfully synthesized by
BCl3-mediated Friedel–Crafts acylation, starting from 9H-carbazole and 4-fluorobenzonitrile
(Scheme 1). The reaction mechanism is suggested to follow the mechanism known in the
literature, which involves (1) the formation of 9-(dichloroboryl)-9H-carbazole and, sub-
sequently, a six-membered complex with the nitrile group of 4-fluorobenzonitrile; (2) the
Friedel–Crafts reaction, which leads to 1-aroylation due to the spatial proximity; (3) hy-
drolysis of the ketimine with HCl [15]. This gave 1 as a crude product, which was purified
by column chromatography and finally isolated with a 38% yield. Crystals suitable for
single-crystal X-ray diffraction experiments were isolated and analyzed.
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Scheme 1. Synthesis of 1-(4-fluorobenzoyl)-9H-carbazole (1).

The molecular structure of 1 is shown in Figure 1. A moderate intramolecular
N1−H···O1 hydrogen bonds with a donor-acceptor distance of 3.055(1) Å causes the
orientation of the carbonyl moiety to almost occur in a plane with the carbazole moiety.
The fluoro-substituted phenyl ring is twisted out of the plane of the carbazole moiety with
a dihedral angle of 54.9◦.
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Figure 1. Molecular structure (ORTEP plot at 50% probability) of compound 1.

In the plane (0,0,1), the molecules are packed in chains along the a-axis, which are
oriented anti-parallel, in the direction [0,0,1]. This is due to the intermolecular N1−H···O1
hydrogen bonds between the carbonyl and amine groups with D···A = 3.056(1) Å) and
π···π-interactions. Further weak hydrogen bonds between fluorine and the C5−H group
of the neighboring phenyl ring at a D···A distance of 3.397(1) Å cause binding along the
b-axis. The weak interactions are shown in Figure 2 as dashed lines.
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3. Materials and Methods
3.1. General

All commercial reagents and solvents were used without further purification. NMR
spectra were recorded on a Varian Inova-400 and referenced to the residual solvent shifts
for 1H and 13C, and to CFCl3 for 19F spectra as internal standard. J-Values are given in
Hz. Carbazole and phenyl are abbreviated as Ca and Ph, respectively. UPLC-MS was
performed using the following system: column Aquity UPLC® BEH C18 column (Waters,
100 × 2.1 mm, 1.7 µm, 130 Å), UPLC I-Class (Waters, Milford, MA, USA): binary gra-
dient pump BSM, autosampler FTN, column manager CM, and diode array detector
PDAeλ coupled to Waters Xevo TQ-S, flow rate 0.4 mL/min, eluent: (A): 0.1% acetic
acid in MeCN/MeOH 1/1/ (B): 0.1% acetic acid in H2O; gradient: t0 min 45/55-t0.5 min
45/55-t5.5 min 95/5-t7.0 min 95/5-t8.0 min 45/55-t8.5 min 45/55). The crystallographic data
were collected with a Bruker-Nonius APEX-II CCD diffractometer with Mo-Kα radiation
(λ = 0.71073 Å). The structures were solved using SHELXS-14 and refined against F2 for
all data by full-matrix least squares with SHELXL-14 [16,17]. All non-hydrogen atoms
were refined anisotropically; all hydrogen atoms bonded to carbon atoms were placed
on geometrically calculated positions and refined using a riding model. CCDC-2178615
contains the supplementary crystallographic data for this paper. These data can be ob-
tained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html (accessed
on 23 July 2022 or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; E-mail:
deposit@ccdc.cam.ac.uk).

3.2. Synthesis of 1-(4-Fluorobenzoyl)-9H-carbazole (1)

The synthesis followed the procedure described by Lo et al. [14]. Under nitrogen
atmosphere, in this order, carbazole (809.6 mg, purity 95%, 4.6 mmol) in 2.0 mL toluene, 4-
fluorobenzonitrile (676 mg, 5.6 mmol) and anhydrous AlCl3 (676 mg, 5.1 mmol) were added
to a solution of 1 M BCl3 in toluene (5.06 mL, 5.06 mmol). The mixture was heated to reflux
for 18 h. After that, water (0.25 mL) and 10% HCl (5.1 mL) were added at a temperature of
0 ◦C and the mixture was heated to reflux for 2 h. The mixture was cooled to 0 ◦C and the
resulting precipitate was filtered by vacuum filtration. The solid was suspended in 2.5%
NaOH (11.5 mL) and stirred for 1 h at RT. Filtration and drying in vacuo gave the crude
product, which was purified by Dry Column Vacuum Chromatography [18] (MERCK Silica
Gel (mesh size 40–63 µm); 1. PE/ EtOAc 90:10→50:50; fractions containing impurities were
purified with: 2. PE/ EtOAc 100:0→90:10). 1 was obtained as a pale-yellow solid (505 mg,
38%). mp (Galen III (Cambridge Instruments) melting points apparatus (Leica, Vienna,
Austria); uncorrected) 151–153◦C; Rf = 0.35 (Merck silica gel F-254 aluminum plates; PE/
EtOAc 85:15); 1H-NMR (400 MHz, CDCl3): δ = 7.22 (t, 2H, 3J2,3 8.6, 3JH,F 8.6, HPh H3/H5),
7.26* (t, 1H, 3J2,3 7.8, 3J3,4 7.6, HCa H3), 7.32 (t, 1H, 3J5,6 7.9, 3J6,7 7.0, 3J6,8 1.0, HCa H6), 7.51 (t,
1H, 3J7,8 8.1, 3J6,7 7.1, 4J5,7 1.0, HCa H7), 7.58 (d, 1H, 3J7,8 8.1, HCa H8), 7.78 (d, 1H, 3J5,6 7.7,
4J4,6 1.0, HCa H5), 7.85 (dd, 2H, 3J2,3 8.8, 4JH,F 5.4, HPh H2/H6), 8.14 (d, 1H, 3J2,3 7.8, HCa H2),
8.34 (d, 1H, 3J3,4 7.6, HCa H4), 10.47 (br. s., 1 H, NH) ppm, *signal overlay with solvent
signal; 13C-NMR (101 MHz, CDCl3): δ = 111.5 (CH), 115.6 (d, 2JC,F 22, CHPh C3/C5), 118.2
(CH), 118.5 (C), 120.4 (CH), 120.6 (CH), 122.4 (C), 125.3 (C), 126.2 (CH), 126.8 (CH), 130.6
(CH), 132.0 (d, 3JC,F 9, CHPh C2/C6), 135.3 (d, 4JC,F 3, CPh C1), 140.1 (C), 140.3 (C), 165.0 (d,
1JC,F 253, CPh C4), 196.6 (CO) ppm; 19F-NMR (376 MHz, CDCl3): δ = −107.9 ppm; UPLC:
tR = 4.64 min (99%, monitored at 254 nm); MS (ESI+, M calculated for C19H12N3FNO =
289.09) m/z (%): 290.25 (100) [M + H]+. Crystals suitable for X-ray analysis were obtained
by slow evaporation of a solution of 1 in DCM layered with petroleum ether. For copies
of 1H-NMR, 13C-NMR and 19F-NMR spectra, HPLC chromatogram and MS spectrum see
Supplementary Material.
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4. Conclusions

The synthesis of 1-(4-fluorobenzoyl)-9H-carbazole (1) was achieved by BCl3-mediated
Friedel–Crafts acylation which represents a novel and site-specific entry to 1-aroyl-
substituted carbazoles that lack the need to protect aromatic amine before synthesis.

Supplementary Materials: Copies of 1H-NMR, 13C-NMR and 19F-NMR spectra, HPLC chromatogram
and MS spectrum.
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