Synthesis and Antimicrobial Evaluation of 2-[2-(9H-Fluoren-9-ylidene)hydrazin-1-yl]-1,3-thiazole Derivatives
Abstract
:1. Introduction
2. Results and Discussion
Synthesis and Characterization
3. Materials and Methods
Chemistry
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mishra, R.; Sachan, N.; Kumar, N.; Mishra, I.; Chand, P. Thiophene Scaffold as Prospective Antimicrobial Agent: A Review. J. Heterocycl. Chem. 2018, 55, 2019–2034. [Google Scholar] [CrossRef]
- Mishra, I.; Mishra, R.; Mujwar, S.; Chandra, P.; Sachan, N. A Retrospect on Antimicrobial Potential of Thiazole Scaffold. J. Heterocycl. Chem. 2020, 57, 2304–2329. [Google Scholar] [CrossRef]
- Gürsoy, E.; Güzeldemirci, N.U. Synthesis and Primary Cytotoxicity Evaluation of New Imidazo[2,1-b]Thiazole Derivatives. Eur. J. Med. Chem. 2007, 42, 320–326. [Google Scholar] [CrossRef]
- Aridoss, G.; Amirthaganesan, S.; Kim, M.S.; Kim, J.T.; Jeong, Y.T. Synthesis, Spectral and Biological Evaluation of Some New Thiazolidinones and Thiazoles Based on t-3-Alkyl-r-2,c-6-Diarylpiperidin-4-Ones. Eur. J. Med. Chem. 2009, 44, 4199–4210. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, S.J.; Garg, V.K.; Sharma, P.K.; Kumar, N.; Dudhe, R.; Gupta, J.K. Thiazoles: Having Diverse Biological Activities. Med. Chem. Res. 2012, 21, 2123–2132. [Google Scholar] [CrossRef]
- Abdel-Wahab, B.F.; Khidre, R.E.; Awad, G.E.A. Design and Synthesis of Novel 6-(5-Methyl-1H-1,2,3-Triazol-4-Yl)-5-[(2-(Thiazol-2-Yl)Hydrazono)Methyl]Imidazo[2,1-b]Thiazoles as Antimicrobial Agents. J. Heterocycl. Chem. 2017, 54, 489–494. [Google Scholar] [CrossRef]
- Abu-Melha, S.; Edrees, M.M.; Salem, H.H.; Kheder, N.A.; Gomha, S.M.; Abdelaziz, M.R. Synthesis and Biological Evaluation of Some Novel Thiazole-Based Heterocycles as Potential Anticancer and Antimicrobial Agents. Molecules 2019, 24, 539. [Google Scholar] [CrossRef]
- Althagafi, I.; El-Metwaly, N.; Farghaly, T.A. New Series of Thiazole Derivatives: Synthesis, Structural Elucidation, Antimicrobial Activity, Molecular Modeling and MOE Docking. Molecules 2019, 24, 1741. [Google Scholar] [CrossRef] [PubMed]
- Deshineni, R.; Velpula, R.; Koppu, S.; Pilli, J.; Chellamella, G. One-pot Multi-component Synthesis of Novel Ethyl-2-(3-((2-(4-(4-aryl)Thiazol-2-yl)Hydrazono)Methyl)-4-hydroxy/Isobutoxyphenyl)-4-methylthiazole-5-carboxylate Derivatives and Evaluation of Their in Vitro Antimicrobial Activity. J. Heterocycl. Chem. 2020, 57, 1361–1367. [Google Scholar] [CrossRef]
- Jagadale, S.; Chavan, A.; Shinde, A.; Sisode, V.; Bobade, V.D.; Mhaske, P.C. Synthesis and Antimicrobial Evaluation of New Thiazolyl-1,2,3-Triazolyl-Alcohol Derivatives. Med. Chem. Res. 2020, 29, 989–999. [Google Scholar] [CrossRef]
- Minickaitė, R.; Grybaitė, B.; Vaickelionienė, R.; Kavaliauskas, P.; Petraitis, V.; Petraitienė, R.; Tumosienė, I.; Jonuškienė, I.; Mickevičius, V. Synthesis of Novel Aminothiazole Derivatives as Promising Antiviral, Antioxidant and Antibacterial Candidates. Int. J. Mol. Sci. 2022, 23, 7688. [Google Scholar] [CrossRef] [PubMed]
- Cascioferro, S.; Parrino, B.; Carbone, D.; Schillaci, D.; Giovannetti, E.; Cirrincione, G.; Diana, P. Thiazoles, Their Benzofused Systems, and Thiazolidinone Derivatives: Versatile and Promising Tools to Combat Antibiotic Resistance. J. Med. Chem. 2020, 63, 7923–7956. [Google Scholar] [CrossRef] [PubMed]
- Kavaliauskas, P.; Grybaitė, B.; Vaickelionienė, R.; Sapijanskaitė-Banevič, B.; Anusevičius, K.; Kriaučiūnaitė, A.; Smailienė, G.; Petraitis, V.; Petraitienė, R.; Naing, E.; et al. Synthesis and Development of N-2,5-Dimethylphenylthioureido Acid Derivatives as Scaffolds for New Antimicrobial Candidates Targeting Multidrug-Resistant Gram-Positive Pathogens. Antibiotics 2023, 12, 220. [Google Scholar] [CrossRef] [PubMed]
- Sadek, B.; Al-Tabakha, M.M.; Fahelelbom, K.M.S. Antimicrobial Prospect of Newly Synthesized 1,3-Thiazole Derivatives. Molecules 2011, 16, 9386–9396. [Google Scholar] [CrossRef] [PubMed]
- Arshad, M.F.; Alam, A.; Alshammari, A.A.; Alhazza, M.B.; Alzimam, I.M.; Alam, M.A.; Mustafa, G.; Ansari, M.S.; Alotaibi, A.M.; Alotaibi, A.A.; et al. Thiazole: A Versatile Standalone Moiety Contributing to the Development of Various Drugs and Biologically Active Agents. Molecules 2022, 27, 3994. [Google Scholar] [CrossRef] [PubMed]
- Al-Omair, M.A.; Sayed, A.R.; Youssef, M.M. Synthesis and Biological Evaluation of Bisthiazoles and Polythiazoles. Molecules 2018, 23, 1133. [Google Scholar] [CrossRef]
- Abdallah, A.M.; Gomha, S.M.; Zaki, M.E.A.; Abolibda, T.Z.; Kheder, N.A. A Green Synthesis, DFT Calculations, and Molecular Docking Study of Some New Indeno[2,1-b]Quinoxalines Containing Thiazole Moiety. J. Mol. Struct. 2023, 1292, 136044. [Google Scholar] [CrossRef]
- Ivasechko, I.; Yushyn, I.; Roszczenko, P.; Senkiv, J.; Finiuk, N.; Lesyk, D.; Holota, S.; Czarnomysy, R.; Klyuchivska, O.; Khyluk, D.; et al. Development of Novel Pyridine-Thiazole Hybrid Molecules as Potential Anticancer Agents. Molecules 2022, 27, 6219. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, Y.; Lu, L.; Cen, J.; Wu, Z.; Yang, B.; Zhu, C.; Cao, J.; Yu, Y.; Chen, W. Identification of 5-Thiocyanatothiazol-2-Amines Disrupting WDR5-MYC Protein-Protein Interactions. ACS Med. Chem. Lett. 2024, 15, 1143–1150. [Google Scholar] [CrossRef]
- Shahin, I.G.; Abutaleb, N.S.; Alhashimi, M.; Kassab, A.E.; Mohamed, K.O.; Taher, A.T.; Seleem, M.N.; Mayhoub, A.S. Evaluation of N-Phenyl-2-Aminothiazoles for Treatment of Multi-Drug Resistant and Intracellular Staphylococcus Aureus Infections. Eur. J. Med. Chem. 2020, 202, 112497. [Google Scholar] [CrossRef]
- Khayyat, A.N.; Mohamed, K.O.; Malebari, A.M.; El-Malah, A. Design, Synthesis, and Antipoliferative Activities of Novel Substituted Imidazole-Thione Linked Benzotriazole Derivatives. Molecules 2021, 26, 5983. [Google Scholar] [CrossRef] [PubMed]
- Fouad, M.A.; Zaki, M.Y.; Lotfy, R.A.; Mahmoud, W.R. Insight on a New Indolinone Derivative as an Orally Bioavailable Lead Compound against Renal Cell Carcinoma. Bioorg. Chem. 2021, 112, 104985. [Google Scholar] [CrossRef]
- Liu, W.; Tao, C.; Tang, L.; Li, J.; Jin, Y.; Zhao, Y.; Hu, H. A Convenient and Efficient Synthesis of Heteroaromatic Hydrazone Derivatives via Cyclization of Thiosemicarbazone with Ω-bromoacetophenone. J. Heterocycl. Chem. 2011, 48, 361–364. [Google Scholar] [CrossRef]
- Sim, K.-M.; Chung, L.-P.; Tan, K.-L.; Tan, Y.-T.; Kee, X.-L.; Teo, K.-C. One-Pot Multicomponent Synthesis of Hydrazinyl Thiazoles Bearing an Isatin Moiety in Aqueous Medium. Lett. Org. Chem. 2024, 21, 192–200. [Google Scholar] [CrossRef]
- Wang, Y.T.; Huang, X.; Cai, X.C.; Kang, X.X.; Zhu, H.L. Synthesis, Biological Evaluation and Molecular Docking of Thiazole Hydrazone Derivatives Grafted with Indole as Novel Tubulin Polymerization Inhibitors. J. Mol. Struct. 2024, 1301, 137343. [Google Scholar] [CrossRef]
- Urade, R.; Chang, W.-T.; Ko, C.-C.; Li, R.-N.; Yang, H.-M.; Chen, H.-Y.; Huang, L.-Y.; Chang, M.-Y.; Wu, C.-Y.; Chiu, C.-C. A Fluorene Derivative Inhibits Human Hepatocellular Carcinoma Cells by ROS-Mediated Apoptosis, Anoikis and Autophagy. Life Sci. 2023, 329, 121835. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Yu, J.; Qiu, Q.; Liao, R.; Zhang, S.; Luo, C. Reduction-Hypersensitive Podophyllotoxin Prodrug Self-Assembled Nanoparticles for Cancer Treatment. Pharmaceutics 2023, 15, 784. [Google Scholar] [CrossRef]
- Vlad, I.M.; Nuță, D.C.; Ancuceanu, R.V.; Costea, T.; Coanda, M.; Popa, M.; Marutescu, L.G.; Zarafu, I.; Ionita, P.; Pirvu, C.E.D.; et al. Insights into the Microbicidal, Antibiofilm, Antioxidant and Toxicity Profile of New O-Aryl-Carbamoyl-Oxymino-Fluorene Derivatives. Int. J. Mol. Sci. 2023, 24, 7020. [Google Scholar] [CrossRef] [PubMed]
- Pasieka, A.; Panek, D.; Zaręba, P.; Sługocka, E.; Gucwa, N.; Espargaró, A.; Latacz, G.; Khan, N.; Bucki, A.; Sabaté, R.; et al. Novel Drug-like Fluorenyl Derivatives as Selective Butyrylcholinesterase and β-Amyloid Inhibitors for the Treatment of Alzheimer’s Disease. Bioorg. Med. Chem. 2023, 88–89, 117333. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, J.-K.; Wang, J.; Wang, N.-L.; Kurihara, H.; Kitanaka, S.; Yao, X.-S. Bioactive Bibenzyl Derivatives and Fluorenones from Dendrobium Nobile. J. Nat. Prod. 2007, 70, 24–28. [Google Scholar] [CrossRef]
- Ray, S.; Pathak, S.R.; Chaturvedi, D. Organic Carbamates in Drug Development. Part II: Antimicrobial Agents—Recent Reports. Drugs Future 2005, 30, 0161. [Google Scholar] [CrossRef]
- Parašotas, I.; Anusevičius, K.; Vaickelionienė, R.; Jonuškienė, I.; Stasevych, M.; Zvarych, V.; Komarovska-Porokhnyavets, O.; Novikov, V.; Belyakov, S.; Mickevicius, V. Synthesis and Evaluation of the Antibacterial, Antioxidant Activities of Novel Functionalized Thiazole and Bis(Thiazol-5-Yl)Methane Derivatives. Arkivoc 2018, 2018, 240–256. [Google Scholar] [CrossRef]
- Youssef, N.S.; El Zahany, E.A.; Anwar, M.M.; Hassan, S.A. Synthesis, Characterization, and Antitumor Activity of Some Metal Complexes with Schiff Bases Derived from 9-Fluorenone as a Polycyclic Aromatic Compound. Phosphorus Sulfur Silicon Relat. Elem. 2008, 184, 103–125. [Google Scholar] [CrossRef]
- Pavlenko, A.F.; Moshchitskii, S.D. Synthesis of Physiologically Active Compounds of the Thiosemicarbazone Series and Derivatives. Chem. Heterocycl. Compd. 1967, 3, 195–196. [Google Scholar] [CrossRef]
- Doddagaddavalli, M.A.; Kalalbandi, V.K.A.; Naik, T.R.R.; Joshi, S.D.; Seetharamappa, J. Fluorenone–Thiazolidine-4-One Scaffolds as Antidiabetic and Antioxidant Agents: Design, Synthesis, X-ray Crystal Structures, and Binding and Computational Studies. New J. Chem. 2023, 47, 13581–13599. [Google Scholar] [CrossRef]
- Kaur, A.P.; Gautam, D. Ultrasound Aided Expedient Synthesis, Characterization and Antimicrobial Studies of Fluorenyl-Hydrazono-Thiazole Derivatives. Asian J. Chem. 2019, 31, 2245–2248. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anusevičius, K.; Stebrytė, I.; Kavaliauskas, P. Synthesis and Antimicrobial Evaluation of 2-[2-(9H-Fluoren-9-ylidene)hydrazin-1-yl]-1,3-thiazole Derivatives. Molbank 2024, 2024, M1872. https://doi.org/10.3390/M1872
Anusevičius K, Stebrytė I, Kavaliauskas P. Synthesis and Antimicrobial Evaluation of 2-[2-(9H-Fluoren-9-ylidene)hydrazin-1-yl]-1,3-thiazole Derivatives. Molbank. 2024; 2024(3):M1872. https://doi.org/10.3390/M1872
Chicago/Turabian StyleAnusevičius, Kazimieras, Ignė Stebrytė, and Povilas Kavaliauskas. 2024. "Synthesis and Antimicrobial Evaluation of 2-[2-(9H-Fluoren-9-ylidene)hydrazin-1-yl]-1,3-thiazole Derivatives" Molbank 2024, no. 3: M1872. https://doi.org/10.3390/M1872
APA StyleAnusevičius, K., Stebrytė, I., & Kavaliauskas, P. (2024). Synthesis and Antimicrobial Evaluation of 2-[2-(9H-Fluoren-9-ylidene)hydrazin-1-yl]-1,3-thiazole Derivatives. Molbank, 2024(3), M1872. https://doi.org/10.3390/M1872