
Citation: Lentin, I.; Korniltsev, I.;

Gorbunov, A.; Cheshkov, D.;

Bezzubov, S.; Kovalev, V.; Vatsouro, I.

Building Triazolated Macrocycles from

Bis-Propargylated Calix[4]arenes and

Bis-Azidomethylated Azobenzene or

Stilbene. Molbank 2023, 2023, M1748.

https://doi.org/10.3390/M1748

Academic Editor: Rodrigo Abonia

Received: 21 November 2023

Revised: 1 December 2023

Accepted: 5 December 2023

Published: 7 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molbank

Communication

Building Triazolated Macrocycles from Bis-Propargylated
Calix[4]arenes and Bis-Azidomethylated Azobenzene
or Stilbene
Ivan Lentin 1 , Ilia Korniltsev 1 , Alexander Gorbunov 1 , Dmitry Cheshkov 2 , Stanislav Bezzubov 3 ,
Vladimir Kovalev 1 and Ivan Vatsouro 1,*

1 Department of Chemistry, M. V. Lomonosov Moscow State University, Lenin’s Hills 1, 119991 Moscow, Russia;
ivan.lentin@chemistry.msu.ru (I.L.); ilia.korniltsev@chemistry.msu.ru (I.K.); gorych_89@mail.ru (A.G.);
kovalev@petrol.chem.msu.ru (V.K.)

2 State Research Institute for Chemistry and Technology of Organoelement Compounds, Sh. Entuziastov 38,
105118 Moscow, Russia; dcheshkov@gmail.com

3 Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii Pr. 31,
119991 Moscow, Russia; bezzubov@igic.ras.ru

* Correspondence: vatsouro@petrol.chem.msu.ru

Abstract: Copper(I)-catalyzed azide-alkyne cycloaddition was employed to construct biscalixarene
assemblies from the calix[4]arene dipropargyl ethers and 4,4′-bis-azidomethylated azobenzene or
stilbene. Three bis(calixarenes) having the calix[4]arene cores linked to each other by pairs of
(E)-azobenzene/stilbene units through four triazole groups were obtained as confirmed by NMR,
HRMS and X-ray diffraction data. Nevertheless, the formation of larger macrocycles and poly-
meric/oligomeric products was found to be the major competing process that seriously limited the
applicability of the one-step macrocyclization approach for the construction of photoresponsive
biscalixarene assemblies linked by pairs of azobenzene/stilbene units.
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1. Introduction

Covalent linking of several calixarene-type macrocycles is one of the modern syn-
thetic strategies towards multitopic receptor systems, which possess unique properties
that cannot be achieved using a single macrocyclic core [1–13]. In particular, the involve-
ment of more than one linker into the connection of pairs of the cores is widely used in
calixarene chemistry to obtain various multi(macrocycles) having tubular or semi-tubular
shapes [14–31], which have special receptor properties provided by the new receptor holes
formed during macrocyclization. We have recently shown that two calix[4]arene cores
could be readily linked to each other by two azobenzene or stilbene units using the K2CO3-
promoted alkylation of parent calixarene tetrols with 4,4′-bis-bromomethylated azobenzene
or stilbene, which furnished semi-tubular bis(calix[4]arenes) capable of shape changes upon
irradiation/heating [32]. On the other hand, our ongoing studies on the features [33,34]
and applications [35,36] of the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC)
in calixarene chemistry showed the great potential of this reaction for the preparation of
diverse receptor molecules including bis- and triscalixarene semi-tubular assemblies [37,38]
comprising 1,4-disubstituted 1,2,3-triazoles as the key linking or/and receptor units. Within
a reasonable extension of the above studies, herein we investigated the applicability of
the CuAAC approach for the one-step construction of biscalixarene molecules from the
calix[4]arene dipropargyl ethers and bis-azidomethylated azobenzene or stilbene.
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2. Results and Discussion

Cone calix[4]arene 1 [39] having two propargyl and two propyl groups at the narrow
rim (Figure 1) was selected as the alkyne component of the CuAAC-macrocyclization to be
reacted with 4,4′-bis-azidomethylated (E)-azobenzene 2 [40] and (E)-stilbene 4. The latter
was prepared for the first time upon reacting 4,4-bis-bromomethylated (E)-stilbene 3 [41]
with sodium azide (Scheme 1).

Molbank 2023, 2023, x FOR PEER REVIEW 2 of 11 
 

2. Results and Discussion 

Cone calix[4]arene 1 [39] having two propargyl and two propyl groups at the narrow 

rim (Figure 1) was selected as the alkyne component of the CuAAC-macrocyclization to 

be reacted with 4,4′-bis-azidomethylated (E)-azobenzene 2 [40] and (E)-stilbene 4. The lat-

ter was prepared for the first time upon reacting 4,4-bis-bromomethylated (E)-stilbene 3 

[41] with sodium azide (Scheme 1). 

 

Figure 1. Structures of calix[4]arene 1 and 4,4′-bis-azidomethylated (E)-azobenzene 2. 

 

Scheme 1. Preparation of 4,4′-bis-azidomethylated (E)-stilbene 4. 

Following our previous study on the CuAAC-assembling of triazolated calix[4]sem-

itubes from the calix[4]arene bis(azide) and bis(alkyne) counterparts [37], several catalytic 

systems were tested in the reactions between calixarene 1 and bis(azides) 2 or 4 taken in a 

1:1 molar ratio (Scheme 2). 

 

Scheme 2. Reactions between calixarene dipropargyl ether 1 and bis(azides) 2 or 4 under CuAAC 

conditions. 

Figure 1. Structures of calix[4]arene 1 and 4,4′-bis-azidomethylated (E)-azobenzene 2.

Molbank 2023, 2023, x FOR PEER REVIEW 2 of 11 
 

2. Results and Discussion 

Cone calix[4]arene 1 [39] having two propargyl and two propyl groups at the narrow 

rim (Figure 1) was selected as the alkyne component of the CuAAC-macrocyclization to 

be reacted with 4,4′-bis-azidomethylated (E)-azobenzene 2 [40] and (E)-stilbene 4. The lat-

ter was prepared for the first time upon reacting 4,4-bis-bromomethylated (E)-stilbene 3 

[41] with sodium azide (Scheme 1). 

 

Figure 1. Structures of calix[4]arene 1 and 4,4′-bis-azidomethylated (E)-azobenzene 2. 

 

Scheme 1. Preparation of 4,4′-bis-azidomethylated (E)-stilbene 4. 

Following our previous study on the CuAAC-assembling of triazolated calix[4]sem-

itubes from the calix[4]arene bis(azide) and bis(alkyne) counterparts [37], several catalytic 

systems were tested in the reactions between calixarene 1 and bis(azides) 2 or 4 taken in a 

1:1 molar ratio (Scheme 2). 

 

Scheme 2. Reactions between calixarene dipropargyl ether 1 and bis(azides) 2 or 4 under CuAAC 

conditions. 

Scheme 1. Preparation of 4,4′-bis-azidomethylated (E)-stilbene 4.

Following our previous study on the CuAAC-assembling of triazolated calix[4]semitubes
from the calix[4]arene bis(azide) and bis(alkyne) counterparts [37], several catalytic systems
were tested in the reactions between calixarene 1 and bis(azides) 2 or 4 taken in a 1:1 molar
ratio (Scheme 2).
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Neither CuSO4·5H2O/sodium ascorbate in THF/H2O mixture at 60 ◦C nor CuI·P(OEt)3
in toluene at 90 ◦C were found efficient to complete the cycloaddition within 24 h, as it
was concluded from the presence of signals from the starting material in the 1H NMR
spectra of the treated reaction mixtures. Nevertheless, in both reactions, which were carried
out in toluene at 60 ◦C in the presence of CuI (30 mol. %) activated with triethylamine
(20 equiv. per CuI), a complete conversion of the starting bis(azides) and bis(alkynes) was
achieved. Due to the bifunctionality of both the azide and alkyne components of CuAACs,
the formation of polymeric products p5 and p6 along with the desired bis(calixarenes)
5 and 6 was expected in the reactions of calix[4]arene 1 with bis(azides) 2 or 4. Indeed,
the 1H NMR spectra of the reaction mixtures, from which copper salts were removed
upon extraction in a dichloromethane/HCl mixture, contained broadened signals from the
polymeric products along with much less intensive sharp resonances arisen from the non-
polymeric assemblies. Unexpectedly, not a single, but two sets of these sharp resonances
were observed in the spectra of both reaction mixtures.

In the case of the synthesis involving the azobenzene bis(azide) 2, the polymer product
was eliminated using column chromatography, and then two fractions were successively
eluted from the column, each containing almost pure compounds, which were thus obtained
in 14 and 7% yield, respectively. In the 1H NMR spectra of each of the separated products,
the signal count and their relative intensities indicate the C2v time-averaged symmetry of
the calix[4]arene core having the 1-R-4-triazolylmethyl groups (where R is a ‘half’ of the
azobenzene or stilbene unit) arranged in distal positions of the macrocycle (see Figure 2a
for representative parts of the spectra; for the full spectra, see Figures S3 and S5 in the
Supplementary Materials). Each of the acquired spectra corresponds to the structure of the
desired bis(calixarene) 5 or to that of a larger assembly c5, though a little shape distortion
is observed in the 1H NMR spectrum of the first eluted product (the red trace in Figure 2a),
which may be indicative of slowed conformational motions of a huge macrocycle.
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Figure 2. Parts of 1H NMR and 2D DOSY (BPLED sequence, ∆ 40 ms, joint plots from independent
experiments) spectra of (a) macrocycles 5 (green) and c5 (red); (b) macrocycles 6 (green) and c6 (red);
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To get more insights into the structures of the products, NMR DOSY spectra were
acquired (Figure 1a; CD3OD was added in all cases to improve solubility of the studied
compounds in CDCl3). The observed drastic difference in the self-diffusion coefficients
indicates the much greater molecular size of the first eluted product (log D (m2 s−1) = −9.7)
with respect to that of the second one (log D (m2 s−1) = −9.1). Nevertheless, these data are
not sufficient to postulate the biscalixarene structure 5 of the second eluted product, since
it may also be a large cyclic oligomer c5 having just a smaller number of repeating units
compared to the first eluted product.
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To clarify this, both separated products were analyzed using ESI HRMS. In the case of
the first eluted product, no ionization conditions were found to obtain a molecular ion in
the spectrum, but for the second eluted product, a clear signal from the [5+H+Na]2+ ion
at 1113.1625 m/z was detected (the calculated value for the [C140H169NaN16O8]2+ ion is
1113.1615 m/z). Thus, in the CuAAC reaction between the calixarene dipropargyl ether
1 and 4,4′-bis-azidomethylated azobenzene 2, the desired bis(calixarene) 5 of moderate
purity was obtained in low yield, along with the polymeric product p5 and a cyclic oligomer
c5, the exact structure of which could not be determined from the available data.

In the case of the synthesis involving the stilbene bis(azide) 4, the dichloromethane
solution obtained after the removal of copper salt was concentrated and the residue
was treated with cold dichloromethane. This resulted in the formation of a crystalline
solid, which was separated to obtain a pure (according to 1H NMR spectrum; green
trace in Figure 2b) compound in 13% yield. During the chromatographic purification
of the evaporated mother liquid, the polymer product p6 was eliminated, and a second
non-polymeric product was obtained in 15% yield (red trace in Figure 2b; for the full
spectra of both products see Figures S7 and S9 in the Supplementary Materials). Unlike
compounds 5 and c5, these newly obtained products appear to be similar by their molec-
ular sizes, as evidenced by their almost identical self-diffusion coefficients observed in
the DOSY spectra (log D (m2 s−1) = −9.2; see Figure 2b). On the other hand, these self-
diffusion coefficients are close to that of bis(calixarene) 5. Thus, considering the shape
and size similarities of the azobenzene- and stilbene-containing multi(macrocycles), the
non-polymeric products of the CuAAC between calixarene 1 and bis(azide) 4 may be a
cyclic oligomer c6 having a small ring size and the desired bis(calixarene) 6. Similar to the
5/c5 case, the mass spectrometry measurements were successful for only one of the two
products: a clear signal from the [6+2H]2+ ion was detected at 1100.1799 m/z (the calculated
value for the [C144H174N12O8]2+ ion is 1100.1800 m/z) in the sample of the crystalline
product, which thus confirmed its biscalixarene structure.

Upon the slow evaporation of a chloroform/methanol solution of bis(calixarene) 6,
single crystals were collected and subjected to X-ray diffraction analysis. The obtained
data confirmed unambiguously the structure of this compound in which two calix[4]arene
macrorings were connected by two triazolated (E)-stilbene linkers arranged in a zigzag
manner (Figure 3).
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To improve the solubility of the CuAAC reaction products and, perhaps, to facilitate
their separation using column chromatography, the calixarene dipropargyl ether 1 was
replaced with the dipropargyl ether 7 [42] having additional ester functionalities. Similar
to the above cases, equimolar CuAAC reactions between calixarene 7 and bis(azides) 2 or
4 conducted under the CuI/Et3N catalysis were completed within 24 h. However, huge
linear or cyclic polymeric/oligomeric compounds appeared to be the major product of the
reactions, as it was concluded from the 1H NMR spectra of the product mixtures obtained
after the removal of copper salts. Indeed, both spectra contained mainly the broadened
and highly shape-distorted signals from the huge oligomers/polymers, while signals of
just minor intensities might be assigned to the desired bis(calixarenes) or at least to small
cyclic oligomeric products of CuAAC (Figure 4).

Molbank 2023, 2023, x FOR PEER REVIEW 5 of 11 
 

Figure 3. Molecular structure of the bis(calixarene) 6 in two projections; thermal ellipsoids are 

drawn at a 50% probability level. 

To improve the solubility of the CuAAC reaction products and, perhaps, to facilitate 

their separation using column chromatography, the calixarene dipropargyl ether 1 was 

replaced with the dipropargyl ether 7 [42] having additional ester functionalities. Similar 

to the above cases, equimolar CuAAC reactions between calixarene 7 and bis(azides) 2 or 

4 conducted under the CuI/Et3N catalysis were completed within 24 h. However, huge 

linear or cyclic polymeric/oligomeric compounds appeared to be the major product of the 

reactions, as it was concluded from the 1H NMR spectra of the product mixtures obtained 

after the removal of copper salts. Indeed, both spectra contained mainly the broadened 

and highly shape-distorted signals from the huge oligomers/polymers, while signals of 

just minor intensities might be assigned to the desired bis(calixarenes) or at least to small 

cyclic oligomeric products of CuAAC (Figure 4). 

 

Figure 4. Representative parts of 1H NMR spectra of the treated reaction mixtures obtained in the 

CuAACs between the calixarene dipropargyl ether 7 and bis(azides) 2 or 4 (top and bottom traces, 

respectively), and that of the separated compound 8 (middle trace); colored arrows indicate the sig-

nals from bis(calixarenes) or small cyclic oligomers detected in the mixtures; 400 MHz, CDCl3, 20 

°C. 

Due to the extremely low content of the non-polymeric products in the mixtures, their 

chromatographic separation was attempted for only the CuAAC between calixarene 7 and 

bis(azide) 2 (Scheme 3). In this case, a single non-polymeric product of moderate purity 

was obtained in 3% yield (see middle trace in Figure 4 for the 1H NMR spectrum of the 

separated product), which was the desired bis(calixarene) 8, as confirmed by a clear signal 

from the [8+2H]2+ ion at 1246.2133 m/z in the HRMS spectrum (the calculated value for the 

[C152H186N16O16]2+ ion is 1246.2128 m/z). 

 

Scheme 3. Reaction between the propargylated calixarene ester 7 and bis(azide) 2 under CuAAC 

conditions. 

Single crystals of bis(calixarene) 8 suitable for X-ray diffraction analysis were ob-

tained upon the slow evaporation of its dichloromethane/methanol solution. The obtained 

data confirmed the biscalixarene molecular structure of this compound having two 

Figure 4. Representative parts of 1H NMR spectra of the treated reaction mixtures obtained in the
CuAACs between the calixarene dipropargyl ether 7 and bis(azides) 2 or 4 (top and bottom traces,
respectively), and that of the separated compound 8 (middle trace); colored arrows indicate the
signals from bis(calixarenes) or small cyclic oligomers detected in the mixtures; 400 MHz, CDCl3,
20 ◦C.

Due to the extremely low content of the non-polymeric products in the mixtures, their
chromatographic separation was attempted for only the CuAAC between calixarene 7 and
bis(azide) 2 (Scheme 3). In this case, a single non-polymeric product of moderate purity
was obtained in 3% yield (see middle trace in Figure 4 for the 1H NMR spectrum of the
separated product), which was the desired bis(calixarene) 8, as confirmed by a clear signal
from the [8+2H]2+ ion at 1246.2133 m/z in the HRMS spectrum (the calculated value for the
[C152H186N16O16]2+ ion is 1246.2128 m/z).
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Scheme 3. Reaction between the propargylated calixarene ester 7 and bis(azide) 2 under CuAAC
conditions.

Single crystals of bis(calixarene) 8 suitable for X-ray diffraction analysis were obtained
upon the slow evaporation of its dichloromethane/methanol solution. The obtained data
confirmed the biscalixarene molecular structure of this compound having two calix[4]arene
macrorings connected by two triazolated (E)-azobenzene linkers, and four ester residues
(Figure 5). The overall zigzag shape of the obtained molecule is similar to that of the stilbene-
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linked bis(calixarene) 6, with both lacking any internal cavity between the calixarene cores
and the linkers, at least in the crystalline state.
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Figure 5. Molecular structure of the bis(calixarene) 8 in two projections; thermal ellipsoids are drawn
at a 50% probability level.

3. Materials and Methods

Column chromatography was performed on silica gel 60 (0.063–0.200 mm). Com-
mercial reagents were used as received. Compounds 1 [39], 2 [40], 3 [41] and 7 [42] were
synthesized by the reported procedures.

1H and 13C (APT) NMR spectra were acquired on Bruker Avance 400 and Avance
600 spectrometers at room temperature, unless stated otherwise. Two-dimensional DOSY
experiments were performed in accordance with the gradient strength G = 53.5 G/cm using
standard pulse program ledbpgp2s, that is, stimulated echo sequence and LED (longitudinal
eddy current delay) using bipolar gradient pulse pair and two spoiling gradients. The
gradient strength was changed from 2 to 95% with linear type of ramp. Diffusion time (big
delta, ∆ = 40 ms), sine shaped gradient pulse length (little delta, δ = 2 ms) and relaxation
delay (D1 = 2 s) were employed.

High resolution ESI mass spectra were obtained from a Sciex TripleTOF 5600+ spec-
trometer (AB Sciex, Singapore).

Crystallographic data were collected on a Bruker D8 Venture diffractometer using
graphite monochromatized Mo–Kα radiation (λ = 0.71073 Å) using anω-scan mode. Ab-
sorption correction based on measurements of equivalent reflections was applied [43]. The
structures were solved by direct methods and refined by full matrix least-squares on F2

with anisotropic thermal parameters for all non-hydrogen atoms [44,45]. Some components
of the disordered groups were refined isotropically. The hydrogen atoms were placed
in calculated positions and refined using a riding model. In all structures, all or some
of the highly disordered solvent molecules were not located, and their contribution was
suppressed by the SQUEEZE procedure [46] included in the Olex2 package [47].

CCDC 2309204 and 2309205 contain crystallographic data for compounds 8 and 6,
respectively. The data can be obtained free of charge from the Cambridge Crystallographic
Data Centre via www.ccdc.cam.ac.uk/structures (accessed on 21 November 2023).

3.1. (E)-1,2-bis(4-(azidomethyl)phenyl)ethene 4

To a solution of (E)-1,2-bis(4-(bromomethyl)phenyl)ethene 3 (2.12 g, 5.79 mmol) in
acetone (400 mL), sodium azide (1.13 g, 17.4 mmol) dissolved in water (25 mL) was added,
and the mixture was stirred overnight at room temperature. The solvent was removed
under reduced pressure, and the residue was parted between dichloromethane and water.

www.ccdc.cam.ac.uk/structures
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The organic layer was separated, washed with brine and concentrated to dryness. Yield
1.58 g (93%, white solid). M.p. 135–137 ◦C. 1H NMR (CDCl3, 400 MHz): δ = 7.57–7.51
(m, 4H, ArH), 7.35–7.29 (m, 4H, ArH), 7.12 (s, 2H, CH) 4.35 (s, 4H, CH2) ppm. 13C NMR
(CDCl3, 100 MHz): δ = 137.18 (CAr), 134.74 (CAr), 128.61 (CHAr), 128.50 (CH), 126.92 (CHAr),
54.50 (CH2) ppm. HRMS ESI-MS: m/z: 291.1357 [M+H]+ for C16H15N6 (291.1353).

3.2. Bis(calixarene) 5 and Cyclic Oligomer c5

To a stirred suspension of copper(I) iodide (0.057 g, 0.30 mmol) in toluene (10 mL), tri-
ethylamine (0.835 mL, 6.00 mmol) was added, and the mixture was stirred at room tempera-
ture until a clear solution formed. A solution of calixarene 1 (0.808 g, 1.00 mmol) in toluene
(35 mL) was added, followed by the solution of bis(azide) 2 (0.292 g, 1.00 mmol) in toluene
(35 mL), and the mixture was stirred at 60 ◦C under inert atmosphere for 24 h. The solvent
was removed under reduced pressure, and the residue was dissolved in dichloromethane
and washed continuously (for 2 h) with aqueous HCl (2 M) at vigorous stirring. The
organic phase was separated, washed with aqueous Na2SO3 (5%; this optional step was
applied to remove iodine resulting from the oxidation of the iodide-anion by air during
the above prolonged extraction) and water, dried, and the solvent was evaporated. The
residue was subjected to column chromatography (silica, gradient from dichloromethane
to dichloromethane/ethanol 20:1). The cyclic oligomer c5 was isolated upon elution with
dichloromethane, followed by crystallization from the dichloromethane/methanol mixture.
Further fractions containing bis(calixarene) 5 were combined, the solvent was evaporated and
the product was isolated upon crystallization from the dichloromethane/methanol mixture.

Compound 5: Yield 0.074 g (7%, orange solid). M.p. > 300 ◦C. 1H NMR (CDCl3+CD3OD
(10:1), 400 MHz): δ = 7.82–7.77 (m, 8H, ArHazo), 7.73 (s, 4H, ArHTrz), 7.32–7.27 (m,
8H, ArHazo), 6.69 (s, 8H, ArHcalix), 6.64 (s, 8H, ArHcalix), 5.57 (s, 8H, NCH2), 4.95 (s,
8H, OCH2Trz), 4.15 (d, 2J = 12.5 Hz, 8H, ArCH2Ar), 3.56–3.48 (m, 8H, OCH2), 2.92 (d,
2J = 12.5 Hz, 8H, ArCH2Ar), 1.59–1.47 (m, 8H, CH2CH3), 1.00 (s, 36H, C(CH3)3), 0.96 (s,
36H, (C(CH3)3), 0.53 (t, 3J = 7.3 Hz, 12H, CH2CH3) ppm. 13C NMR (CDCl3+CD3OD (10:1),
100 MHz): δ = 153.26, 152.06, 151.97, 145.20, 145.05, 144.21, 138.15, 134.02, 133.33 (CAr),
128.49, 124.98, 124.74, 124.03, 123.29 (CHAr), 76.98 (OCH2), 66.95 (OCH2Trz), 53.32 (NCH2),
33.71, 33.64 (C(CH3)3), 31.23 (C(CH3)3), 31.00 (ArCH2Ar), 22.76 (CH2CH3), 9.82 (CH2CH3)
ppm. HRMS ESI-MS: m/z: 1113.1625 [M+H+Na]2+ for C140H169NaN16O8 (1113.1615).

Compound c5: Yield 0.159 g (14%, orange solid). M.p. 250–252 ◦C 1H NMR (CDCl3,
400 MHz): δ = 7.95–7.88 (m, 4nH, ArHazo), 7.62 (s, 2nH, ArHTrz), 7.43–7.36 (m, 4nH, ArHazo),
6.80 (s, 4nH, ArHcalix), 6.58 (s, 4nH, ArHcalix), 5.70 (s, 4nH, NCH2), 5.12 (s, 4nH, OCH2Trz),
4.18 (d, 2J = 12.5 Hz, 4nH, ArCH2Ar), 3.65–3.58 (m, 4nH, OCH2), 2.93 (d, 2J = 12.5 Hz, 4nH,
ArCH2Ar), 1.75–1.64 (m, 4nH, CH2CH3), 1.10 (s, 18nH, C(CH3)3), 0.92 (s, 18nH, (C(CH3)3),
0.78–0.72 (m, 6nH, CH2CH3) ppm. 13C NMR (CDCl3, 100 MHz): δ = 153.11, 152.30, 152.05,
145.43, 145.11, 144.06, 138.25, 134.84, 132.88 (CAr), 128.53, 125.09, 124.64, 123.96, 123.46
(CHAr), 77.03 (OCH2), 66.66 (OCH2Trz), 53.36 (NCH2), 33.86, 33.64 (C(CH3)3), 31.46, 31.26
(C(CH3)3), 31.21 (ArCH2Ar), 22.99 (CH2CH3), 10.25 (CH2CH3) ppm.

3.3. Bis(calixarene) 6 and Cyclic Oligomer c6

These compounds were prepared as described for compounds 5 and c5 from calixarene
1 (0.808 g, 1.00 mmol), bis(azide) 4 (0.290 g, 1.00 mmol), copper(I) iodide (0.057 g, 0.30 mmol)
and triethylamine (0.835 mL, 6.00 mmol) in toluene (80 mL). The solution of the product
mixture obtained in the extraction step was concentrated to dryness, and the residue was
suspended in a small portion of dichloromethane. The suspension was cooled down to
−18 ◦C and filtered. The collected solid was washed rapidly with cold dichloromethane and
dried to give bis(calixarene) 6. The filtrate was concentrated under reduced pressure and
the cyclic oligomer c6 was purified using column chromatography (silica, dichloromethane)
followed by crystallization from the dichloromethane/methanol solvent mixture.

Compound 6: Yield 0.142 g (13%, white solid). M.p. > 300 ◦C. 1H NMR (CDCl3+CD3OD
(10:1), 400 MHz): δ = 7.64 (s, 4H, ArHTrz), 7.39–7.34 (m, 8H, ArHstil), 7.20–7.15 (m, 8H,
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ArHstil), 7.00 (s, 4H, CH), 6.71 (s, 8H, ArHcalix), 6.65 (s, 8H, ArHcalix), 5.47 (s, 8H, NCH2),
4.92 (s, 8H, OCH2Trz), 4.20 (d, 2J = 12.5 Hz, 8H, ArCH2Ar), 3.59–3.51 (m, 8H, OCH2), 2.95
(d, 2J = 12.5 Hz, 8H, ArCH2Ar), 1.61–1.49 (m, 8H, CH2CH3), 1.03 (s, 36H, C(CH3)3), 0.97 (s,
36H, (C(CH3)3), 0.51 (s, 3J = 7.5 Hz, 12H, CH2CH3) ppm. 13C NMR (CDCl3+CD3OD (10:1),
100 MHz): δ = 153.57, 152.00, 145.15, 144.92, 144.25, 137.04, 134.44, 133.73, 133.71 (CAr),
128.36, 128.32, 126.85, 124.91, 124.84 (CHAr, CHstil), 123.65 (CHAr), 76.62 (OCH2), 67.11
(OCH2Trz), 53.57 (NCH2), 33.72, 33.71 (C(CH3)3), 31.34, 31.24 (C(CH3)3), 31.09 (ArCH2Ar),
22.78 (CH2CH3), 9.78 (CH2CH3) ppm. HRMS ESI-MS: m/z: 1100.1794 [M+2H]2+ for
C144H174N12O8 (1100.1800). Crystal data (CCDC 2309205): temp. (K) = 150(2); cryst.
system: triclinic; space group: P-1; a (Å) = 10.3667(5); b (Å) = 26.2054(13); c (Å) = 28.8910(13);
α (◦) = 75.959(2); β (◦) = 79.942(2); γ (◦) = 85.099(2); V (Å3) = 7489.5(6); Z = 2; θ range (deg):
1.92 < θ < 25.05; collected/unique reflections: 112270/26399; completeness to θ (%) = 99.7;
data/restraints/parameters: 26399/94/1525; goodness of fit on F2 = 2.116; final R indices
(I > 2σ(I)): R1 = 0.1162, wR2 = 0.3160; largest diff peak/hole (e/Å3): 1.52/−1.05.

Compound c6: Yield 0.165 g (15%, white solid). M.p. 248–250 ◦C. 1H NMR (CDCl3,
400 MHz): δ = 7.52–7.44 (m, 4nH, ArHstil), 7.51 (s, 2nH, ArHTrz), 7.29–7.21 (m, 4nH, ArHstil),
7.08 (s, 2nH, CH), 6.73 (s, 4nH, ArHcalix), 6.64 (s, 4nH, ArHcalix), 5.58 (s, 4nH, NCH2),
5.07 (s, 4nH, OCH2Trz), 4.18 (d, 2J = 12.5 Hz, 4nH, ArCH2Ar), 3.66–3.57 (m, 4nH, OCH2),
2.92 (d, 2J = 12.5 Hz, ArCH2Ar), 1.76–1.64 (m, 4nH, CH2CH3), 1.06 (s, 18nH, C(CH3)3), 0.98
(s, 18nH, (C(CH3)3), 0.77–0.69 (m, 6nH, CH2CH3) ppm. 13C NMR (CDCl3, 100 MHz):
δ = 153.39, 151.99, 145.22, 144.93, 144.09, 137.31, 134.55, 134.46, 133.27 (CAr), 128.56, 128.33,
127.03, 124.96, 124.72 (CHAr, CHstil), 123.67 (CHAr), 76.89 (OCH2), 66.80 (OCH2Trz), 53.54
(NCH2), 33.80, 33.68 (C(CH3)3), 31.40, 31.33 (C(CH3)3), 31.24 (ArCH2Ar), 22.96 (CH2CH3),
10.20 (CH2CH3) ppm.

3.4. Bis(calixarene) 8

This compound was prepared as described for compounds 5 and c5 from calixarene 7
(0.952 g, 1.00 mmol), bis(azide) 2 (0.292 g, 1.00 mmol), copper(I) iodide (0.057 g, 0.30 mmol)
and triethylamine (0.835 mL, 6.00 mmol) in toluene (57 mL). From the product mixture
obtained in the extraction step, bis(calixarene) 8 was isolated using column chromatography
(silica, gradient from dichloromethane to dichloromethane/ethanol 30:1). Yield 0.035 g (3%,
orange solid). M.p. > 300 ◦C. 1H NMR (CDCl3, 400 MHz): δ = 8.20 (s, 4H, ArHTrz), 7.80–7.74
(m, 8H, ArHazo), 7.42–7.36 (m, 8H, ArHazo), 7.01 (s, 8H, ArHcalix), 6.53 (s, 8H, ArHcalix), 5.49
(s, 8H, NCH2), 4.78 (s, 8H, OCH2Trz), 4.39 (d, 2J = 12.4 Hz, 8H, ArCH2Ar), 4.13 (q, 3J = 7.1
Hz, 8H, OCH2CH3), 3.69–3.60 (m, 8H, OCH2CH2CH2), 3.14 (d, 2J = 12.4 Hz, 8H, ArCH2Ar),
1.89–1.78 (m, 8H, OCH2CH2CH2), 1.64–1.55 (m, 8H, OCH2CH2CH2), 1.30 (t, 3J = 7.1 Hz,
12H, OCH2CH3), 1.25 (s, 36H, C(CH3)3), 0.86 (s, 36H, (C(CH3)3) ppm. 13C NMR (CDCl3,
100 MHz): δ = 174.05 (C=O), 154.01, 151.99, 151.70, 144.90, 144.81, 144.72, 138.51, 134.95,
132.53 (CAr), 129.10, 125.35, 124.79, 124.33 (CHAr), 123.17 (CAr), 73.53 (OCH2CH2), 67.94
(OCH2Trz), 60.35 (OCH2CH3), 53.21 (NCH2), 33.99, 33.64 (C(CH3)3), 31.63, 31.15 (C(CH3)3),
31.09 (ArCH2Ar), 30.44 (CH2CO), 25.10 (OCH2CH2), 14.30 (OCH2CH3) ppm. HRMS
ESI-MS: m/z: 1246.2133 [M+2H]2+ for C152H186N16O16 (1246.2128). Crystal data (CCDC
2309204): temp. (K) = 100(2); cryst. system: triclinic; space group: P-1; a (Å) = 10.1995(5);
b (Å) = 12.2974(6); c (Å) = 31.3504(16); α (◦) = 79.558(2); β (◦) = 86.966(2); γ (◦) = 84.479(2);
V (Å3) = 3846.6(3); Z = 1; θ range (deg): 1.69 < θ < 25.05; collected/unique reflections:
46065/13372; completeness to θ (%) = 98.0; data/restraints/parameters: 13372/83/859;
goodness of fit on F2 = 1.053; final R indices (I > 2σ(I)): R1 = 0.0978, wR2 = 0.2579; largest
diff peak/hole (e/Å3): 0.71/−0.57.

4. Conclusions

We have shown that the one-step approach involving the four-fold CuAAC reactions
between the calixarene dipropargyl ethers and the respective bis(asides) can in principle
be implemented for the construction of biscalixarene systems comprising pairs of azoben-
zene or stilbene linkers. Nevertheless, these reactions produce significant amounts of
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oligomeric/polymeric by-products, which can dramatically reduce the yield of the target
bis(calixarenes) and hamper their purification. In this regard, multi-step syntheses utilizing
‘mono’ functional reactants at the CuAAC steps may be more preferable for the preparation
of such biscalixarene systems.

Supplementary Materials: The following supporting information can be downloaded online. Figure S1:
1H NMR spectrum of compound 4; Figure S2: 13C NMR spectrum (APT) of compound 4; Figure S3:
1H NMR spectrum of compound 5; Figure S4: 13C NMR spectrum (APT) of compound 5; Figure S5:
1H NMR spectrum of compound c5; Figure S6: 13C NMR spectrum (APT) of compound c5; Figure
S7: 1H NMR spectrum of compound 6; Figure S8: 13C NMR spectrum (APT) of compound 6; Figure
S9: 1H NMR spectrum of compound c6; Figure S10: 13C NMR spectrum (APT) of compound c6;
Figure S11: 1H NMR spectrum of compound 8; Figure S12: 13C NMR spectrum (APT) of compound 8.
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