4,4′-Difluoro-[3,3′-bi(1,2,5-oxadiazole)] 2,2′-Dioxide
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Gasco, A.; Fruttero, R.; Sorba, G.; Di Stilo, A.; Calvino, R. NO Donors: Focus on Furoxan Derivatives. Pure Appl. Chem. 2004, 76, 973–981. [Google Scholar] [CrossRef] [Green Version]
- Fershtat, L.L.; Makhova, N.N. Molecular Hybridization Tools in the Development of Furoxan-Based NO-Donor Prodrugs. ChemMedChem 2017, 12, 622–638. [Google Scholar] [CrossRef]
- Makhova, N.N.; Fershtat, L.L. 5.05-1,2,5-Oxadiazoles. In Comprehensive Heterocyclic Chemistry IV; Elsevier: Amsterdam, The Netherlands, 2022; pp. 190–251. [Google Scholar] [CrossRef]
- Fershtat, L.L.; Zhilin, E.S. Recent Advances in the Synthesis and Biomedical Applications of Heterocyclic NO-Donors. Molecules 2021, 26, 5705. [Google Scholar] [CrossRef]
- Hwang, K.-J.; Kim, S.K.; Shim, S.C. Photochemical Generation of Nitric Oxide from 3,4-Bis-2′-Chlorophenylfuroxan. Chem. Lett. 1998, 27, 859. [Google Scholar] [CrossRef]
- Auricchio, S.; Selva, A.; Truscello, A.M. New Reactions of Furoxans: Formation of Alkynes and Cyclobutaphenanthrenes. Tetrahedron 1997, 53, 17407–17416. [Google Scholar] [CrossRef]
- Seymour, C.P.; Tohda, R.; Tsubaki, M.; Hayashi, M.; Matsubara, R. Photosensitization of Fluorofuroxans and Its Application to the Development of Visible Light-Triggered Nitric Oxide Donor. J. Org. Chem. 2017, 82, 9647–9654. [Google Scholar] [CrossRef] [Green Version]
- Ando, A.; Matsubara, R.; Takazawa, S.; Shimada, T.; Hayashi, M. Fluorofuroxans: Synthesis and Application as Photoinduced Nitric Oxide Donors. Asian J. Org. Chem. 2016, 5, 886–890. [Google Scholar] [CrossRef]
- Larin, A.A.; Shaferov, A.V.; Epishina, M.A.; Melnikov, I.N.; Muravyev, N.V.; Ananyev, I.V.; Fershtat, L.L.; Makhova, N.N. Pushing the Energy-Sensitivity Balance with High-Performance Bifuroxans. ACS Appl. Energy Mater. 2020, 3, 7764–7771. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obruchnikova, N.V.; Rakitin, O.A. 4,4′-Difluoro-[3,3′-bi(1,2,5-oxadiazole)] 2,2′-Dioxide. Molbank 2023, 2023, M1596. https://doi.org/10.3390/M1596
Obruchnikova NV, Rakitin OA. 4,4′-Difluoro-[3,3′-bi(1,2,5-oxadiazole)] 2,2′-Dioxide. Molbank. 2023; 2023(1):M1596. https://doi.org/10.3390/M1596
Chicago/Turabian StyleObruchnikova, Natalia V., and Oleg A. Rakitin. 2023. "4,4′-Difluoro-[3,3′-bi(1,2,5-oxadiazole)] 2,2′-Dioxide" Molbank 2023, no. 1: M1596. https://doi.org/10.3390/M1596
APA StyleObruchnikova, N. V., & Rakitin, O. A. (2023). 4,4′-Difluoro-[3,3′-bi(1,2,5-oxadiazole)] 2,2′-Dioxide. Molbank, 2023(1), M1596. https://doi.org/10.3390/M1596