Ammonium Oxathioamidate
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Methods
3.2. X-Ray Diffraction Analysis
3.3. Synthesis of Ammonium Oxathioamidate (1)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ogbu, I.M.; Lusseau, J.; Kurtay, G.; Robert, F.; Landais, Y. Urethanes Synthesis from Oxamic Acids under Electrochemical Conditions. Chem. Commun. 2020, 56, 12226–12229. [Google Scholar] [CrossRef] [PubMed]
- Ogbu, I.M.; Kurtay, G.; Robert, F.; Landais, Y. Oxamic Acids: Useful Precursors of Carbamoyl Radicals. Chem. Commun. 2022, 58, 7593–7607. [Google Scholar] [CrossRef] [PubMed]
- Qiao, T.; Xiong, Y.; Feng, Y.; Guo, W.; Zhou, Y.; Zhao, J.; Jiang, T.; Shi, C.; Han, Y. Inhibition of LDH-A by Oxamate Enhances the Efficacy of Anti-PD-1 Treatment in an NSCLC Humanized Mouse Model. Front. Oncol. 2021, 11, 1033. [Google Scholar] [CrossRef]
- Miskimins, W.K.; Ahn, H.J.; Kim, J.Y.; Ryu, S.; Jung, Y.-S. Synergistic Anti-Cancer Effect of Phenformin and Oxamate. PLoS ONE 2014, 9, 85576. [Google Scholar] [CrossRef]
- Maiore, L.; Aragoni, M.C.; Carcangiu, G.; Cocco, O.; Isaia, F.; Lippolis, V.; Meloni, P.; Murru, A.; Slawin, A.M.Z.; Tuveri, E.; et al. Oxamate Salts as Novel Agents for the Restoration of Marble and Limestone Substrates: Case Study of Ammonium N-Phenyloxamate. New J. Chem. 2016, 40, 2768–2774. [Google Scholar] [CrossRef]
- Pintus, A.; Aragoni, M.C.; Carcangiu, G.; Caria, V.; Coles, S.J.; Dodd, E.; Giacopetti, L.; Gimeno, D.; Lippolis, V.; Meloni, P.; et al. Ammonium N-(Pyridin-2-ylmethyl)Oxamate (AmPicOxam): A Novel Precursor of Calcium Oxalate Coating for Carbonate Stone Substrates. Molecules 2023, 28, 5768. [Google Scholar] [CrossRef]
- Pintus, A.; Aragoni, M.C.; Carcangiu, G.; Giacopetti, L.; Isaia, F.; Lippolis, V.; Maiore, L.; Meloni, P.; Arca, M. Density Functional Theory Modelling of Protective Agents for Carbonate Stones: A Case Study of Oxalate and Oxamate Inorganic Salts. New J. Chem. 2018, 42, 11593–11600. [Google Scholar] [CrossRef]
- Podda, E.; Dodd, E.; Arca, M.; Aragoni, M.C.; Lippolis, V.; Coles, S.J.; Pintus, A. N,N′-Dipropyloxamide. Molbank 2024, 2024, M1753. [Google Scholar] [CrossRef]
- Podda, E.; Dodd, E.; Arca, M.; Aragoni, M.C.; Lippolis, V.; Coles, S.J.; Pintus, A. N,N′-Dibutyloxamide. Molbank 2023, 2023, M1677. [Google Scholar] [CrossRef]
- Hsy, Y.F.; Chen, J.D. Syntheses and Structural Characterization of AgI Complexes with the N,N’-Di(2-pyridyl)oxamide Ligand. Eur. J. Inorg. Chem. 2004, 2004, 1488–1493. [Google Scholar] [CrossRef]
- Ibarra-Rodríguez, M.; Rasika Dias, H.V.; Jiménez-Pérez, V.M.; Muñoz-Flores, B.M.; Flores-Parra, A.; Sánchez, S. Dinuclear Tin(II) Complex of a Bulky cis-Oxamide: Synthesis, Characterization, Crystal Structure, and DFT Studies. Z. Anorg. Allg. Chem. 2012, 638, 1486–1490. [Google Scholar] [CrossRef]
- Aakeröy, C.B.; Hughes, D.P.; Nieuwenhuyzen, M. The Oxamate Anion: A Flexible Building Block of Hydrogen-Bonded Architectures for Crystal Engineering. J. Am. Chem. Soc. 1996, 118, 10134–10140. [Google Scholar] [CrossRef]
- Oliveira, W.X.C.; do Pim, W.D.; Pinheiro, C.B.; Journaux, Y.; Julve, M.; Pereira, C.L.M. Monitoring the hydrogen bond net configuration and the dimensionality of aniline and phenyloxamate by adding 1H-pyrazole and isoxazole as substituents for molecular self- recognition. CrystEngComm 2019, 21, 2818–2833. [Google Scholar] [CrossRef]
- Lauher, J.W.; Fowler, F.W.; Goroff, N.S. Single-Crystal-to-Single-Crystal Topochemical Polymerizations by Design. Acc. Chem. Res. 2008, 41, 1215–1229. [Google Scholar] [CrossRef]
- Curtis, S.M.; Le, N.; Fowler, F.W.; Lauher, J.W. A Rational Approach to the Preparation of Polydipyridyldiacetylenes: An Exercise in Crystal Design. Cryst. Growth Des. 2005, 5, 2313–2321. [Google Scholar] [CrossRef]
- Nowick, J.S. Exploring β-Sheet Structure and Interactions with Chemical Model Systems. Acc. Chem. Res. 2008, 41, 1319–1330. [Google Scholar] [CrossRef]
- Frkanec, L.; Žinić, M. Chiral Bis(Amino Acid)- and Bis(Amino Alcohol)-Oxalamide Gelators. Gelation Properties, Self-Assembly Motifs and Chirality Effects. Chem. Commun. 2010, 46, 522–537. [Google Scholar] [CrossRef]
- Makarević, J.; Jokić, M.; Frkanec, L.; Katalenić, D.; Žinić, M. Gels with Exceptional Thermal Stability Formed by Bis(Amino Acid) Oxalamide Gelators and Solvents of Low Polarity. Chem. Commun. 2002, 2238–2239. [Google Scholar] [CrossRef]
- Hurd, R.N.; De La Mater, G.; McElheny, G.C.; Turner, R.J.; Wallingford, V.H. Preparation of Dithiooxamide Derivatives. J. Org. Chem. 1961, 26, 3980–3987. [Google Scholar] [CrossRef]
- Roesky, H.W.; Hofmann, H.; Clegg, W.; Noltemayer, M.; Scheldrick, G.M. Preparation and crystal structure of cyclic dithiooxamides. Inorg. Chem. 1982, 21, 3798–3800. [Google Scholar] [CrossRef]
- Veit, R.; Girerd, J.-J.; Kahn, O.; Robert, R.; Jeannin, Y. Copper(II) and Nickel(II) Trinuclear Species with Dithiooxamide Derivative Ligands: Structural, Magnetic, Spectroscopic, and Electrochemical Properties. Inorg. Chem. 1986, 25, 4175–4180. [Google Scholar] [CrossRef]
- Baggio, R.; Garland, M.-T.; Perec, M. Synthesis and solid-state structural characterization of N,N′-dicyclohexyldithiooxamide complexes of HgX2(X = SCN or Cl). J. Chem. Soc. Dalton Trans. 1995, 987–992. [Google Scholar] [CrossRef]
- Arca, M.; Demartin, F.; Devillanova, F.A.; Isaia, F.; Lelj, F.; Lippolis, V.; Verani, G. An experimental and theoretical approach to the study of the properties of parabanic acid and related compounds: Synthesis and crystal structure of diethylimidazolidine-2-selone-4,5-dione. Can. J. Chem. 2000, 78, 1147–1157. [Google Scholar] [CrossRef]
- Jain, A.K.; Gupta, V.K.; Raisoni, J.R. A newly synthesized macrocyclic dithioxamide receptor for phosphate sensing. Talanta 2006, 69, 1007–1012. [Google Scholar] [CrossRef] [PubMed]
- Hereygers, M.L.B.F.; Desseyn, H.O.; Perlepes, S.P.; Verhulst, K.A.F.; Lenstra, A.T.H. The crystal structure and vibrational spectra of potassium oxathioamidate. J. Chem. Crystallogr. 1995, 25, 181–187. [Google Scholar] [CrossRef]
- Reed, A.E.; Curtiss, L.A.; Weinhold, F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev. 1988, 88, 899–926. [Google Scholar] [CrossRef]
- Etter, M.C. Encoding and Decoding Hydrogen-Bond Patterns of Organic Compounds. Acc. Chem. Res. 1990, 23, 120–126. [Google Scholar] [CrossRef]
- Vogel, L.; Wonner, P.; Huber, S.M. Chalcogen Bonding: An Overview. Angew. Chem. Int. Ed. 2019, 58, 1880–1891. [Google Scholar] [CrossRef]
- Scilabra, P.; Terraneo, G.; Resnati, G. The Chalcogen Bond in Crystalline Solids: A World Parallel to Halogen Bond. Acc. Chem. Res. 2019, 52, 1313–1324. [Google Scholar] [CrossRef]
- Aragoni, M.C.; Arca, M.; Lippolis, V.; Pintus, A.; Torubaev, Y.; Podda, E. A Structural Approach to the Strength Evaluation of Linear Chalcogen Bonds. Molecules 2023, 28, 3133. [Google Scholar] [CrossRef]
- Adamo, C.; Barone, V. Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models. J. Chem. Phys. 1998, 108, 664–675. [Google Scholar] [CrossRef]
- CrystalClear-SM Expert, v2.1.; Rigaku Americas: The Woodlands, TX, USA; Rigaku Corporation: Tokyo, Japan, 2015.
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal structure determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- CrystalStructure, v4.3.0.; Rigaku Americas: The Woodlands, TX, USA; Rigaku Corporation: Tokyo, Japan, 2018.
Interaction | dD–H/S (Å) | dH/S∙∙∙A (Å) | dD∙∙∙A (Å) | αD–H/S···A (°) | |
---|---|---|---|---|---|
a | N4–H4A···O1 i | 0.92(2) | 1.98(2) | 2.8854(15) | 166.1(17) |
b | N4–H4B···O2 ii | 0.88(2) | 2.06(2) | 2.9246(15) | 164.9(16) |
c | N4–H4C···O2 | 0.90(2) | 2.01(2) | 2.8712(16) | 158.4(17) |
d | N4–H4D···S3 iii | 0.88(2) | 2.65(2) | 3.4214(13) | 146.1(16) |
e | N2 iii–H2B iii ···O2 | 0.877(17) | 1.974(17) | 2.8428(14) | 170.9(14) |
f | N2 iv–H2A iv ···O1 | 0.872(17) | 2.172(17) | 2.9395(14) | 146.6(14) |
g | C2–S3···S3 ii | 1.667(1) | 3.5833(7) | 5.233(1) | 169.92(5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aragoni, M.C.; Cordes, D.B.; Pintus, A.; Podda, E.; Serra, R.; Slawin, A.M.Z.; Woollins, J.D.; Arca, M. Ammonium Oxathioamidate. Molbank 2024, 2024, M1924. https://doi.org/10.3390/M1924
Aragoni MC, Cordes DB, Pintus A, Podda E, Serra R, Slawin AMZ, Woollins JD, Arca M. Ammonium Oxathioamidate. Molbank. 2024; 2024(4):M1924. https://doi.org/10.3390/M1924
Chicago/Turabian StyleAragoni, M. Carla, David B. Cordes, Anna Pintus, Enrico Podda, Riccardo Serra, Alexandra M. Z. Slawin, J. Derek Woollins, and Massimiliano Arca. 2024. "Ammonium Oxathioamidate" Molbank 2024, no. 4: M1924. https://doi.org/10.3390/M1924
APA StyleAragoni, M. C., Cordes, D. B., Pintus, A., Podda, E., Serra, R., Slawin, A. M. Z., Woollins, J. D., & Arca, M. (2024). Ammonium Oxathioamidate. Molbank, 2024(4), M1924. https://doi.org/10.3390/M1924