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Abstract: New 4-(benzoxazol-2-yl)phenyl 3-((3-chloro-1,4-naphthoquinon-2-yl)amino)phenyl sulfate
was synthesized via the SuFEx click reaction between fluorosulfate-containing 1,4-naphthoquinone
and 2-(4-hydroxyphenyl)benzoxazole. 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) was used as an
organic base, while triethylamine was inactive in this reaction.
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1. Introduction

A quinone molecular scaffold (Figure 1) is found in many synthetic and natural organic
compounds with various biological activities [1,2]. One of such effects is antitumor activity,
which stipulates obtaining new 1,4-naphthoquinone derivatives as prospective anticancer
agents [3].
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Figure 1. Structures of some biologically active 1,4-naphthoquinone derivatives. 

On the other hand, benzoxazole molecular scaffold (Figure 2) is one of the important 
heterocyclic moieties present in a range of biologically active compounds which possess 
antihistamine, anticonvulsant, antimicrobial, antiviral, antioxidant, anti-ulcer, antidepres-
sant, antitumor, or analgesic effects [4,5]. Some examples of known therapeutics contain-
ing the benzoxazole pharmacophore are shown in Figure 2 [6]. Moreover, numerous ben-
zoxazoles possess fluorescent properties and can be used as fluorescent labels [7]. 
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Figure 2. Structures of some biologically active benzoxazole derivatives. 

In this work, we synthesized the novel compound 4-(benzoxazol-2-yl)phenyl 3-((3-
chloro-1,4-naphthoquinon-2-yl)amino)phenyl sulfate, which includes both naphthoqui-
none and benzoxazole scaffolds. A product of this combination may exhibit beneficial 
properties from both moieties or demonstrate novel characteristics. 
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Figure 1. Structures of some biologically active 1,4-naphthoquinone derivatives.

On the other hand, benzoxazole molecular scaffold (Figure 2) is one of the important
heterocyclic moieties present in a range of biologically active compounds which possess an-
tihistamine, anticonvulsant, antimicrobial, antiviral, antioxidant, anti-ulcer, antidepressant,
antitumor, or analgesic effects [4,5]. Some examples of known therapeutics containing the
benzoxazole pharmacophore are shown in Figure 2 [6]. Moreover, numerous benzoxazoles
possess fluorescent properties and can be used as fluorescent labels [7].
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In this work, we synthesized the novel compound 4-(benzoxazol-2-yl)phenyl 3-((3-
chloro-1,4-naphthoquinon-2-yl)amino)phenyl sulfate, which includes both naphthoqui-
none and benzoxazole scaffolds. A product of this combination may exhibit beneficial 
properties from both moieties or demonstrate novel characteristics. 
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Figure 2. Structures of some biologically active benzoxazole derivatives.

In this work, we synthesized the novel compound 4-(benzoxazol-2-yl)phenyl 3-((3-
chloro-1,4-naphthoquinon-2-yl)amino)phenyl sulfate, which includes both naphthoquinone
and benzoxazole scaffolds. A product of this combination may exhibit beneficial properties
from both moieties or demonstrate novel characteristics.
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Joining molecular fragments via the sulfate linker can be achieved using the sulfur(VI)
fluoride exchange (SuFEx) click reaction, which has been successfully used for the synthesis
of small molecules [8,9] (Figure 3).
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Scheme 2. Synthesis of the title compound. 

The reaction was completed in 24 h and afforded the target product in 42% yield. 
Compound 4 is one of the first examples of molecules combining naphthoquinone and 
benzoxazole molecular scaffolds. 

Figure 3. The general scheme of SuFEx reaction for oxygen-containing substrates.

The SuFEx reaction can exploit the unique properties of the -SO2F group and was used
in this work for the synthesis of the title compound.

2. Results

Previously, we utilized the SuFEx reaction to obtain fluorosulfate-containing 1,4-
naphthoquinones [10] and synthesized 3-((3-chloro-1,4-naphthoquinon-2-yl)amino)phenyl
fluorosulfate (2) (Scheme 1) via the interaction between silyl ether 1 and SO2F2 in the
presence of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU). For this synthesis, we used a two-
chamber reactor where gaseous SO2F2 was generated in the first chamber through the
reaction between 1,1′-sulfonyldiimidazole (SDI), potassium fluoride, and formic acid. The
click reaction proceeded simultaneously in the second chamber.
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Further, we carried out the reaction between the naphthoquinone-based fluorosulfate
2 and 2-(4-hydroxyphenyl)benzoxazole in the presence of an organic base. For this study,
we tried to use two bases—triethylamine and DBU. The reaction with triethylamine did not
lead to a significant conversion of the starting materials. The synthesis in the presence of
DBU was successful and led to 4-(benzoxazol-2-yl)phenyl 3-((3-chloro-1,4-naphthoquinon-
2-yl)amino)phenyl sulfate (4) (Scheme 2).
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3. Materials and Methods
General Information and Compounds Synthesis

The LC/MS analysis utilized an Agilent Infinity chromatograph (Santa Clara, CA,
USA) coupled with an Accurate Mass QTOF 6530 mass detector (Santa Clara, CA, USA).
Liquid chromatography was performed using a Zorbax Eclipse Plus C18 column (1.8 µm
particle size, 2.1 × 50 mm dimensions) with a mobile phase of water and acetonitrile
(15:85% v/v) at a flow rate of 0.2 mL/min. The mass spectrometric detection employed
electrospray ionization (ESI) operating in positive mode. The NMR spectra were obtained
using a Bruker AVANCE III HD spectrometer (Billerica, MA, USA) operating at 400 MHz for
1H and 100 MHz for 13C nuclei. Fourier-transform infrared (FTIR) spectroscopic analysis
was conducted on an Agilent Cary 630 FTIR spectrometer (Santa Clara, CA, USA). The
UV–Vis spectrum was recorded on a SF-2000 UV–Vis spectrophotometer (OKB SPECTR
LLC, Saint-Petersburg, Russia). The melting point determination was performed using
a Cole-Parmer SMP30 Melting Point Apparatus (Staffordshire, UK) with a heating rate
of 3 ◦C/min. Reaction progress was monitored using thin-layer chromatography (TLC)
performed on silica gel 60 F254 plates which were manufactured by Merck (Rahway, NJ,
USA). Elemental analysis was performed with a Carlo Erba instrument (Waltham, MA,
USA).

Compounds 2 [10] and 3 [11,12] were prepared according to the literature methods.
4-(Benzoxazol-2-yl)phenyl 3-((3-chloro-1,4-naphthoquinon-2-yl)amino)phenyl sulfate (4).

Compounds 2 (0.25 mmol) and 3 (0.25 mmol) were placed in a round-bottom flask and
dissolved in dichloromethane (DCM, 3 mL). DBU (0.3 mmol) was added, and the resulting
mixture was stirred for 24 h at room temperature (TLC monitoring, eluent: hexane–ethyl
acetate, 8:2). Product 4 was purified using column chromatography on silica gel. Red-
orange crystals; yield 42%; M.p. 177.5–179.5 ◦C; 1H NMR (CDCl3), δ, ppm: 8.35 (2H, d,
J = 9 Hz, H-10, H-11), 8.15 (1H, d, J = 8 Hz, H-1), 8.11 (1H, d, J = 8 Hz, H-4), 7.79–7.81 (1H,
m, H-16), 7.75 (1H, t, J = 8 Hz, H-3), 7.69 (1H, t, J = 7 Hz, H-2), 7.64 (1H, s, NH), 7.59–7.62
(1H, m, H-13), 7.50 (2H, d, J = 9 Hz, H-9, H-12), 7.38–7.45 (3H, m, H-7, H-14, H-15), 7.18
(1H, d, J = 8 Hz, H-6), 7.07 (1H, d, J = 8 Hz, H-8), 7.01 (1H, s, H-5). The atom numbering
used for the 1H NMR signal assignment is shown in Figure 4. 13C NMR (CDCl3), δ, ppm:
180.3, 177.5, 161.6, 152.6, 150.9, 150.2, 141.1, 139.4, 136.1, 135.29, 135.26, 133.4, 132.4, 129.9,
129.8, 129.7, 127.4, 127.3, 125.9, 125.2, 123.2, 121.9, 120.3, 117.8, 117.0, 116.7, 111.0. Found,
%: C 60.56, H 2.83, N 4.92. C29H17ClN2O7S. Calculated, %: C 60.79, H 2.99, N 4.89. IR
spectrum, cm−1: 681 (C-Cl), 1338 (S=O), 1647 (arom.); 3277 (N-H). UV–Vis spectrum (ace-
tonitrile), λmax, nm (log ε): 276 (4.58), 458 (3.50). LC/MS (ESI+); m/z: 573.0519 [M + H]+

experimental ([C29H17ClN2O7S + H]+ = 573.0518 theor.), 595.0337 [M + Na]+ experimental
([C29H17ClN2O7S + Na]+ = 595.0337 theor.).
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([C29H17ClN2O7S + H]+ = 573.0518 theor.), 595.0337 [M + Na]+ experimental ([C29H17ClN2O7S 
+ Na]+ = 595.0337 theor.). 
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Figure 4. Atom numbering in molecule 4 used for the 1H NMR signal assignment. Figure 4. Atom numbering in molecule 4 used for the 1H NMR signal assignment.

The NMR, HRMS, IR, and UV–Vis spectra of compound 4 are shown in Figures S1–S5.
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4. Conclusions

In this work, we presented the synthesis and characterization of new compound 4
containing the benzoxazole and 1,4-naphthoquinone moieties. The title compound is of
great interest for further studies as a possible anticancer agent.

Supplementary Materials: Figures S1–S5: NMR, HRMS, IR, and UV–Vis spectra of compound 4.
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