Supplementary Material:

6,7-Dihydroxy-5,8-dimethoxy-2H-chromen-2-one

Olga I. Adaeva *, Dmitry V. Demchuk and Victor V. Semenov

N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russia

* Correspondence: aoi@ioc.ac.ru; Tel.: +7-499-1356343

Table of contents

Synthesis of 4,7-dimethoxybenzo[d][1,3]dioxol-5-ol (6)	S1
Synthesis of 6-hydroxy-4,7-dimethoxybenzo[d][1,3]dioxole-5-carbaldehyde (7)	S2
Synthesis of 4,9-dimethoxy-6H-[1,3]dioxolo[4,5-g]chromen-6-one (sabandin) (3)	S2
References	S3
Figure S1. ¹ H NMR spectrum of compound 2	S4-S6
Figure S2. ¹³ C NMR spectrum of compound 2	S7-S9
Figure S3.Mass spectrum of compound 2	S10
Figure S4.IR spectrum of compound 2	S11
Figure S5. HRMS spectrum of compound 2	S12
Figure S6. ¹ H NMR spectrum of compound 3	S13-S15
Figure S7. ¹³ C NMR spectrum of compound 3	S16-S18
Figure S8.Mass spectrum of compound 3	S19
Figure S9.IR spectrum of compound 3	S20
Figure S10. HRMS spectrum of compound 3	S21
Figure S11. ¹ H NMR spectrum of compound 6	S22-S24
Figure S12. ¹³ C NMR spectrum of compound 6	S25-S27
Figure S13.Mass spectrum of compound 6	S28
Figure S14. ¹ H NMR spectrum of compound 7	S29-S30
Figure S15. ¹³ C NMR spectrum of compound 7	S31-S33
Figure S16.Mass spectrum of compound 7	S34

Synthesis of 4,7-dimethoxybenzo[d][1,3]dioxol-5-ol (6)

described procedure [1]. A Synthesized according to the mixture of of 4,7dimethoxybenzo[d][1,3]dioxole-5-carbaldehyde 4 (29.43 g, 140 mmol), SeO2 (0.466 g, 4.2 mmol, 3 mol%) and 280 mL of t-BuOH were placed in a 500-mL round-bottom flask. Next, H2O2 (solution 37%, 23.2 mL, 280 mmol) was added at 50 °C. After 20 minutes the precipitate dissolves, a reddish solution is formed. The reaction mixture was stirred at 50 °C for 2.5 hours. After that, the reaction mixture was cooled in an icewater bath, Na₂SO₃ (17.65 g, of 140 mmol) in 70 mL of water at 20-22 °C were added, forming an orange solution with a precipitate. Most of the t-BuOH was evaporated in vacuo and 200 mL of water and 100 mL of EtOAc was added. The organic layer was separated, the aqueous layer was extracted with ethyl acetate (2 × 100 and 2 × 50 mL). The organic phases were combined, washed with water (50 mL) and saturated NaCl solution (50 mL), dried, and evaporated in vacuo. To red-gray crystals of the intermediate formylphenol (30.79 g, 97% yield) 300 mL of methanol was added. Formed red solution with precipitate was cooled in an ice-water bath, then Et₃N (19.5 mL, 140 mmol) were added. The color of the mixture changed from red to purple, the mixture was stirred for 45 minutes at 20 °C. After stirring, the mixture was evaporated to dry and 100 mL of CH₂Cl₂ and 105 mL of 2M HCl solution (210 mmol) were added. The yellow aqueous layer was separated and extracted with CH₂Cl₂ (2 × 30 mL). The red organic layer was extracted with 2M NaOH solution (210 mmol, 105 mL). Black aqueous layer was washed with 30 mL CH₂Cl₂, combined organic layers extracted with water 30 mL Then, 22 mL of 11 M HCl solution (242 mmol) and 50 mL of CH2Cl2 were added to the alkaline aqueous layer, which turned red. The organic layer was separated, the aqueous layer was

extracted with CH₂Cl₂ (3 × 50 mL). The organic phases were combined, dried, and evaporated in vacuo, 26.83 g 97% of brown crystalline residue was obtained. The product was purified by eluting through short 90 g SiO₂ column (CH₂Cl₂, R=0.46) to afford 24.09 g of **6**, yield 87%.

4,7-Dimethoxybenzo[d][1,3]dioxol-5-ol (6): colorless crystals (CH₂Cl₂); mp 84–86 °C (Lit. 84-85 °C (MeOH) [2]); ¹H NMR δ 8.94 (1H, br s, OH), 6.08 (1H, s, H-6), 5.87 (2H, s, OCH₂O), 3.72 (3H, s, OCH₃), 3.71 (3H, s, OCH₃); ¹³C NMR δ 145.0 (C, C-5), 139.7 (C, C-7), 138.4 (C, C-3a), 128.2 (C, C-7a), 126.9 (C, C-4), 101.0 (C, C-2), 95.4 (CH, C-6), 60.1 (CH₃), 56.3 (CH₃).

Synthesis of 6-hydroxy-4,7-dimethoxybenzo[d][1,3]*dioxole-5-carbaldehyde* (7)

Synthesized according to the modified literature method [2].

1. Preparation of the formylation mixture: A mixture of PCl_5 (32.7 g, 157 mmol), ethyl formate (12.96 g, 175 mmol) and 200 mL of CH₂Cl₂ were placed into a 500 mL round bottom flask. The reaction mixture was refluxed with a calcium chloride tube for 2 hours. A solution of dichloromethyl methyl ether (157 mmol) was obtained

2. Formylation: To a solution of **6** (19.82 g, 100 mmol) in 260 mL of CH₂Cl₂ placed in a 1000-mL roundbottom flask, SnCl₄ (104 g, 400 mmol) were added dropwise at 10 °C. At the start of the addition the temperature rose, the color of the solution turns yellow and yellow precipitate falls off. The reaction mass was stirred with cooling for 30 minutes, and then the formylation mixture prepared above was added dropwise at 5-10 °C, slow heating of the mixture was observed and precipitate dissolved. After the addition was completed, the red solution was stirred for 3 hours at 20 °C. After that, the solution was poured into 380 g of ice, the organic layer was separated, the aqueous layer was extracted with CH₂Cl₂ (6 × 50 mL). The organic phases were combined, dried, and evaporated in vacuo to yield 22.80 g (101%) of brown solid. The product was purified by recrystallization from 230 mL EtOH to give a 20.36 g of 7, 90% yield.

6-Hydroxy-4,7-dimethoxybenzo[d][1,3]dioxole-5-carbaldehyde (7): yellow crystals (EtOH) ; mp 132–133 °C (Lit. 125-127 °C [2]); ¹H NMR δ 12.43 (1H, br s, OH), 9.95 (1H, s, CHO), 6.09 (2H, s, OCH₂O), 4.00 (3H, s, OCH₃), 3.79 (3H, s, OCH₃); ¹³C NMR δ 192.5 (CHO), 153.6 (C, C-6), 148.2 (C, C-4), 139.1 (C, C-7a), 128.6 (C, C-3a), 126.3 (C, C-7), 107.1 (C, C-5), 102.7 (C, C-2), 60.4 (2 x CH₃).

Synthesis of 4,9-dimethoxy-6H-[1,3]dioxolo[4,5-g]chromen-6-one (sabandin) (3)

Synthesized according to the optimized method [3].

A mixture of 7 (7.55 g, 33,4 mmol) and methyl (triphenylphosphoranylidene)acetate (13.41 g, 40.1 mmol) in N,N-diethylaniline (115 mL) were heated in a 250-mL round-bottom flask under argon at 190 °C for 45 min. Then, the red solution was cooled, N,N-diethylaniline was distilled off in vacuo (0.3 mbar), the residue was diluted with an aqueous solution of HCl (66 mL, 1 M) to acidic pH, extracted with CH₂Cl₂ (3 × 30 mL), solution was dried and evaporated in vacuo. Next, to the brown residue 22.82 g, solution of NaOH (13.36 g, 334 mmol) in CH₃OH (150 mL) and CH₂Cl₂ (100 mL) was added, and the suspension was stirred for 30 minutes at room temperature. Then the mixture was diluted with water (100 mL), the aqueous layer was separated, the organic phase was extracted with water (3 x 75 mL) Aqueous phases were combined, washed with CH₂Cl₂ (100 mL) and acidified with 35 mL 11 M HCl (385 mmol). The precipitate was filtered off, washed with water, and dried in a vacuum to obtain 7.56 g of **3**, 90% yield. An analytical sample was crystallized from MeOH.

4,9-Dimethoxy-6H-[1,3]dioxolo[4,5-g]chromen-6-one (sabandin) (**3**): brownish crystals (MeOH); mp 146–147 °C (Lit. 131–133 °C [3], 143–145 °C [4]); ¹H NMR δ 7.94 (1H, d, *J* = 9.7 Hz, H-4), 6.26 (1H, d, *J* = 9.7 Hz, H-3), 6.13 (2H, s, OCH₂O), 3.99 (3H, s, OCH₃), 3.90 (3H, s, OCH₃); ¹³C NMR δ 159.7 (C, C-6), 142.93 (C, C-9), 142.90 (C, C-4a), 139.1 (C, C-8), 133.2 (CH, C-3a), 132.9 (C, C-9a), 126.3 (C, C-4), 112.0 (C, C-7), 106.5 (CH, C-8a), 102.8 (C, C-2), 60.7 (CH₃), 60.3 (CH₃).

References

- Asakawa, T.; Sagara, H.; Kanakogi, M.; Hiza, A.; Tsukaguchi, Y.; Ogawa, T.; Nakayama, M.; Ouchi, H.; Inai, M.; Kan, T. Practical Synthesis of Polymethylated Flavones: Nobiletin and Its Desmethyl Derivatives. *Org. Process Res. Dev.* 2019, *23*, 595-602, doi:10.1021/acs.oprd.9b00091.
- 2. Tsyganov, D.V.; Chernysheva, N.B.; Salamandra, L.K.; Konyushkin, L.D.; Atamanenko, O.P.; Semenova, M.N.; Semenov, V.V. Synthesis of polyalkoxy-3-(4-methoxyphenyl)coumarins with antimitotic activity from plant allylpolyalkoxybenzenes. *Mendeleev Commun.* **2013**, 23, 147-149, doi:10.1016/j.mencom.2013.05.009.
- Maes, D.; Vervisch, S.; Debenedetti, S.; Davio, C.; Mangelinckx, S.; Giubellina, N.; De Kimpe, N. Synthesis and structural revision of naturally occurring ayapin derivatives. *Tetrahedron* 2005, *61*, 2505-2511, doi:10.1016/j.tet.2004.12.061.
- 4. Murray, R.D. The naturally occurring coumarins. In *Fortschr. Chem. Org. Naturst.*, 2002/03/15 ed.; Herz, W., Falk, H., Kirby, G.W., Moore, R.E., Eds.; Springer-Verlag Wien, 2002; Volume 83, pp. 1-619.

Figure S1. ¹H NMR spectrum of 6,7-dihydroxy-5,8-dimethoxy-2H-chromen-2-one (2).

Figure S1. ¹H NMR spectrum of 6,7-dihydroxy-5,8-dimethoxy-2H-chromen-2-one (2).

C Zelinsky Institute of Organic Chemistry, Moscow; Bruker DRX500 SF=500.13 MHz {1H} SI=16K SW=10000 O1=4006 PW=10.6 AQ=1.631 RD=0.00 NS=1 SR=-1.93 TE=294K 3 June 2021 Opr: Strelenko Yu.A.; Solv: DMSO-d6; (NMR/29317936)

page 3 of 3

#	Address	Freq	uency	Intensity
	[points]	[Hz]	[ppm]	[cm]
1	8222.8	3988.938	7.9758	2.75
2	8238.5	3979.363	7.9567	2.69
3	9662.6	3110.170	6.2187	2.74
4	9678.2	3100.644	6.1997	2.80
5	11615.4	1918.282	3.8356	0.29
6	11619.3	1915.914	3.8308	0.21
7	11637.8	1904.589	3.8082	16.00
8	11642.7	1901.611	3.8022	15.72
9	11977.9	1697.030	3.3932	0.54
10	12695.2	1259.199	2.5177	1.11
11	12697.8	1257.630	2.5146	1.45
12	13901.1	523.191	1.0461	0.52
13	13911.1	517.089	1.0339	0.51

Figure S2. ¹³C NMR spectrum of 6,7-dihydroxy-5,8-dimethoxy-2H-chromen-2-one (2).

Figure S2. ¹³C NMR spectrum of 6,7-dihydroxy-5,8-dimethoxy-2H-chromen-2-one (2).

Figure S2. ¹³C NMR spectrum of 6,7-dihydroxy-5,8-dimethoxy-2H-chromen-2-one (2).

© Zelinsky Institute of Organic Chemistry, Moscow; Bruker DRX500 SF=125.76 MHz {13C} SI=64K SW=31443 O1=13259 PW=8.0 AQ=0.519 RD=1.00 NS=49 SR=54.53 TE=294K 3 June 2021 Opr: Strelenko Yu.A.; Solv: DMSO-d6; (NMR/29317936)

page 3 of 3

#	Address	Fre	quency	Intensity
	[points]	[Hz]	[ppm]	[cm]
1	18320.6	20136.988	160.1251	4.48
2	22350.6	18203.227	144.7482	4.87
3	23358.6	17719.543	140.9021	3.02
4	23688.2	17561.418	139.6447	7.98
5	23763.7	17525.182	139.3566	2.93
6	24733.9	17059.613	135.6545	4.91
7	25894.4	16502.768	131.2265	2.57
8	31107.0	14001.595	111.3377	8.50
9	32693.6	13240.282	105.2840	4.09
10	44178.7	7729.318	61.4619	5.46
11	44317.5	7662.729	60.9324	5.52
12	49804.5	5029.853	39.9963	2.34
13	49848.0	5008.961	39.8302	5.97
14	49891.7	4988.002	39.6636	12.08
15	49935.5	4966.978	39.4964	14.00
16	49979.5	4945.886	39.3286	11.77
17	50022.9	4925.054	39.1630	5.84
18	50066.7	4904.028	38.9958	1.82

Figure S3. Mass spectrum of 6,7-dihydroxy-5,8-dimethoxy-2H-chromen-2-one (2).

File : C:\MSDCHEM\1\DATA\BA2317.D Operator : victor Acquired : 03 Jun 2021 11:32 using AcqMethod victor.M Instrument : INCOS Sample Name: NMR/29317936 Misc Info : Vial Number: 1

Figure S6. ¹H NMR spectrum of 4,9-dimethoxy-6H-[1,3]dioxolo[4,5-g]chromen-6-one (3).

Figure S6. ¹H NMR spectrum of 4,9-dimethoxy-6H-[1,3]dioxolo[4,5-g]chromen-6-one (3).

Czelinsky Institute of Organic Chemistry, Moscow; Bruker AV600 SF=600.13 MHz {1H} SI=32K SW=12019 O1=4809 PW=12.0 AQ=0.676 RD=0.00 NS=1 SR=-6.20 TE=298K 21 December 2020 Opr: Strelenko Yu.A.; Solv: DMSO-d6; (NMR/29317665)

page 3 of 3

#	Address	Frequency		Intensity
	[points]	[Hz]	[ppm]	[cm]
1	16480.1	4780.328	7.9655	2.76
2	16506.6	4770.621	7.9493	2.69
3	19236.6	3769.268	6.2808	2.81
4	19263.0	3759.580	6.2646	2.68
5	19450.5	3690.788	6.1500	9.79
6	22962.0	2402.797	4.0038	15.65
7	23096.2	2353.539	3.9217	16.00
8	24008.8	2018.833	3.3640	12.95
9	25393.0	1511.103	2.5180	1.68
10	29512.7	0.002	0.0000	1.14

Figure S7. ¹³C NMR spectrum of 4,9-dimethoxy-6H-[1,3]dioxolo[4,5-g]chromen-6-one (3).

Figure S7. ¹³C NMR spectrum of 4,9-dimethoxy-6H-[1,3]dioxolo[4,5-g]chromen-6-one (3).

Figure S7. ¹³C NMR spectrum of 4,9-dimethoxy-6H-[1,3]dioxolo[4,5-g]chromen-6-one (3).

Czelinsky Institute of Organic Chemistry, Moscow; Bruker AV600 SF=150.90 MHz {13C} SI=32K SW=39058 O1=17971 PW=12.0 AQ=0.418 RD=1.00 NS=41 SR=66.53 TE=298K 21 December 2020 Opr: Strelenko Yu.A.; Solv: DMSO-d6; (NMR/29317665)

page 3 of 3

#	Address	ldress Frequency		Intensity
	[points]	[Hz]	[ppm]	[cm]
1	11193.6	24091.703	159.6504	2.09
2	13310.2	21568.439	142.9293	1.64
3	13314.4	21563.516	142.8967	1.43
4	13773.8	21015.777	139.2669	0.69
5	13796.8	20988.406	139.0855	12.28
6	14543.8	20097.967	133.1848	1.51
7	14576.0	20059.500	132.9299	1.32
8	15408.4	19067.258	126.3545	0.82
9	17237.0	16887.383	111.9090	13.92
10	17920.7	16072.348	106.5079	2.19
11	18389.7	15513.189	102.8025	14.00
12	23720.6	9158.369	60.6905	4.26
13	23765.0	9105.358	60.3392	6.43
14	26346.2	6028.355	39.9486	0.97
15	26364.1	6007.000	39.8071	2.91
16	26381.6	5986.164	39.6690	5.45
17	26399.1	5965.265	39.5305	6.38
18	26416.7	5944.259	39.3913	5.55
19	26434.4	5923.263	39.2522	2.77
20	26451.4	5903.001	39,1179	0.99

Figure S8. Mass spectrum of 4,9-dimethoxy-6H-[1,3]dioxolo[4,5-g]chromen-6-one (3).

File : C:\MSDCHEM\1\DATA\BA2131.D Operator : victor Acquired : 24 Dec 20 15:17 using AcqMethod victor.M Instrument : INCOS Sample Name: NMR/29317665 Misc Info : Vial Number: 1

(NMR/29317665) Display Report

Figure S11. ¹H NMR spectrum of 4,7-dimethoxybenzo[d][1,3]dioxol-5-ol (6).

Figure S11. ¹H NMR spectrum of 4,7-dimethoxybenzo[d][1,3]dioxol-5-ol (6).

Figure S11. ¹H NMR spectrum of 4,7-dimethoxybenzo[d][1,3]dioxol-5-ol (6).

© Zelinsky Institute of Organic Chemistry, Moscow; Bruker DRX500 SF=500.13 MHz {1H} SI=16K SW=10000 O1=4006 PW=10.6 AQ=1.631 RD=0.00 NS=1 SR=3.61 TE=297K 23 December 2021 Opr: Strelenko Yu.A.; Solv: DMSO-d6; (NMR/29330166)

page 3 of 3

#	Address	Freq	Frequency	
	[points]	[Hz]	[ppm]	[cm]
1	7421.6	4472.413	8.9425	0.94
2	9765.8	3041.657	6.0817	5.10
3	9933.5	2939.296	5.8771	10.17
4	11630.3	1903.636	3.8063	0.26
5	11636.5	1899.862	3.7987	0.28
6	11698.1	1862.249	3.7235	15.97
7	11704.3	1858.469	3.7160	16.00
8	12007.2	1673.619	3.3464	7.26
9	12697.4	1252.361	2.5041	2.60

Figure S12. ¹³C NMR spectrum of 4,7-dimethoxybenzo[d][1,3]dioxol-5-ol (6).

Figure S12. ¹³C NMR spectrum of 4,7-dimethoxybenzo[d][1,3]dioxol-5-ol (6).

Figure S12. ¹³C NMR spectrum of 4,7-dimethoxybenzo[d][1,3]dioxol-5-ol (6).

© Zelinsky Institute of Organic Chemistry, Moscow; Bruker DRX500 SF=125.76 MHz {13C} SI=64K SW=31443 O1=13259 PW=8.0 AQ=0.519 RD=1.00 NS=90 SR=54.53 TE=297K 23 December 2021 Opr: Strelenko Yu.A.; Solv: DMSO-d6; (NMR/29330166)

page 3 of 3

#	Address	Free	Frequency	
	[points]	[Hz]	[ppm]	[cm]
1	22289.0	18232.764	144.9831	6.58
2	23672.8	17568.809	139.7035	3.07
3	24011.4	17406.305	138.4113	4.08
4	26678.0	16126.793	128.2369	2.28
5	27021.8	15961.798	126.9249	2.12
6	33799.6	12709.579	101.0639	12.78
7	35276.5	12000.894	95.4286	9.65
8	44523.1	7564.057	60.1478	5.77
9	45510.2	7090.404	56.3814	8.21
10	49795.3	5034.281	40.0315	3.51
11	49838.8	5013.381	39.8654	9.93
12	49882.6	4992.392	39.6985	19.32
13	49926.2	4971.446	39.5319	23.00
14	49970.0	4950.450	39.3649	19.56
15	50013.7	4929.483	39.1982	9.95
16	50057.8	4908.318	39.0299	3.25

Figure S13. Mass spectrum of 4,7-dimethoxybenzo[d][1,3]dioxol-5-ol (6).

File : C:\MSDCHEM\1\DATA\BA2530.D Operator : victor Acquired : 21 Dec 21 13:04 using AcqMethod victor.M Instrument : INCOS Sample Name: NMR/29330166 Misc Info : Vial Number: 1

Figure S14. ¹H NMR spectrum of 6-hydroxy-4,7-dimethoxybenzo[d][1,3]dioxole-5-carbaldehyde (7).

Figure S14. ¹H NMR spectrum of 6-hydroxy-4,7-dimethoxybenzo[d][1,3]dioxole-5-carbaldehyde (7).

© Zelinsky Institute of Organic Chemistry, Moscow; Bruker DRX500 SF=500.13 MHz {1H} SI=16K SW=10000 O1=4006 PW=10.6 AQ=1.631 RD=0.00 NS=1 SR=1.87 TE=297K 23 December 2021 Opr: Strelenko Yu.A.; Solv: DMSO-d6; (NMR/29330167)

page 2 of 2

#	Address	Frequency		Intensity
	[points]	[Hz]	[ppm]	[cm]
1	4557.7	6222.117	12.4410	1.70
2	6592.6	4980.132	9.9577	5.26
3	9753.4	3050.934	6.1003	9.88
4	11467.6	2004.708	4.0084	15.58
5	11642.9	1897.668	3.7943	16.00
6	12013.9	1671.272	3.3417	8.94
7	12697.7	1253.902	2.5072	2.28

Figure S15. ¹³C NMR spectrum of 6-hydroxy-4,7-dimethoxybenzo[d][1,3]dioxole-5-carbaldehyde (7).

Figure S15. ¹³C NMR spectrum of 6-hydroxy-4,7-dimethoxybenzo[d][1,3]dioxole-5-carbaldehyde (7).

Figure S15. ¹³C NMR spectrum of 6-hydroxy-4,7-dimethoxybenzo[d][1,3]dioxole-5-carbaldehyde (7).

© Zelinsky Institute of Organic Chemistry, Moscow; Bruker DRX500 SF=125.76 MHz {13C} SI=64K SW=31443 O1=13259 PW=8.0 AQ=0.519 RD=1.00 NS=73 SR=54.53 TE=297K 23 December 2021 Opr: Strelenko Yu.A.; Solv: DMSO-d6; (NMR/29330167)

page 3 of 3

#	Address	Fre	quency	Intensity
	[points]	[Hz]	[ppm]	[cm]
1	9844.3	24204.211	192.4668	8.23
2	20033.6	19314.982	153.5887	2.46
3	21458.9	18631.117	148.1507	1.76
4	23831.7	17492.516	139.0968	1.70
5	26577.0	16175.236	128.6221	1.62
6	27198.4	15877.059	126.2510	1.31
7	32221.3	13466.914	107.0861	2.42
8	33364.9	12918.153	102.7224	8.89
9	44459.5	7594.566	60.3904	6.75
10	49793.2	5035.271	40.0394	1.82
11	49836.9	5014.294	39.8726	5.88
12	49880.7	4993.275	39.7055	11.58
13	49924.3	4972.363	39.5392	14.00
14	49968.1	4951.357	39.3722	11.84
15	50011.8	4930.387	39.2054	6.04
16	50055.7	4909.337	39.0380	1.92

Figure S16. Mass spectrum of 6-hydroxy-4,7-dimethoxybenzo[d][1,3]dioxole-5-carbaldehyde (7).

File : C:\MSDCHEM\1\DATA\BA2531.D Operator : victor Acquired : 21 Dec 21 13:07 using AcqMethod victor.M Instrument : INCOS Sample Name: NMR/29330167 Misc Info : Vial Number: 1

