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Abstract: 5-Bromo-N′-(2-oxoindolin-3-ylidene)furan-2-carbohydrazide (1) was successfully synthe-
sized in 79.4% yield by reaction of isatin with 5-bromofuran-2-carbohydrazide in acidic conditions
under reflux. The structure of synthesized compound 1 was confirmed by 1H and 13C NMR, FTIR,
and HRMS spectrometers. It is necessary to evaluate compound 1 as an anti-inflammatory agent.
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1. Introduction

Inflammation is the immune system’s response to harm and is an essential defense
mechanism for health [1]. Notwithstanding, uncontrollable inflammation in different
parts of the body contributes to the pathogenesis of numerous chronic diseases, including
diabetes, neurodegenerative diseases like Alzheimer’s, and cardiovascular diseases like
atherosclerosis [2]. Thus, some studies have concentrated on developing novel drugs to
counteract inflammatory damage to cellular components, but the efficacy and adverse
effects of current medicines remain major issues [3].

Isatin-containing heterocycles possess favorable anti-inflammatory properties [4,5].
SAR analyses of in silico studies have indicated that the hydrazide moiety provides a
hydrogen bonding domain that enables the structure to form a hydrogen bond, which
is essential for the interaction with amino acid residues, appending the potential to be a
potent anti-inflammatory agent [6]. Various furan-containing compounds naturally occur
in plants, oils, fruits, and marine foods [7]; are reported to be biologically active, having
an anti-inflammatory effect [8,9]; and are found in a variety of pharmaceutical medicines,
such as furosemide [10]. Here, we report the synthesis of 5-bromo-N′-(2-oxoindolin-3-
ylidene)furan-2-carbohydrazide (1).

2. Results and Discussion

The synthesis of 5-bromo-N′-(2-oxoindolin-3-ylidene)furan-2-carbohydrazide (1) has
been successfully achieved by condensation of commercially available isatin (2) with 5-
bromofuran-2-carbohydrazide (3) under acidic conditions, as shown in Scheme 1. The
reaction of isatin (2) and 5-bromofuran-2-carbohydrazide (3) took place for 15 min under
reflux, with ethanol as the solvent and sulfuric acid as the catalyst. The expected product
was filtered and washed using dichloromethane to isolate compound 1 as a yellowish solid
with 79.4% yield.

Structure identification of the synthesized compound 1 using an NMR spectrometer
resulted in an 1H NMR spectrum that corresponds to the structure of 5-bromo-N′-(2-
oxoindolin-3-ylidene)furan-2-carbohydrazide (1). According to the 1H NMR spectrum,
the proton of the NH group of the hydrazide moiety showed up as a broad singlet signal
at δ 13.72 ppm. This NH group vibration was recorded at υ 3233 cm−1 in the FTIR
spectrum. Meanwhile, the NH of the isatin ring was detected as a singlet signal at
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δ 11.30 ppm. In the 13C NMR spectrum, the signal of hydrazide carbonyl carbon was
detected at δ 153.62 ppm. The C=O absorption reinforced this at υ 1620 cm−1 in the FTIR
spectrum, while the signal of isatin carbonyl carbon was observed at δ 163.4 ppm. Fur-
thermore, the absorption at υ 1680 cm−1 showed the absorption of the C=N group (imine),
indicating the successful condensation of isatin (2) and 5-bromofuran-2-carbohydrazide (3).
In the HRMS spectrum, since the bromine atom has two isotopes in nature, namely 79Br and
81Br, the [M+H]+ ions were recorded at m/z 333.9841 and 335.9813, which corresponds to the
molecular formula for C13H8

79BrN3O3 and C13H8
81BrN3O3, respectively (calcd. 333.9822

(C13H8
79BrN3O3) and 335.9802 (C13H8

81BrN3O3)).
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Scheme 1. Synthesis of 5-bromo-N′-(2-oxoindolin-3-ylidene)furan-2-carbohydrazide (1). 

Structure identification of the synthesized compound 1 using an NMR spectrometer 
resulted in an 1H NMR spectrum that corresponds to the structure of 5-bromo-N′-(2-ox-
oindolin-3-ylidene)furan-2-carbohydrazide (1). According to the 1H NMR spectrum, the 
proton of the NH group of the hydrazide moiety showed up as a broad singlet signal at δ 
13.72 ppm. This NH group vibration was recorded at υ 3233 cm−1 in the FTIR spectrum. 
Meanwhile, the NH of the isatin ring was detected as a singlet signal at δ 11.30 ppm. In 
the 13C NMR spectrum, the signal of hydrazide carbonyl carbon was detected at δ 153.62 
ppm. The C=O absorption reinforced this at υ 1620 cm−1 in the FTIR spectrum, while the 
signal of isatin carbonyl carbon was observed at δ 163.4 ppm. Furthermore, the absorption 
at υ 1680 cm−1 showed the absorption of the C=N group (imine), indicating the successful 
condensation of isatin (2) and 5-bromofuran-2-carbohydrazide (3). In the HRMS spec-
trum, since the bromine atom has two isotopes in nature, namely 79Br and 81Br, the [M+H]+ 

ions were recorded at m/z 333.9841 and 335.9813, which corresponds to the molecular for-
mula for C13H879BrN3O3 and C13H881BrN3O3, respectively (calcd. 333.9822 (C13H879BrN3O3) 
and 335.9802 (C13H881BrN3O3)). 

3. Materials and Methods 
3.1. Materials 

The materials utilized in this study were purchased from Tokyo Chemical Industry 
and Sigma-Aldrich and were not purified before use. Thin-layer chromatography (TLC) 
was used to monitor the reaction, which was seen under UV at 254 nm. The melting point 
was determined using Fisher-Johns melting point apparatus (Vernon Hills, IL, USA) and 
has not been corrected. The 1H and 13C NMR spectra were taken at 400 and 100 MHz on a 
Jeol JNM-ECS400 spectrometer (Tokyo, Japan) in DMSO-d6, with tetramethylsilane (TMS) 
serving as an internal standard. Reports are given in parts per million (ppm) for the chem-
ical shifts (δ) and in Hertz for the coupling constants (J). The FTIR spectrum was captured 
using a Shimadzu 8400S FTIR spectrometer (Kyoto, Japan). Mass spectra were recorded 
in a Xevo G2-S Qtof mass spectrometer with an ESI ionization in positive mode. The ab-
sorbance of the sample was measured using a Thermo Scientific Genesys 10S UV-VIS 
spectrophotometer (Milford, CT, USA). 

3.2. Synthesis of 5-Bromo-N’-(2-oxoindolin-3-ylidene)furan-2-carbohydrazide (1) 

A solution of isatin (2) (0.074 g, 0.50 mmol), 5-bromofuran-2-carbohydrazide (3) (0.10 
g, 0.49 mmol), and a drop of sulphuric acid in ethanol (10 mL) was refluxed for 15 min 
(the reaction was monitored by TLC using ethyl acetate as an eluent). The mixture was 
cooled to room temperature. The precipitate was filtered off, washed with dichloro-
methane, and dried to yield the title compound as a yellowish solid (130 mg, 79.4%%); 
mp: 212–213 °C; FTIR (KBr) υ (cm−1) 3233 (N-H), 1722 (C=O), 1680 (C=O), 1620 (C=N); 1H 
NMR (400 MHz, DMSO-d6) δ 6.91–6.96 (m, 2H, ArH), 7.06–7.11 (m, 1H, ArH), 7.35–7.44 
(m, 2H, ArH), 7.59 (t, J = 7.6 Hz, 1H, ArH), 11.31 (1H, s, NH), 13.72 (1H, bs NH); 13C NMR 

Scheme 1. Synthesis of 5-bromo-N′-(2-oxoindolin-3-ylidene)furan-2-carbohydrazide (1).

3. Materials and Methods
3.1. Materials

The materials utilized in this study were purchased from Tokyo Chemical Industry
and Sigma-Aldrich and were not purified before use. Thin-layer chromatography (TLC)
was used to monitor the reaction, which was seen under UV at 254 nm. The melting point
was determined using Fisher-Johns melting point apparatus (Vernon Hills, IL, USA) and
has not been corrected. The 1H and 13C NMR spectra were taken at 400 and 100 MHz
on a Jeol JNM-ECS400 spectrometer (Tokyo, Japan) in DMSO-d6, with tetramethylsilane
(TMS) serving as an internal standard. Reports are given in parts per million (ppm) for
the chemical shifts (δ) and in Hertz for the coupling constants (J). The FTIR spectrum was
captured using a Shimadzu 8400S FTIR spectrometer (Kyoto, Japan). Mass spectra were
recorded in a Xevo G2-S Qtof mass spectrometer with an ESI ionization in positive mode.
The absorbance of the sample was measured using a Thermo Scientific Genesys 10S UV-VIS
spectrophotometer (Milford, CT, USA).

3.2. Synthesis of 5-Bromo-N’-(2-oxoindolin-3-ylidene)furan-2-carbohydrazide (1)

A solution of isatin (2) (0.074 g, 0.50 mmol), 5-bromofuran-2-carbohydrazide (3) (0.10 g,
0.49 mmol), and a drop of sulphuric acid in ethanol (10 mL) was refluxed for 15 min (the
reaction was monitored by TLC using ethyl acetate as an eluent). The mixture was cooled to
room temperature. The precipitate was filtered off, washed with dichloromethane, and dried
to yield the title compound as a yellowish solid (130 mg, 79.4%%); mp: 212–213 ◦C; FTIR (KBr)
υ (cm−1) 3233 (N-H), 1722 (C=O), 1680 (C=O), 1620 (C=N); 1H NMR (400 MHz, DMSO-d6)
δ 6.91–6.96 (m, 2H, ArH), 7.06–7.11 (m, 1H, ArH), 7.35–7.44 (m, 2H, ArH), 7.59 (t, J = 7.6 Hz,
1H, ArH), 11.31 (1H, s, NH), 13.72 (1H, bs NH); 13C NMR (100 MHz, DMSO-d6) δ 111.7, 115.7,
119.9, 120.2, 121.6, 123.2, 127.3, 132.4, 138.9, 143.1, 148.1, 153.6, 163.4. HRESIMS m/z (pos):
333.9841 (C13H8

79BrN3O3) and 335.9813 (C13H8
81BrN3O3) (calcd. 333.9827 (C13H8

79BrN3O3)
and 335.9807 (C13H8

81BrN3O3)) (Supplementary Materials).

Supplementary Materials: The following supporting information can be downloaded online.
Figure S1: IR spectrum of compound 1; Figure S2: 1H NMR spectrum of compound 1; Figure S3:
13C NMR spectrum of 1; Figure S4: High-resolution mass spectrum of compound 1.
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