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Abstract: Benzazoles, such as benzoxazoles and benzothiazoles, are compounds with important
biological and pharmacological activities and important intermediaries in synthesis. This report
presents the synthesis of a butanamide derived from linking 5-chloro-2-aminobenzoxazole and 2-
aminobenzothiazole via 4-chlorobutanoyl chloride. The corresponding compound N-(benzothiazol-2-
yl)-4-((5-chlorobenzoxazol-2-yl)aminobutanamide was obtained at a 76% global yield using accessible
starting materials and a methodology in two reaction steps. Furthermore, we conducted docking
studies of this compound on 3-TOP protein to explore its potential as an antidiabetic agent.
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1. Introduction

Benzazoles, including benzoxazoles and benzothiazoles, are aromatic compounds with
good chemical stability [1]. These compounds consist of a benzene ring attached to either
oxazole or thiazole. They are important raw materials because they are heterocycles with
fascinating physicochemical properties [2]. In addition to their reactivity, several reports in
the literature mentioned the varied pharmacological properties of these compounds, such
as antidiabetic [3], anti-inflammatory [4], neuroprotective [5], and antibiotic [6,7].

Diabetes mellitus type II is a widespread disease that affects many people worldwide.
One of the most common treatments for this disease is inhibiting the alpha-glucosidase
enzyme, which metabolizes carbohydrates [8]. Acarbose is an example of a drug that
works through this mechanism of action [9]. Therefore, we are interested in synthesiz-
ing compounds with antidiabetic activity, particularly of the alpha-glucosidase inhibitor
type. Considering the antidiabetic properties of benzoxazole, we decided to synthesize a
compound that contains both a benzoxazole unit and a benzothiazole unit in its structure.

2. Results
2.1. Synthesis

We were able to synthesize butanamide 5 using a simple and inexpensive two-step
methodology. The first step involved an N-acylation reaction of 2-aminobenzothiazole 1
with 4-chlorobutanoyl chloride 2 in CH2Cl2 with NaHCO3 as a base at room temperature
for 8 h. The resultant 4-chlorobutanamide 3 was purified through crystallization from cold
water and obtained as a white solid with a yield of 92% (Scheme 1) [10].
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for 8 h. The resultant 4-chlorobutanamide 3 was purified through crystallization from cold 
water and obtained as a white solid with a yield of 92% (Scheme 1) [10]. 

The 1H spectrum of 4-cholorbutanamide 3 coincides with that reported for this spec-
trum, showing the characteristic signals for the H of the three CH2, which appear at 2.05 
ppm(t), 2.65 ppm(m), and 3.69 ppm (t). The amide’s NH signal appears at 12.45 ppm. On 
the other hand, in the 13C spectrum, the signal corresponding to the carbonyl group can 
be observed at 171.4 ppm (please refer to Figures S1 and S2 in the Supplementary Mate-
rial). 

In the second step, the 4-chlorobutanamide 3 underwent a nucleophilic substitution 
reaction with 5-chloro-2-aminobenzoxazole 4 in CH3CN, a non-protic polar solvent, with 
K2CO3 as the base at room temperature for 8 h. The resulting compound 5 was also puri-
fied via recrystallization from cold water and obtained as a yellow solid with a yield of 
83%. See Scheme 1. 
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Scheme 1. Synthesis of N-(benzothiazol-2-yl)-4-((5-chlorobenzoxazol-2-yl)amino)butanamide 5. 

Compound 5 was successfully confirmed in the 1H NMR spectrum. The spectrum 
shows observable signals from the aromatic ring of both 5-chlorobenzoxazole and benzo-
thiazole from 6.96 to 7.98 ppm. Additionally, a wide signal that integrates for two hydro-
gens NH was observed at 7.60 ppm (please refer to Figure S3). The two-step synthesis 
resulted in an overall yield of 76% of N-(benzothiazol-2-yl)-2-((5-chlorobenzoxazol-2-
yl)amino)butanamide 5 ppm (please refer to Figures S3 to S9: 1H RMN, 13C RMN, COSY, 
HSQC, HMBC, FAB-MS, and IR). 

2.2. Molecular Docking Validation 
We performed computational analyses via docking, confirming the hypothesis that 

this compound can act as an inhibitor of the alpha-glucosidase enzyme. In this sense, the 
active site of 3-TOP protein was validated with the redock co-crystallized native ligand 
acarbose. The protein 3-TOP is a human maltase-glucoamylase, and its function is to hy-
drolyze linear alpha-1,4-linked oligosaccharide substrates. Comparison of the poses ob-
tained by the AutoDock Vina program against those of the crystallized protein yielded a 
root mean square deviation (RMSD) = 1.27 Å [11,12]. (Figure 1). 

Scheme 1. Synthesis of N-(benzothiazol-2-yl)-4-((5-chlorobenzoxazol-2-yl)amino)butanamide 5.

The 1H spectrum of 4-cholorbutanamide 3 coincides with that reported for this spectrum,
showing the characteristic signals for the H of the three CH2, which appear at 2.05 ppm(t),
2.65 ppm(m), and 3.69 ppm (t). The amide’s NH signal appears at 12.45 ppm. On the other
hand, in the 13C spectrum, the signal corresponding to the carbonyl group can be observed
at 171.4 ppm (please refer to Figures S1 and S2 in the Supplementary Materials).

In the second step, the 4-chlorobutanamide 3 underwent a nucleophilic substitution
reaction with 5-chloro-2-aminobenzoxazole 4 in CH3CN, a non-protic polar solvent, with
K2CO3 as the base at room temperature for 8 h. The resulting compound 5 was also purified
via recrystallization from cold water and obtained as a yellow solid with a yield of 83%.
See Scheme 1.

Compound 5 was successfully confirmed in the 1H NMR spectrum. The spectrum
shows observable signals from the aromatic ring of both 5-chlorobenzoxazole and ben-
zothiazole from 6.96 to 7.98 ppm. Additionally, a wide signal that integrates for two
hydrogens NH was observed at 7.60 ppm (please refer to Figure S3). The two-step syn-
thesis resulted in an overall yield of 76% of N-(benzothiazol-2-yl)-2-((5-chlorobenzoxazol-
2-yl)amino)butanamide 5 ppm (please refer to Figures S3–S9: 1H RMN, 13C RMN, COSY,
HSQC, HMBC, FAB-MS, and IR).

2.2. Molecular Docking Validation

We performed computational analyses via docking, confirming the hypothesis that
this compound can act as an inhibitor of the alpha-glucosidase enzyme. In this sense, the
active site of 3-TOP protein was validated with the redock co-crystallized native ligand
acarbose. The protein 3-TOP is a human maltase-glucoamylase, and its function is to
hydrolyze linear alpha-1,4-linked oligosaccharide substrates. Comparison of the poses
obtained by the AutoDock Vina program against those of the crystallized protein yielded a
root mean square deviation (RMSD) = 1.27 Å [11,12] (Figure 1).
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Figure 1. Ligand-binding site of the 3-TOP protein with co-crystalized acarbose native (blue) and 
acarbose as posed by the Autodock Vina program (magenta). 

2.3. Molecular Docking Studies 
The AutoDock Vina open-source program was used to model the docking of bu-

tanamide 5 with the 3-TOP protein. The optimized structure of butanamide 5 is shown in 
Figure 2. The docking analysis revealed that butanamide 5 had high binding affinities with 
the 3-TOP protein, as evident from the docking score of −8.4 kcal/mol. According to the 
results, it is worth highlighting that the benzothiazole unit presents more interaction than 
the benzoxazole unit with some of the amino acids of the 3-TOP protein. It is relevant to 
note that benzothiazole presents a pi-alkyl interaction with proline 1159, both in the ben-
zene ring and with the thiazole fragment, aside from the sulfur itself having a hydrogen 
bond interaction with Lysine 1460. Finally, amidic N also presents a hydrogen bond, 
where appropriate, with aspartate 1157. Additionally, the benzoxazole unit has a pi–pi 
interaction between the benzene ring and the tyrosine 1251 unit. However, neither the 
oxazole nor the oxygen atom presents any interaction. Chlorine has two pi–alkyl interac-
tions, with tryptophan’s 1418 and 1523. 

 
Figure 2. Optimized structure of butanamide 5 interacting with specific amino acids of the protein 
3-TOP simulated via molecular docking. 

3. Discussion 
This research involved a two-step synthesis process to obtain the desired product 

butanamide 5, with a 76% overall yield of the reaction. The synthesis was completed with-
out complications, and no byproducts were observed using a simple reaction 
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acarbose as posed by the Autodock Vina program (magenta).
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2.3. Molecular Docking Studies

The AutoDock Vina open-source program was used to model the docking of bu-
tanamide 5 with the 3-TOP protein. The optimized structure of butanamide 5 is shown
in Figure 2. The docking analysis revealed that butanamide 5 had high binding affinities
with the 3-TOP protein, as evident from the docking score of −8.4 kcal/mol. According to
the results, it is worth highlighting that the benzothiazole unit presents more interaction
than the benzoxazole unit with some of the amino acids of the 3-TOP protein. It is relevant
to note that benzothiazole presents a pi-alkyl interaction with proline 1159, both in the
benzene ring and with the thiazole fragment, aside from the sulfur itself having a hydrogen
bond interaction with Lysine 1460. Finally, amidic N also presents a hydrogen bond, where
appropriate, with aspartate 1157. Additionally, the benzoxazole unit has a pi–pi interaction
between the benzene ring and the tyrosine 1251 unit. However, neither the oxazole nor
the oxygen atom presents any interaction. Chlorine has two pi–alkyl interactions, with
tryptophan’s 1418 and 1523.

Molbank 2024, 2024, x FOR PEER REVIEW 3 of 6 
 

 
Figure 1. Ligand-binding site of the 3-TOP protein with co-crystalized acarbose native (blue) and 
acarbose as posed by the Autodock Vina program (magenta). 

2.3. Molecular Docking Studies 
The AutoDock Vina open-source program was used to model the docking of bu-

tanamide 5 with the 3-TOP protein. The optimized structure of butanamide 5 is shown in 
Figure 2. The docking analysis revealed that butanamide 5 had high binding affinities with 
the 3-TOP protein, as evident from the docking score of −8.4 kcal/mol. According to the 
results, it is worth highlighting that the benzothiazole unit presents more interaction than 
the benzoxazole unit with some of the amino acids of the 3-TOP protein. It is relevant to 
note that benzothiazole presents a pi-alkyl interaction with proline 1159, both in the ben-
zene ring and with the thiazole fragment, aside from the sulfur itself having a hydrogen 
bond interaction with Lysine 1460. Finally, amidic N also presents a hydrogen bond, 
where appropriate, with aspartate 1157. Additionally, the benzoxazole unit has a pi–pi 
interaction between the benzene ring and the tyrosine 1251 unit. However, neither the 
oxazole nor the oxygen atom presents any interaction. Chlorine has two pi–alkyl interac-
tions, with tryptophan’s 1418 and 1523. 

 
Figure 2. Optimized structure of butanamide 5 interacting with specific amino acids of the protein 
3-TOP simulated via molecular docking. 

3. Discussion 
This research involved a two-step synthesis process to obtain the desired product 

butanamide 5, with a 76% overall yield of the reaction. The synthesis was completed with-
out complications, and no byproducts were observed using a simple reaction 

Figure 2. Optimized structure of butanamide 5 interacting with specific amino acids of the protein
3-TOP simulated via molecular docking.

3. Discussion

This research involved a two-step synthesis process to obtain the desired product bu-
tanamide 5, with a 76% overall yield of the reaction. The synthesis was completed without
complications, and no byproducts were observed using a simple reaction methodology.
Furthermore, the two synthesized compounds were easily purified through a crystallization
process using cold water.

In the computational studies, validation comparison of the poses obtained by the
AutoDock Vina program against those of the crystallized protein indicates an appropriate
optimization score. These values are small and support binding at the simulation site with
the original orientation of the co-crystallized molecule. The interactions among butanamide
5 and specific amino acids of 3-TOP protein involve hydrogen bonds, pi–pi interactions,
and pi–alkyl interactions. The docking analysis used showed that butanamide 5 exhibited
docking poses with high binding affinities (in terms of affinity energy), and therefore, it
might have antidiabetic activity.
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4. Materials and Methods
4.1. General

All commercial reagents and solvents were used without any further purification.
1H and 13C NMR spectra were recorded on a 600 MHz Varian AR spectrometer, with
DMSO-d6 as solvent. Infrared spectra were obtained using a Thermo Scientific Nicolet
(Waltham, MA, USA). Mass spectra were recorded on a GC-MS, Agilent Technologies
(Santa Clara, CA, USA). The reactions were TLC monitored on silica gel 60 F254 (Merck,
Darmstadt, Germany).

4.2. Synthesis of N-(Benzothiazol-2-yl)-4-chlorobutanamide (3)

NaHCO3 (419 mg, 4.99 mmol) was added to a solution of 2-aminobenzothiazole 1
(500 mg, 3.33 mmol) in CH2Cl2 (10 mL). This mixture was stirred in a cold-water bath
for 20 min. Then, 4-chlorobutanoyl chloride (448 µL, 4.00 mmol) was added dropwise.
The reaction was stirred for 8 h at room temperature and monitored via TLC. After the
reaction concluded, the resulting mixture was concentrated under reduced pressure. The
obtained product was dissolved in cold water for 10 min. Finally, it was filtered and dried
in a desiccator for 24 h. After purification, chlorobutanamide 3 (777 mg) was obtained as a
white solid at a 92% yield [10].

1H NMR (600 MHz, DMSO-d6) δ ppm 2.05 (m, 2H-CH2), 2.65 (t, J = 7.1 Hz, 2H-CH2),
3.69 (t, J = 6.6 Hz, 2H-CH2), 7.28 (t, J = 7.6 Hz, 1H-CH), 7.41 (t, J = 7.7 Hz, 1H-CH), 7.72
(d, J = 8.0 Hz, 1H-CH), 7.95 (d, J = 7.9 Hz, 1H-CH), 12.45 (s, 1H-NH). Figure S1.13C NMR
(150 MHz, DMSO-d6) δ ppm 27.3, 32.4, 44.8, 120.6, 121.7, 123.6, 126.1, 131.5, 148.6, 157.8,
171.4. Figure S2.

4.3. Synthesis of N-(Benzothiazol-2-yl)-4-((5-chlorobenzoxazol-2-yl)amino)butanamide (5)

K2CO3 (304.8 mg, 2.21 mmol) was added to a solution of N-(benzothiazol-2-yl)-4-
chlorobutanoamide (279 mg, 1.10 mmol) in CH3CN (5 mL), which was then stirred in a
cold-water bath for 20 min. Next, a solution of 2-amino-5-chlorobenzoxazole (396 mg,
1.10 mmol) was added dropwise to the CH3CN (5 mL). The reaction was TLC monitored.
When the reaction ended, it was concentrated under reduced pressure. The compound
obtained was dissolved in cold water for 10 min. Finally, it was filtered and dried in a
desiccator for 24 h. After purification, butanamide 5 (352 mg) was obtained as a brown
solid at an 83% yield.

1H NMR (600 MHz, DMSO-d6) δ ppm 2.17 (m, 2H-CH2), 2.66 (t, J = 8.0 Hz, 2H-CH2),
4.13 (t, J = 7.2 Hz, 2H-CH2), 6.96 (dd, J = 2.2, 8.4 Hz, 1H-CH), 7.22 (d, J = 2.2 Hz, 1H-CH),
7.31 (m, 2H-CH), 7.43 (t, J = 7.6 Hz, 1H-CH), 7.60 (s, 2H-NH), 7.79 (d, J = 8.0 Hz, 1H-CH),
7.98 (d, J = 7.9 Hz, 1H-CH). Figure S3. 13C NMR (150 MHz, DMSO-d6) δ ppm 18.0, 31.9,
48.5, 109.9, 115.3, 119.9, 121.3, 122.3, 124.2, 126.6, 128.1, 132.1, 145.7, 147.2, 148.8, 157.1, 164.3,
175.2. Figure S4. The COSY, HSQC, and HMBC spectrums are shown in Figures S5–S7,
respectively. Fragment Molecular Formula: C11H15N3OS2

+ 237 m/z. Fragment Molecular
Formula: C11H15N3OS2

+ 219 m/z. Figure S8. IR: 751.9, 1455.5, 1695.1 cm−1
. Figure S9.

Melting point 159–162 ◦C.

4.4. Validation of the Active Site

The active site of the 3-TOP was validated using acarbose as a native ligand. Autodock
Vina generated an RMSD value of 1.27 Å. The validation was carried out with 1000 modes
and an exhaustiveness of 1000, selecting the lowest energy value. Visualization and overlay
of the co-crystalized ligand and the validation ligand were performed using symbol 2.5.

4.5. Molecular Docking

The docking of 3-TOP protein with butanamide 5 was simulated using AutoDock
Vina, which has been used to estimate the conformation of protein–ligand complexes [13]
and significantly improves the average accuracy of the binding mode predictions. The
ligand and protein were prepared and saved in PDBQT format to carry out molecular
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docking. The x,y,z box size was set to 20 Å with grid spacing of 1.00 Å and centered at
x = −51.08, y = 8.075, and z = −62.481. Autodock Vina was configured for 1000 modes and
an exhaustiveness of 1000. The lowest energy mode was aligned to the receiver structure
for analysis. Both pymol 2.5 (https://pymol.org, accessed on 30 March 2024) and Discovery
Studio 2021 (https://discover.3ds.com/discovery-studio-visualizer-download, accessed
on 30 March 2024) were used to visualize the protein–ligand interaction.

5. Conclusions

With a straightforward methodology, this two-step synthesis allowed us to obtain the
compound of interest at an overall yield of 70%. Based on the results of the docking studies
carried out, this compound has the potential to be an inhibitor of the alpha-glucosidase
enzyme and, thus, an antidiabetic drug.

Supplementary Materials: 1H and 13C NMR spectra of compounds 3 and 5 are available online.
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