
Citation: Kim, Y.; Kim, S.-G.

2-((3R,9bS)-5,5-Dioxido-2,3-dihydro-

9bH-benzo[4,5]isothiazolo[3,2-

b]oxazol-3-yl)-1-phenylethan-1-one.

Molbank 2024, 2024, M1931.

https://doi.org/10.3390/M1931

Academic Editor: Alberto Marra

Received: 19 November 2024

Revised: 3 December 2024

Accepted: 3 December 2024

Published: 5 December 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Short Note

2-((3R,9bS)-5,5-Dioxido-2,3-dihydro-9bH-
benzo[4,5]isothiazolo[3,2-b]oxazol-3-yl)-1-phenylethan-1-one
Yeongju Kim and Sung-Gon Kim *

Department of Chemistry, Kyonggi University, 154-42, Gwanggyosan-ro, Yeongtong-gu,
Suwon 16227, Republic of Korea
* Correspondence: sgkim123@kyonggi.ac.kr; Tel.: +82-31-249-9631

Abstract: A highly efficient method has been developed for preparing 2-((3R,9bS)-5,5-dioxido-2,3-
dihydro-9bH-benzo[4,5]isothiazolo[3,2-b]oxazol-3-yl)-1-phenylethan-1-one. This enantioenriched title
compound was obtained via an organocatalytic asymmetric [3+2]-cycloaddition of benzo[d]isothiazole
1,1-dioxide with (E)-4-hydroxy-1-phenylbut-2-en-1-one, using a bifunctional squaramide-based chiral
catalyst. The reaction yielded 99% of the product with high enantioselectivity and diastereoselectivity
(89:11 er and >20:1 dr). The structure of the newly synthesized compound was confirmed by 1H-,
13C-NMR, IR and mass spectral data.
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1. Introduction

Benzosultam derivatives, N-heterocycles featuring sulfonamide functionality within
their ring structure, are highly valued due to their wide-ranging bioactivities [1–6]. These
frameworks are frequently encountered in a variety of biologically active natural products,
pharmaceuticals, and agrochemicals, making them important for drug discovery (Figure 1).
In addition to their bioactive potential, benzosultams are versatile tools in organic chemistry,
functioning as chiral auxiliaries in asymmetric synthesis, protecting groups, and directed
metalation groups [7]. As a result, benzosultams are not only promising targets for new
drug development but also serve as crucial intermediates in synthetic methodologies. In
addition, oxazolidine N,O-heterocycles are notable as crucial building blocks in natural
products, displaying a wide range of important biological activities [8–12]. Building on our
research interest in the stereoselective synthesis of N,O-heterocycles using γ-hydroxy-α,β-
unsaturated carbonyl compounds [13,14], we considered that cyclic N-sulfonyl ketimine
and γ-hydroxy-α,β-unsaturated phenyl ketone would be suitable substrates for a cycload-
dition reaction, potentially leading to the synthesis of enantioenriched benzosultam-fused
oxazolidine derivatives.
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Figure 1. Representative examples of bioactive benzosultam scaffolds. 
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2. Results and Discussion

In our previous study [15], bifunctional cinchona-squaramide has proven to be an
efficient catalyst for asymmetric [3+2]- and [4+2]-cycloaddition reactions involving cyclic
N-sulfimines. Building on this, we anticipated that the cinchona-squaramide-catalyzed
[3+2]-cycloaddition of cyclic N-sulfonyl ketimine with γ-hydroxy-α,β-unsaturated phenyl
ketone would yield an enantioenriched benzosultam-fused oxazolidine. And we carried
out an asymmetric [3+2]-cycloaddition between benzo[d]isothiazole 1,1-dioxide (1) and
(E)-4-hydroxy-1-phenylbut-2-en-1-one (2) using the quinine-derived squaramide I (Figure 2)
as a catalyst in ClCH2CH2Cl at room temperature. This reaction successfully produced the
desired enantioenriched benzosultam-fused oxazolidine 3 with an excellent yield (99%)
and high diastereoselectivity and enantioselectivity (>20:1 dr and 89:11 er) (Scheme 1). The
structure of compound 3 was confirmed by 1H- and 13C-NMR, IR, and mass spectral data,
all of which were consistent with the proposed structure.
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Figure 2. Cinchona-squaramide catalyst I. 

The structure of compound 3 was confirmed by 1H- and 13C-NMR, IR, and mass spec-
tral data, all of which were consistent with the proposed structure. The diastereoselective 
ratio value was determined by 1H NMR analysis and the enantioselective ratio value was 
determined by chiral HPLC of the major diastereomer. All data are available in the Sup-
plementary Material File (Figures S1–S4 and Table S1). 

3. Materials and Methods 
3.1. General 

All reagents were used as received without further purification. Chromatographic 
purification of title compound 3 was accomplished using forced-flow chromatography on 
ICN 60 32–64 mesh silica gel 63 (Merck, Darmstadt, Germany). Thin-layer chromatography 
(TLC) (Merck, Darmstadt, Germany) was performed on EM Reagents 0.25 mm silica gel 60-
F plates. Developed chromatograms were visualized by fluorescence quenching and 
anisaldehyde stain. 1H- and 13C-NMR spectra were recorded on 400 MHz instrument 
(Bruker BioSpin GmbH, Karlsruhe, Germany) as noted, and are internally referenced to 
residual proton solvent signals. Data for 1H NMR are reported as follows: chemical shift 
(δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet), integration, cou-
pling constant (Hz), and assignment. Data for 13C-NMR are reported in terms of chemical 
shift. IR spectra were recorded on a Perkin–Elmer 1600 FT-IR spectrometer (Bruker Optics 
GmbH, Ettlingen, Germany), and reported in terms of frequency of absorption (cm−1). 
High-resolution mass spectrometry data were recorded on a JEOL JMS-700 M Station 
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Scheme 1. Synthesis of 2-((3R,9bS)-5,5-dioxido-2,3-dihydro-9bH-benzo[4,5]isothiazolo[3,2-b]oxazol-3-
yl)-1-phenylethan-1-one (3).

The structure of compound 3 was confirmed by 1H- and 13C-NMR, IR, and mass
spectral data, all of which were consistent with the proposed structure. The diastereoselec-
tive ratio value was determined by 1H NMR analysis and the enantioselective ratio value
was determined by chiral HPLC of the major diastereomer. All data are available in the
Supplementary Materials File (Figures S1–S4 and Table S1).

3. Materials and Methods
3.1. General

All reagents were used as received without further purification. Chromatographic
purification of title compound 3 was accomplished using forced-flow chromatography on
ICN 60 32–64 mesh silica gel 63 (Merck, Darmstadt, Germany). Thin-layer chromatography
(TLC) (Merck, Darmstadt, Germany) was performed on EM Reagents 0.25 mm silica gel
60-F plates. Developed chromatograms were visualized by fluorescence quenching and
anisaldehyde stain. 1H- and 13C-NMR spectra were recorded on 400 MHz instrument
(Bruker BioSpin GmbH, Karlsruhe, Germany) as noted, and are internally referenced to
residual proton solvent signals. Data for 1H NMR are reported as follows: chemical shift
(δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet), integration,
coupling constant (Hz), and assignment. Data for 13C-NMR are reported in terms of
chemical shift. IR spectra were recorded on a Perkin–Elmer 1600 FT-IR spectrometer (Bruker
Optics GmbH, Ettlingen, Germany), and reported in terms of frequency of absorption
(cm−1). High-resolution mass spectrometry data were recorded on a JEOL JMS-700 M
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Station mass spectrometer (JEOL, Tokyo, Japan). Enantiomeric excesses were determined
using an HPLC instrument with Chiralpak columns, as indicated.

3.2. Synthesis of 2-((3R,9bS)-5,5-Dioxido-2,3-dihydro-9bH-benzo[4,5]isothiazolo[3,2-b]oxazol-3-
yl)-1-phenylethan-1-one (3)

A solution of benzo[d]isothiazole 1,1-dioxide (1, 0.15 mmol, 1.5 equiv) and catalyst I
(0.01 mmol, 0.1 equiv) in ClCH2CH2Cl (1.0 mL, 0.1 M) was stirred for 10 min at 0 ◦C and then
added (E)-4-hydroxy-1-phenylbut-2-en-1-one (2, 0.10 mmol, 1.0 equiv). The reaction mixture was
stirred at room temperature for 24 h. Then, the resulting mixture was concentrated in vacuo and
was purified by flash column chromatography with EtOAc/CH2Cl2/hexanes (1/5:4) as eluent
to afford desired product 3 (99%, 45 mg). The enantiomeric excess was determined using HPLC
analysis. >20:1 dr, [α]24

D =−72.0 (c = 1.32, CHCl3); 78% ee; white solid; m.p. 136–138 ◦C; 1H NMR
(400 MHz, CDCl3) δ 8.04–7.95 (m, 2H), 7.85–7.77 (m, 1H), 7.74–7.65 (m, 2H), 7.65–7.58 (m, 2H),
7.49 (dd, J = 8.3, 7.0 Hz, 2H), 6.15 (s, 1H), 4.89–4.73 (m, 1H), 4.38 (dd, J = 9.0, 6.2 Hz, 1H), 3.91
(dd, J = 9.1, 5.2 Hz, 1H), 3.71 (dd, J = 18.0, 4.5 Hz, 1H), 3.39 (dd, J = 18.0, 9.5 Hz, 1H);
13C{1H} NMR (100 MHz, CDCl3) δ 197.1, 136.1, 134.3, 133.8, 133.6, 131.6, 128.7(two peaks
overlapping), 128.0, 125.5, 121.6, 91.7, 73.0, 55.6, 42.9; IR (neat) 2934, 2895, 2850, 1681,
1597, 1450, 1371, 1306, 1207, 1167, 1073 cm−1; HRMS (EI) m/z calcd for [M]+ C17H15NO4S:
329.0722 found the following: 329.0721; Chiralpak OJ-H column and OJ-H guard column
(50% EtOH:hexanes, 1.0 mL/min flow, λ = 254 nm); minor-isomer tr = 37.9 min and major-
isomer tr = 46.4 min.

Supplementary Materials: Figure S1: 1H NMR spectrum of compound 3; Figure S2: 13C NMR
spectrum of compound 3; Figure S3: HPLC chromatogram of compound 3; Figure S4: IR spectra of
compound 3; Table S1: high mass data of compound 3.
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