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Abstract: The titular compound, 6-amino-7-((4-methoxybenzyl)thio)quinazolin-4(3H)-one, was pre-
pared from 7-fluoro-6-nitroquinazolin-4(3H)-one via a nucleophilic aromatic substitution reaction
followed by a reduction of the nitro group. Characterization of the target compound via 1H NMR,
13C NMR, and HRMS confirmed its structure.
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1. Introduction

Quinazolinone derivatives are frequently encountered in medicinal chemistry as their
biological activity can be significantly altered by their substituents [1–4]. Examples of ap-
proved drugs based on the quinazolin-4-one scaffolds are shown in Figure 1. These include
the anticancer drugs idelalisib (Figure 1a), used for the treatment of chronic lymphocytic
leukemia [5–8], and raltitrexed (Figure 1b), which has been available in Europe and Canada
since 1998 for the treatment of colorectal cancer [9–11], as well as the antihypertensive drug
quinethazone (Figure 1c) [12,13].
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Quinazolinone derivatives are frequently encountered in medicinal chemistry as 

their biological activity can be significantly altered by their substituents [1–4]. Examples 
of approved drugs based on the quinazolin-4-one scaffolds are shown in Figure 1. These 
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Figure 1. Examples of currently available drugs based on quinazolin-4-one scaffolds: (a) Idelalisib; 
(b) Raltitrexed; and (c) Quinethazone. 

Sulfur-substituted quinazolinones have proven to be inhibitors of the eukaryotic in-
itiation factor that is overexpressed in individuals suffering from various types of cancer, 
such as breast, prostate, and colon cancer [14]. Additionally, quinazolinone with sulfur 
substituents have shown potential in the treatment of neurodegenerative diseases [15]. 

2. Results and Discussion 
In an effort to extend our previous work to include biologically relevant scaffolds, 

we prepared the titular compound, 6-amino-7-((4-methoxybenzyl)thio)quinazolin-4(3H)-
one (3), using a procedure previously developed by our group [16]. As shown in Scheme 
1, commercially available 7-fluoro-6-nitroquinazolin-4(3H)-one (1) was treated with (4-
methoxyphenyl)methanethiol, which, upon addition of sodium hydroxide, yielded7-((4-
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Figure 1. Examples of currently available drugs based on quinazolin-4-one scaffolds: (a) Idelalisib;
(b) Raltitrexed; and (c) Quinethazone.

Sulfur-substituted quinazolinones have proven to be inhibitors of the eukaryotic
initiation factor that is overexpressed in individuals suffering from various types of cancer,
such as breast, prostate, and colon cancer [14]. Additionally, quinazolinone with sulfur
substituents have shown potential in the treatment of neurodegenerative diseases [15].

2. Results and Discussion

In an effort to extend our previous work to include biologically relevant scaffolds, we
prepared the titular compound, 6-amino-7-((4-methoxybenzyl)thio)quinazolin-4(3H)-one
(3), using a procedure previously developed by our group [16]. As shown in Scheme 1,
commercially available 7-fluoro-6-nitroquinazolin-4(3H)-one (1) was treated with (4-m
ethoxyphenyl)methanethiol, which, upon addition of sodium hydroxide, yielded7-((4-
methoxybenzyl)thio)-6-nitroquinazolin-4(3H)-one (2). This reaction proceeded with 100%
conversion, as determined by LCMS, and nitro compound 2 was isolated in a 96% yield.
Characterization via 1H NMR (Supporting Information, Figure S1) and 13C NMR
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(Supporting Information, Figure S2) confirmed both the structure of this intermediate
as well as its purity. A subsequent reduction of the nitro group afforded compound 3 (the
titular compound) in a 75% isolated yield. Although the reaction proceeded cleanly, some
of the product was lost due to its poor solubility during the necessary step of filtration
through celite to remove the residual iron.
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Scheme 1. Reaction conditions for the two-step synthesis of 6-amino-7-((4-
methoxybenzyl)thio)quinazolin-4(3H)-one (3).

The structure of the target molecule 3 was confirmed via 1H NMR (Supporting Information,
Figure S3) and 13C NMR (Supporting Information, Figure S4). HRMS confirmed its expected
atomic composition.

3. Materials and Methods
3.1. General Information and Analyses

Reagents and solvents were purchased from Fisher Scientific or TCI Chemicals and
used as supplied. DMSO-d6 was dried over molecular sieves.

Melting points were determined using a MEL-TEMP apparatus (Cambridge, MA,
USA) and are uncorrected. 1H NMR and 13C{1H} NMR spectra were recorded using a
400 MHz Bruker Avance III spectrometer with a 5 mm liquid-state Smart Probe at 298 K.
Chemical shifts (δH, δC) are expressed in parts per million (ppm) and reported relative
to the resonance of the residual protons of the DMSO-d6 (δH = 2.50 ppm) or in 13C{1H}
NMR spectra relative to the resonance of the deuterated solvent DMSO-d6 (δC = 39.52 ppm).
High-Resolution Mass Spectrometry (HRMS) data were obtained using an LTQ Orbitrap
XL (Thermo Fisher Scientific) in FT Orbitrap Mode at a resolution of 100,000.

3.2. Synthesis of 7-((4-Methoxybenzyl)thio)-6-nitroquinazolin-4(3H)-one

A 500 mL round-bottomed flask equipped with a stir bar was loaded with 5.228 g of
7-fluoro-6-nitroquinazolin-4(3H)-one (25.00 mmol, 1.00 equiv) and 200 mL of ethanol and
placed under an atmosphere of argon. A total of 3.518 ml of (4-methoxyphenyl)methanethiol
(3.894 g, 25.25 mmol, 1.01 equiv) was added with a syringe, followed by a dropwise addi-
tion of 1.050 g of NaOH (26.25 mmol, 1.05 equiv) dissolved in 10 mL of H2O. The reaction
mixture was stirred for 2 h at room temperature, after which the solid was filtered off
and washed with H2O, ethanol, and finally diethyl ether, yielding the product as a yellow
powder in 96% yield (8.251 g, 24.03 mmol), m.p. 264–265 ◦C.

1H NMR (400 MHz, DMSO-d6, 298 K): δ = 12.62 (s, 1H), 8.79 (s, 1H), 8.27 (s, 1H),
7.79 (s, 1H), 7.41 (d, J = 8.6 Hz, 2H), 6.93 (d, J = 8.6 Hz, 2H), 4.43 (s, 2H), 3.74 (s, 3H);
13C{1H} NMR (100 MHz, DMSO-d6, 298 K): δ = 159.8, 158.8, 151.5, 149.7, 143.0, 142.6, 130.5,
126.6, 124.8, 124.7, 118.7, 114.1, 55.1, 35.8. HRMS (ESI) m/z calculated for [M + H]+ =
[C16H14N3O4S]+ 344.0700; observed, 344.0698 (0.6 ppm).

3.3. Synthesis of 6-Amino-7-((4-methoxybenzyl)thio)quinazolin-4(3H)-one

A 250 mL round-bottomed flask equipped with a stir bar was loaded with 8.321 g of
7-((4-methoxybenzyl)thio)-6-nitroquinazolin-4(3H)-one (23.48 mmol, 1 equiv), 6.285 g of
NH4Cl (117.5 mmol, 5.0 equiv), and 150 mL of EtOH/H2O (4:1). The reaction flask was
placed into an oil bath set to 80 ◦C, and 6.562 g of iron power (117.5 mmol, 5.0 equiv) was
added while stirring. Then, the reaction flask was fitted with a reflux condenser, and the
reaction was stirred under argon at 80 ◦C until TLC indicated a complete reduction after
2 h of reacting. Due to the poor solubility of the product in ethanol, filtration through celite
was performed with hot ethanol. After concentration of the filtrate, brine was added, and
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the reaction mixture was extracted three times with THF and then three times with ethyl
acetate. The combined extracts were dried over MgSO4 and evaporated. Recrystalliza-
tion from acetone yielded the pure product as a pale-orange solid in 75% yield (5.483 g,
17.50 mmol), m.p. 259–260 ◦C.

1H NMR (400 MHz, DMSO-d6, 298 K): δ = 11.80 (s, 1H), 7.76 (d, J = 3.3 Hz, 1H), 7.41
(s, 1H), 7.32 − 7.27 (m, 3H), 6.86 (d, J = 8.6 Hz, 2H), 5.53 (s, 2H), 4.22 (s, 2H), 3.72 (s, 3H).
13C{1H} NMR (100 MHz, DMSO-d6, 298 K): δ = 160.4, 158.4, 145.6, 141.1, 139.9, 130.1, 128.8,
128.6, 127.2, 121.7, 113.8, 106.7, 55.0, 35.5. HRMS (ESI) m/z calculated for [M + H]+ =
[C16H16N3O2S]+ 314.0958; observed, 314.0958 (0 ppm).

4. Conclusions

In conclusion, we successfully extended a procedure previously developed by our
group to the biologically active quinazolinone scaffold as demonstrated with the two-step
synthesis of the titular compound, 6-amino-7-((4-methoxybenzyl)thio)quinazolin-4(3H)-one
(3) from 7-fluoro-6-nitroquinazolin-4(3H)-one (1).

Supplementary Materials: The following supporting information are available online: Figure S1: 1H
NMR spectrum of 2; Figure S2: 13C NMR spectrum of 2; Figure S3: 1H NMR spectrum of 3; Figure S4:
13C NMR spectrum of 3; Figure S5: HRMS of 3.
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