

Short Note 1-(4-Fluorobenzoyl)-9H-carbazole

Markus Laube ^{1,2,*}, Jonas König ³, Martin Köckerling ³ and Torsten Kniess ¹

- ¹ Department Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
- ² Department of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
- ³ Department of Inorganic Solid-State Chemistry, Institute of Chemistry, University of Rostock,
- Albert-Einstein-Str. 3a, 18059 Rostock, Germany
- * Correspondence: m.laube@hzdr.de

Abstract: 1-(4-Fluorobenzoyl)-9*H*-carbazole (**1**) was synthesized, starting from 9*H*-carbazole and 4-fluorobenzonitrile, by Friedel–Crafts acylation, using boron trichloride to direct the substitution in 1-position. Single-crystal X-ray diffraction analysis unambiguously revealed the molecular structure of **1**.

Keywords: carbazole; Friedel-Crafts acylation; boron trichloride; structure determination

1. Introduction

9H-Carbazole, an aromatic three-membered heterocycle, is a structural motif that is present in several bioactive natural compounds [1]. Thus, methods for the synthesis and functionalization of this heterocycle are important.

In general, access to 1-aroyl-substituted carbazoles was reported, using lithiation as a key step [2], a Suzuki–Miyaura type coupling reaction starting from 1-(9*H*-carbazole)-boronic acid [3], and ruthenium-catalyzed [4,5] or photochemical [6] rearrangements. The Friedel–Crafts reaction between carbazole and benzoyl chloride was utilized, but resulted in a mix of four benzoylated products with 3,6-di-benzoyl-9*H*-carbazole as the main product [7]. Recently, intramolecular cyclization using metal-free CH-bond activation [8] or palladium-catalyzed oxidative acylations [9], leading to *N*-pyridinyl-protected carbazoles, was reported, offering access to 1-aroyl-substituted carbazoles after deprotection.

Based on our interest in the development of ¹⁸F-labeled COX-2 inhibitors [10–12], we were interested in using 1-(4-fluorobenzoyl)-9*H*-carbazole (1) as a building block to design a new class of cyclooxygenase-2 inhibitors. We decided to utilize BCl₃-mediated Friedel–Crafts acylation for the synthesis of 1, because the use of BCl₃ allows for the selective *ortho*-benzoylation of primary and secondary aromatic amines and has been successfully used in the synthesis of 1-cyano- and 1-alkylthiocarbonyl-substituted 9*H*-carbazoles [13]. Herein, we report the synthesis and structural characterization of 1.

2. Results and Discussion

In analogy to a procedure described by Lo et al. [14], 1 was successfully synthesized by BCl₃-mediated Friedel–Crafts acylation, starting from 9*H*-carbazole and 4-fluorobenzonitrile (Scheme 1). The reaction mechanism is suggested to follow the mechanism known in the literature, which involves (1) the formation of 9-(dichloroboryl)-9H-carbazole and, subsequently, a six-membered complex with the nitrile group of 4-fluorobenzonitrile; (2) the Friedel–Crafts reaction, which leads to 1-aroylation due to the spatial proximity; (3) hydrolysis of the ketimine with HCl [15]. This gave 1 as a crude product, which was purified by column chromatography and finally isolated with a 38% yield. Crystals suitable for single-crystal X-ray diffraction experiments were isolated and analyzed.

Citation: Laube, M.; König, J.; Köckerling, M.; Kniess, T. 1-(4-Fluorobenzoyl)-9H-carbazole. *Molbank* 2022, 2022, M1430. https://doi.org/10.3390/M1430

Academic Editor: Kristof Van Hecke

Received: 30 June 2022 Accepted: 16 August 2022 Published: 19 August 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Scheme 1. Synthesis of 1-(4-fluorobenzoyl)-9H-carbazole (1).

The molecular structure of **1** is shown in Figure 1. A moderate intramolecular $N1-H\cdotsO1$ hydrogen bonds with a donor-acceptor distance of 3.055(1) Å causes the orientation of the carbonyl moiety to almost occur in a plane with the carbazole moiety. The fluoro-substituted phenyl ring is twisted out of the plane of the carbazole moiety with a dihedral angle of 54.9°.

Figure 1. Molecular structure (ORTEP plot at 50% probability) of compound 1.

In the plane (0,0,1), the molecules are packed in chains along the *a*-axis, which are oriented anti-parallel, in the direction [0,0,1]. This is due to the intermolecular N1–H···O1 hydrogen bonds between the carbonyl and amine groups with D···A = 3.056(1) Å) and π ··· π -interactions. Further weak hydrogen bonds between fluorine and the C5–H group of the neighboring phenyl ring at a D···A distance of 3.397(1) Å cause binding along the *b*-axis. The weak interactions are shown in Figure 2 as dashed lines.

Figure 2. View of the arrangement of the molecules of **1** in and around the unit cell. Blue dashed lines indicate $\pi \cdots \pi$ -interactions, orange dashed lines the N1–H \cdots O1 hydrogen bonds and red dashed lines the F1 \ldots H–C5 hydrogen bonds.

3. Materials and Methods

3.1. General

All commercial reagents and solvents were used without further purification. NMR spectra were recorded on a Varian Inova-400 and referenced to the residual solvent shifts for ¹H and ¹³C, and to CFCl₃ for ¹⁹F spectra as internal standard. *J*-Values are given in Hz. Carbazole and phenyl are abbreviated as Ca and Ph, respectively. UPLC-MS was performed using the following system: column Aquity UPLC® BEH C18 column (Waters, 100×2.1 mm, 1.7 µm, 130 Å), UPLC *I*-Class (Waters, Milford, MA, USA): binary gradient pump BSM, autosampler FTN, column manager CM, and diode array detector PDAeλ coupled to Waters Xevo TQ-S, flow rate 0.4 mL/min, eluent: (A): 0.1% acetic acid in MeCN/MeOH 1/1/ (B): 0.1% acetic acid in H₂O; gradient: $t_{0 \text{ min}} 45/55-t_{0.5 \text{ min}}$ $45/55-t_{5.5 \text{ min}}$ 95/5- $t_{7.0 \text{ min}}$ 95/5- $t_{8.0 \text{ min}}$ 45/55- $t_{8.5 \text{ min}}$ 45/55). The crystallographic data were collected with a Bruker-Nonius APEX-II CCD diffractometer with Mo-K α radiation ($\lambda = 0.71073$ Å). The structures were solved using SHELXS-14 and refined against F^2 for all data by full-matrix least squares with SHELXL-14 [16,17]. All non-hydrogen atoms were refined anisotropically; all hydrogen atoms bonded to carbon atoms were placed on geometrically calculated positions and refined using a riding model. CCDC-2178615 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html (accessed on 23 July 2022 or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; E-mail: deposit@ccdc.cam.ac.uk).

3.2. Synthesis of 1-(4-Fluorobenzoyl)-9H-carbazole (1)

The synthesis followed the procedure described by Lo et al. [14]. Under nitrogen atmosphere, in this order, carbazole (809.6 mg, purity 95%, 4.6 mmol) in 2.0 mL toluene, 4fluorobenzonitrile (676 mg, 5.6 mmol) and anhydrous AlCl₃ (676 mg, 5.1 mmol) were added to a solution of 1 M BCl₃ in toluene (5.06 mL, 5.06 mmol). The mixture was heated to reflux for 18 h. After that, water (0.25 mL) and 10% HCl (5.1 mL) were added at a temperature of 0 °C and the mixture was heated to reflux for 2 h. The mixture was cooled to 0 °C and the resulting precipitate was filtered by vacuum filtration. The solid was suspended in 2.5% NaOH (11.5 mL) and stirred for 1 h at RT. Filtration and drying in vacuo gave the crude product, which was purified by Dry Column Vacuum Chromatography [18] (MERCK Silica Gel (mesh size 40–63 μ m); 1. PE/ EtOAc 90:10 \rightarrow 50:50; fractions containing impurities were purified with: 2. PE/ EtOAc 100:0-90:10). 1 was obtained as a pale-yellow solid (505 mg, 38%). mp (Galen III (Cambridge Instruments) melting points apparatus (Leica, Vienna, Austria); uncorrected) 151–153°C; $R_f = 0.35$ (Merck silica gel F-254 aluminum plates; PE/ EtOAc 85:15); ¹H-NMR (400 MHz, CDCl₃): δ = 7.22 (t, 2H, ³J_{2,3} 8.6, ³J_{H,F} 8.6, H_{Ph H3/H5}), 1H, ³*J*_{7,8} 8.1, ³*J*_{6,7} 7.1, ⁴*J*_{5,7} 1.0, H_{Ca H7}), 7.58 (d, 1H, ³*J*_{7,8} 8.1, H_{Ca H8}), 7.78 (d, 1H, ³*J*_{5,6} 7.7, ${}^{4}J_{4,6}$ 1.0, H_{Ca H5}), 7.85 (dd, 2H, ${}^{3}J_{2,3}$ 8.8, ${}^{4}J_{H,F}$ 5.4, H_{Ph H2/H6}), 8.14 (d, 1H, ${}^{3}J_{2,3}$ 7.8, H_{Ca H2}), 8.34 (d, 1H, ³*I*₃₄ 7.6, H_{Ca H4}), 10.47 (br. s., 1 H, NH) ppm, *signal overlay with solvent signal; ¹³C-NMR (101 MHz, CDCl₃): δ = 111.5 (CH), 115.6 (d, ²*J*_{C,F} 22, CH_{Ph C3/C5}), 118.2 (CH), 118.5 (C), 120.4 (CH), 120.6 (CH), 122.4 (C), 125.3 (C), 126.2 (CH), 126.8 (CH), 130.6 (CH), 132.0 (d, ³*J*_{C,F} 9, CH_{Ph C2/C6}), 135.3 (d, ⁴*J*_{C,F} 3, C_{Ph C1}), 140.1 (C), 140.3 (C), 165.0 (d, ${}^{1}J_{C,F}$ 253, $C_{Ph C4}$), 196.6 (CO) ppm; 19 F-NMR (376 MHz, CDCl₃): $\delta = -107.9$ ppm; UPLC: $t_{\rm R}$ = 4.64 min (99%, monitored at 254 nm); MS (ESI⁺, M calculated for C₁₉H₁₂N₃FNO = 289.09) m/z (%): 290.25 (100) [M + H]⁺. Crystals suitable for X-ray analysis were obtained by slow evaporation of a solution of 1 in DCM layered with petroleum ether. For copies of ¹H-NMR, ¹³C-NMR and ¹⁹F-NMR spectra, HPLC chromatogram and MS spectrum see Supplementary Material.

4. Conclusions

The synthesis of 1-(4-fluorobenzoyl)-9*H*-carbazole (**1**) was achieved by BCl₃-mediated Friedel–Crafts acylation which represents a novel and site-specific entry to 1-aroyl-substituted carbazoles that lack the need to protect aromatic amine before synthesis.

Supplementary Materials: Copies of ¹H-NMR, ¹³C-NMR and ¹⁹F-NMR spectra, HPLC chromatogram and MS spectrum.

Author Contributions: Conceptualization, M.L.; methodology, M.L.; validation, M.L., J.K., M.K. and J.K.; formal analysis, M.L. and M.K.; investigation, M.L. and J.K.; resources, M.K. and T.K.; data curation, M.L. and M.K.; writing—original draft preparation, M.L.; writing—review and editing, M.L. and M.K.; visualization, M.L. and M.K.; supervision, T.K.; project administration, T.K.; funding acquisition, M.L. and T.K. All authors have read and agreed to the published version of the manuscript.

Funding: The authors are also thankful to the Deutsche Forschungsgemeinschaft (DFG) for supporting this work with the project 'Development of carborane-based COX-2 inhibitors for therapeutic diagnostic applications' (PI 304/7-1; M.L.).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The excellent technical assistance of Uta Lenkeit, Peggy Nehring, and Juliane Meyer is greatly acknowledged.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Roy, J.; Jana, A.K.; Mal, D. Recent trends in the synthesis of carbazoles: An update. Tetrahedron 2012, 68, 6099–6121. [CrossRef]
- Katritzky, A.R.; Rewcastle, G.W.; Vazquez de Miguel, L.M. Improved syntheses of substituted carbazoles and benzocarbazoles via lithiation of the (dialkylamino)methyl (aminal) derivatives. *J. Org. Chem.* 1988, 53, 794–799. [CrossRef]
- 3. Bandgar, B.P.; Patil, A.V. A rapid, solvent-free, ligandless and mild method for preparing aromatic ketones from acyl chlorides and arylboronic acids via a Suzuki–Miyaura type of coupling reaction. *Tetrahedron Lett.* **2005**, *46*, 7627–7630. [CrossRef]
- 4. Wu, J.-Q.; Yang, Z.; Zhang, S.-S.; Jiang, C.-Y.; Li, Q.; Huang, Z.-S.; Wang, H. From Indoles to Carbazoles: Tandem Cp*Rh(III)-Catalyzed C–H Activation/Brønsted Acid-Catalyzed Cyclization Reactions. *ACS Catal.* **2015**, *5*, 6453–6457. [CrossRef]
- Su, X.-X.; Chen, Y.-R.; Wu, J.-Q.; Wu, X.-Z.; Li, K.-T.; Wang, X.-N.; Sun, J.-W.; Wang, H.; Ou, T.-M. Design, synthesis, and evaluation of 9-(pyrimidin-2-yl)-9H-carbazole derivatives disrupting mitochondrial homeostasis in human lung adenocarcinoma. *Eur. J. Med. Chem.* 2022, 232, 114200. [CrossRef] [PubMed]
- Ghosh, S.; Das, T.K.; Datta, D.B.; Mehta, S. Studies on enamides. Part 1: Photochemical rearrangements of N-aroylcarbazoles. *Tetrahedron Lett.* 1987, 28, 4611–4614. [CrossRef]
- Bonesi, S.M.; Erra-Balsells, R. Recent work on the synthesis of 3,6-dibenzoylcarbazole. J. Heterocycl. Chem. 1991, 28, 1035–1038. [CrossRef]
- Antonchick, A.P.; Samanta, R.; Kulikov, K.; Lategahn, J. Organocatalytic, Oxidative, Intramolecular C–H Bond Amination and Metal-free Cross-Amination of Unactivated Arenes at Ambient Temperature. *Angew. Chem. Int. Ed.* 2011, *50*, 8605–8608. [CrossRef] [PubMed]
- Maiti, S.; Burgula, L.; Chakraborti, G.; Dash, J. Palladium-Catalyzed Pyridine-Directed Regioselective Oxidative C-H Acylation of Carbazoles by Using Aldehydes as the Acyl Source. *Eur. J. Org. Chem.* 2017, 2017, 332–340. [CrossRef]
- Laube, M.; Gassner, C.; Sharma, S.K.; Günther, R.; Pigorsch, A.; König, J.; Köckerling, M.; Wuest, F.; Pietzsch, J.; Kniess, T. Diaryl-Substituted (Dihydro)pyrrolo[3,2,1-hi]indoles, a Class of Potent COX-2 Inhibitors with Tricyclic Core Structure. *J. Org. Chem.* 2015, *80*, 5611–5624. [CrossRef] [PubMed]
- 11. Gassner, C.; Neuber, C.; Laube, M.; Bergmann, R.; Kniess, T.; Pietzsch, J. Development of a 18F-labeled Diaryl-Substituted Dihydropyrrolo[3,2,1-hi]indole as Potential Probe for Functional Imaging of Cyclooxygenase-2 with PET. *ChemistrySelect* **2016**, *1*, 5812–5820. [CrossRef]
- Laube, M.; Gassner, C.; Neuber, C.; Wodtke, R.; Ullrich, M.; Haase-Kohn, C.; Löser, R.; Köckerling, M.; Kopka, K.; Kniess, T.; et al. Deuteration versus ethylation–strategies to improve the metabolic fate of an 18F-labeled celecoxib derivative. *RSC Adv.* 2020, 10, 38601–38611. [CrossRef] [PubMed]
- 13. Adachi, M.; Sugasawa, T. Exclusive Ortho Cyanation and Alkylthiocarbonylation of Anilines and Phenols Using Boron Trichloride. *Synth. Commun.* **1990**, *20*, 71–84. [CrossRef]

- 14. Lo, Y.S.; Walsh, D.A.; Welstead, W.J.; Mays, R.P.; Rose, E.K.; Causey, D.H.; Duncan, R.L. Synthesis of 2-amino-3benzoylphenylacetic acid. J. Heterocycl. Chem. 1980, 17, 1663–1664. [CrossRef]
- 15. Walsh, D.A. The Synthesis of 2-Aminobenzophenones. *Synthesis* **1980**, *1980*, 677. [CrossRef]
- 16. Sheldrick, G.M. A short history of SHELX. Acta Cryst. A 2008, 64, 112–122. [CrossRef] [PubMed]
- 17. Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. C 2015, 71, 3–8. [CrossRef] [PubMed]
- 18. Pedersen, D.S.; Rosenbohm, C. Dry Column Vacuum Chromatography. Synthesis 2001, 2001, 2431–2434. [CrossRef]