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Abstract: During the purification of a reported compound named 1,3-dihydrobenzo[c]thiophene, we
isolated an unexpected molecule in one of the chromatography fractions by serendipity. Structural
elucidation using common techniques such as 1D and 2D NMR, and mass spectrometry revealed the
nature of this novel product characterized as cyclo[tri(thiomethyl-1,2-phenylmethylene)].
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1. Introduction

Macrocycles are an important group of compounds that have garnered great interest
owing to their pharmaceutical activity and capacity to coordinate metallic atoms [1,2].
Indeed, some of these molecular rings can be found in living organisms, playing important
roles in many biological processes [3]. Among the different macrocycles, crown ethers are
one of the most famous types due to their ability to create host–guest complexes, which
entailed significant advances in supramolecular chemistry and phase transfer catalysis
in the last century [4]. As a result, Pedersen received the 1987 Nobel Prize in Chemistry,
shared with Lehn and Cram, for his contribution to new synthetic routes for preparing this
type of molecules [5].

Despite their notorious ability to complex transition metals, inter alia, the first gen-
eration of crown ether-based molecular hosts lack specificity and chelate diverse-sized
cations indiscriminately. To tackle this issue, the community has introduced two main
strategies: (i) the rigidification of the macrocycle skeleton to preserve a unique size for the
host cavity and (ii) the use of different heteroatoms with higher attraction toward certain
metallic centers [4,6,7]. In this sense, the first introductions of thioether groups into crown
ether structures were performed to prepare more specific host systems, such as noble–metal
complexes [8,9]. Nevertheless, the synthesis of pure thia crown ethers incorporating only
sulfur as anchoring positions remains overlooked, with the exception of the more attractive
cyclophanes [10–13] (Figure 1a,b).
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1. Introduction 
Macrocycles are an important group of compounds that have garnered great interest 

owing to their pharmaceutical activity and capacity to coordinate metallic atoms [1,2]. In-
deed, some of these molecular rings can be found in living organisms, playing important 
roles in many biological processes [3]. Among the different macrocycles, crown ethers are 
one of the most famous types due to their ability to create host–guest complexes, which 
entailed significant advances in supramolecular chemistry and phase transfer catalysis in 
the last century [4]. As a result, Pedersen received the 1987 Nobel Prize in Chemistry, 
shared with Lehn and Cram, for his contribution to new synthetic routes for preparing 
this type of molecules [5]. 

Despite their notorious ability to complex transition metals, inter alia, the first gener-
ation of crown ether-based molecular hosts lack specificity and chelate diverse-sized cati-
ons indiscriminately. To tackle this issue, the community has introduced two main strat-
egies: (i) the rigidification of the macrocycle skeleton to preserve a unique size for the host 
cavity and (ii) the use of different heteroatoms with higher attraction toward certain me-
tallic centers [4,6,7]. In this sense, the first introductions of thioether groups into crown 
ether structures were performed to prepare more specific host systems, such as noble–
metal complexes [8,9]. Nevertheless, the synthesis of pure thia crown ethers incorporating 
only sulfur as anchoring positions remains overlooked, with the exception of the more 
attractive cyclophanes [10–13] (Figure 1a,b). 

Herein, we prepared a new symmetric thia crown ether containing only sulfur atoms 
as chelating positions by serendipity. The 15-membered macrocycle presents a star shape 
with a C3 axis of symmetry and enhanced structural rigidity endowed by the phenyl rings 
embedded in its backbone, leading to highly specific host–guest interactions. 
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Figure 1. (a,b) Analog S3 thia crown ethers with C3 symmetry [12,13] and (c) the new molecule
highlighted in this short note.
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Herein, we prepared a new symmetric thia crown ether containing only sulfur atoms
as chelating positions by serendipity. The 15-membered macrocycle presents a star shape
with a C3 axis of symmetry and enhanced structural rigidity endowed by the phenyl rings
embedded in its backbone, leading to highly specific host–guest interactions.

2. Results and Discussion

Enrolled in the synthesis of 1,3-dihydrobenzo[c]thiophene (1) via nucleophilic substi-
tution of 1,2-bis(chloromethyl)benzene by a sulfur dianion (Scheme 1), we realized that the
crude thin-layer chromatography (TLC) displayed two other spots below the one described
in the literature for the desired product (F1: Rf = 0.82; F2: Rf = 0.53; F3: Rf = 0.29; eluent:
Hep/AcOEt, 9/1) [14]. In addition to the benzothiophene derivative 1 (F1), we also iso-
lated the two lower fractions via column chromatography in order to understand the side
reactions and work on yield improvement. The two unexpected compounds resulted in
poor yields compared to the 77% observed for 1.
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is synthesized, in a poor 2% yield, as a minor side product during the preparation of 1. 

Scheme 1. Synthetic conditions for the synthesis of 1, 2, and 3.

Analyzed by 1H-NMR, the three compounds showcased two sets of peaks integrat-
ing by the same number of protons: two doublet of doublets (dd) in the aromatic re-
gion (7.70–7.20 ppm), presumably ascribed to ABB’ systems, and a singlet (s) in the
aliphatic region (4.40–3.40 ppm) from the benzyl mercaptan moiety (Figures 2 and S1–S6).
These observations indicate that the three fractions share similar scaffolds with a high
degree of symmetry. As expected, the signals of the less polar compound match per-
fectly with the ones reported for the desired product 1,3-dihydrobenzo[c]thiophene [14].
On the other hand, the compound isolated in F2 presents a deshielding effect in the
aromatic signals and a singlet shielded compared with 1. After an exhaustive investiga-
tion of the literature, we determined that the latter could be characterized as 2,9,11,18-
tetrahydrodibenzo[c,h][1,10]dithiecine (2), as we found that Kreber et al. already reported
in 1991 in the Chemische Berichte journal (only in Germany) the possible formation of 2 as
a side product during the synthesis of benzo[c]thiophenes, due to the excess of Na2S in
the reaction media [15]. However, no clue about a third by-product was detected in old
or modern journals. According to the NMR profiles and the nature of the F2, we started
speculating that the unknown third fraction could be the product of the coupling between
more than two bis(chloromethyl)benzenes, presumably three, bridged by the nucleophilic
substitution of the same number of S2−. Eventually, the structure was confirmed using mass
spectrometry (TOF MS CI+) (Figure S7), concluding that the 15-membered thia crown ether
3 is synthesized, in a poor 2% yield, as a minor side product during the preparation of 1.
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Figure 2. Aromatic and aliphatic stacked region of the 1H-NMR spectra (300 MHz, CDCl3, 25 ◦C)
obtained from the three products purified during the synthesis of 1,3-dihydrobenzo[c]thiophene, 1,
2 and 3.

3. Materials and Methods

The solvents were purchased from commercial suppliers. 1,2-bis(chloromethyl)benzene
was purchased from BLDpharm (Shanghai, China) and Na2S from Merck
(Darmstadt, Germany).

NMR spectroscopy and mass spectrometry were performed by the appropriate services
of the Toulouse Institute of Chemistry (ICT–UAR 2599).

1H and 13C-NMR spectra were recorded on Bruker Avance III HD 400 MHz (probe
5 mm TBO ATMA) and Avance NEO 300 MHz (probe 5 mm BBFO ATM) spectrometers
(Billerica, MA, USA). Chemical shifts (δ) are reported in ppm. Coupling constants (J) are
given in Hz, and the following abbreviations have been used to describe the signals: singlet
(s); doublet (d); and multiplet (m). Full assignments of 1H and 13C NMR spectra were made
with the assistance of HMBC, HSQC, and NOESY spectra. High-resolution mass spectra
(HR-MS) were performed with a Waters GCT Premier spectrometer (Milford, MA, USA)
for desorption chemical ionization (DCI-CH4). The melting point was measured using a
Kofler hot bench. IR spectra were run using KBr pellet samples in the 400–4000 cm−1 range
on an FTIR spectrometer Spectrum 100 from Perkin-Elmer (Wellesley, MA, USA).

The density functional theory (DFT) single-point geometry optimization was car-
ried out with Guassian16 at PBE1PBE/6-311+g(d,p) level, applying the D3 version of
Grimme’s dispersion.

Synthesis of Cyclo[tri(thiomethyl-1,2-phenylmethylene)] (3)

To a refluxed solution of sodium sulfide (2.34 g, 29.98 mmol) in EtOH (68 mL) and
water (14 mL), 1,2-bis(chloromethyl)benzene (2.5 mL, 19.34 mmol) was added through
a Soxhlet extractor with the help of the refluxing solvent. After the total addition of
the reagent, the reaction was refluxed for an additional 40 min. Thereafter, the reaction
was cooled down to room temperature, and the solvent evaporated. The residual oil
was extracted with dichloromethane, washed with water, and the organic layer dried
over MgSO4. The solvent was evaporated under vacuum, and the crude was purified
by column chromatography (eluent: heptane/EtOAc, 9:1). The first fraction (1) was
obtained as a yellowish oil (2.02 g, 77% yield). 1H NMR (300 MHz, CDCl3): δ (ppm)
7.30–7.18 (m, 4H), 4.28 (s, 4H), according to the literature [14]. The second fraction (2) was
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recovered as a crystalline white solid (400 mg, 8% yield). 1H NMR (300 MHz, CDCl3): δ
(ppm) 7.61 (dd, J = 5.8, 3.5 Hz, 4H), 7.28 (dd, J = 5.8, 3.5 Hz, 4H), 3.45 (s, 8H), as reported
in the literature [15]. Eventually, the macrocycle 3 was isolated in the third fraction as
a white powder (81 mg, 2%). 1H NMR (400 MHz, CDCl3): δ (ppm) 7.35 (dd, J = 5.6,
3.5 Hz, 6H), 7.21 (dd, J = 5.7, 3.4 Hz, 6H), 3.88 (s, 12H). 13C NMR (100 MHz, CDCl3): δ

(ppm) 136.1, 130.6, 127.7, 34.8. HRMS (MALDI-TOF-CI+): m/z calcd for C24H24S3: 408.1040,
found: 408.1032 [M+] and 409.1116 [M+H+]. IR (KBr): 3063–3016 cm−1 (Csp2-H, Ar),
2946–2859 cm−1(Csp3-H), 1609-1427 cm−1 (C=C, Ar + -CH2-), 743–722 (C-H, o-Ar + C-S-C).
Melting Point: decomposes at 200 ◦C.

4. Conclusions

Herein, we have reported the synthesis and purification of a 15-membered thia crown
ether obtained as a side product in the preparation of 1,3-dihydrobenzo[c]thiophene. The
chemical structure was elucidated using NMR and MS spectrometry, adding a new com-
pound to this rare family of macrocycles with potential application in coordination chem-
istry and pharmacology.

Supplementary Materials: NMR spectroscopy, MS spectrometry, IR spectroscopy, and DFT.
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