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Abstract: We have previously reported that thiazolylketol acetates, synthesized by the
addition of 2-lithiothiazole to sugar lactones followed by acetylation, are efficient glycosyl
donors affording O-, N-, P-, and C-glycosides. After the first example of C-glycosidation
recently described by us, we report here on the unexpected outcome of the reaction of
a thiazolylketol acetate with allyltrimethylsilane in the presence of trimethylsilyl triflate.
The obtained intermediate, an intramolecular N-thiazolium salt, could be stereoselectively
converted into the desired allyl C-thiazolylketoside.

Keywords: carbohydrates; C-glycosides; glycosylation; thiazole

1. Introduction
The C-glycosides are the stable isosteres of the naturally occurring O-glycosides

because the presence of a carbon instead of an oxygen atom at the anomeric position leads
to glycosides that are not hydrolyzed by acids or glycosidases. Therefore, the C-glycosides
can be used instead of the corresponding oxygen-linked glycoconjugates when more stable
sugar derivatives are required for biological or pharmacological studies. To this end, a
large number of synthetic methodologies were developed during the last forty years [1–19],
although most of them were exploited only for the preparation of alkyl and aryl C-aldosides.
In fact, the synthetic approaches to C-ketosides were barely explored, probably because the
stereoselectivity at the anomeric position is difficult to predict and control.

The D-galacto configured thiazolylketol acetate 2 (Scheme 1), prepared from D-
galactonolactone 1 as described [20], and the other pyranose and furanose analogues [21],
allowed to efficiently synthesise O-, N-, and P-glycosides of the corresponding ulose (3 and
5) or ulosonic acid (4 and 6) derivatives through stereoselective glycosylation, thiazole-to-
formyl conversion, and formyl reduction or oxidation [21]. Despite these good results, the
first C-glycosylation of the thiazolylketol acetates—the reaction of 2 with trimethylsilyl
cyanide in the presence of TMSOTf to give the C-uloside 7 (Scheme 1)—was reported by
us three decades after the disclosure of the glycosyl donor 2 [22]. Aiming to gain access to
more complex C-glycoside derivatives, we have envisaged the reaction of thiazolylketol
acetate 2 with another well-known carbon nucleophile, namely the allyltrimethylsilane.
However, contrary to the C-glycosidation carried out with more common glycosyl donors,
i.e., lacking the thiazole moiety [23,24], we observed the formation of an intramolecular
N-thiazolium salt from which the target allyl C-glycoside could be obtained upon treatment
with tetrabutylammonium fluoride.
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Scheme 1. Previous syntheses of glycosides 3–7 from the thiazolylketol acetate 2. 

2. Results and Discussion 
The thiazolylketol acetate 2 was treated with 10 equiv. of commercially available al-

lyltrimethylsilane in the presence of trimethylsilyl triflate (TMSOTf) and 4 Å powdered 
molecular sieves for 5 h at room temperature. Then, the reaction mixture was neutralized 
by adding triethylamine and filtered through a pad of Celite to give the intramolecular N-
thiazolium salt 11 in almost quantitative yield instead of the expected allyl C-glycoside 10 
(Scheme 2). The structure of 11 could be established by NMR analysis since its proton 
spectrum showed the signal of the trimethylsilyl group at 0.18 ppm (singlet, 9 H) while 
the signals of the thiazole hydrogens were significantly shifted downfield (doublets, 8.52 
and 8.04 ppm) due to the positive charge onto the heterocycle (Figure S1). Moreover, in 
the 13C-NMR spectrum was present a quartet at 120.8 ppm with a large coupling constant 
(320 Hz) typical of the trifluoromethanesulfonate (triflate) anion (Figures S2 and S3). The 
presence of the triflate anion was confirmed by the signal at 78.7 ppm in its 19F-NMR spec-
trum (Figure S4). Therefore, after the addition of the anomeric oxycarbenium ion 8 to the 
alkene leading to the carbocation 9, the latter did not form the new double bond through 
release of the trimethylsilyl cation as expected (Scheme 2, red arrows) but underwent the 
intramolecular attack of the thiazole nitrogen to form 11, a rather stable salt featuring a 
fused five-member ring (Scheme 2, blue arrows). 

 

Scheme 2. C-glycosidation of the thiazolylketol acetate 2 with allyltrimethylsilane followed by de-
silylation with tetrabutylammonium fluoride. 

Fortunately, we found that upon reaction of the crude N-thiazolium salt 11 with tet-
rabutylammonium fluoride in THF at 50 °C for 2 h, compound 10 could be recovered in 
96% overall yield after column chromatography. As already observed for the O-, N-, P-, 
and C-glycosidation of the D-galacto-configured thiazolylketol acetate 2 [21,22], the allyl 
C-glycoside 10 was obtained as a single α-D (axial) anomer. The anomeric configuration 
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Scheme 1. Previous syntheses of glycosides 3–7 from the thiazolylketol acetate 2.

2. Results and Discussion
The thiazolylketol acetate 2 was treated with 10 equiv. of commercially available

allyltrimethylsilane in the presence of trimethylsilyl triflate (TMSOTf) and 4 Å powdered
molecular sieves for 5 h at room temperature. Then, the reaction mixture was neutralized
by adding triethylamine and filtered through a pad of Celite to give the intramolecular
N-thiazolium salt 11 in almost quantitative yield instead of the expected allyl C-glycoside
10 (Scheme 2). The structure of 11 could be established by NMR analysis since its proton
spectrum showed the signal of the trimethylsilyl group at 0.18 ppm (singlet, 9 H) while
the signals of the thiazole hydrogens were significantly shifted downfield (doublets, 8.52
and 8.04 ppm) due to the positive charge onto the heterocycle (Figure S1). Moreover, in
the 13C-NMR spectrum was present a quartet at 120.8 ppm with a large coupling constant
(320 Hz) typical of the trifluoromethanesulfonate (triflate) anion (Figures S2 and S3). The
presence of the triflate anion was confirmed by the signal at 78.7 ppm in its 19F-NMR
spectrum (Figure S4). Therefore, after the addition of the anomeric oxycarbenium ion 8 to
the alkene leading to the carbocation 9, the latter did not form the new double bond through
release of the trimethylsilyl cation as expected (Scheme 2, red arrows) but underwent the
intramolecular attack of the thiazole nitrogen to form 11, a rather stable salt featuring a
fused five-member ring (Scheme 2, blue arrows).
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Scheme 2. C-glycosidation of the thiazolylketol acetate 2 with allyltrimethylsilane followed by
desilylation with tetrabutylammonium fluoride.

Fortunately, we found that upon reaction of the crude N-thiazolium salt 11 with
tetrabutylammonium fluoride in THF at 50 ◦C for 2 h, compound 10 could be recovered in
96% overall yield after column chromatography. As already observed for the O-, N-, P-,
and C-glycosidation of the D-galacto-configured thiazolylketol acetate 2 [21,22], the allyl
C-glycoside 10 was obtained as a single α-D (axial) anomer. The anomeric configuration
was proved by the positive nuclear Overhauser effect (nOe) between one of the -CH2-
hydrogens of the allyl group and the axially oriented H-3 and H-5 protons of the pyranose
ring, which adopts the usual 4C1 conformation (Figure S5). Irradiation of the signal at
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2.85 ppm showed a significant increase of the signals at 3.88 ppm (H-3) and 3.93 ppm (H-5),
besides the obvious effect on the geminal hydrogen at 3.60 ppm.

3. Materials and Methods
Anhydrous CH2Cl2 (99.8%), anhydrous THF (99.9%), allyltrimethylsilane (98%),

trimethylsilyl triflate (99%), triethylamine (99%), tetrabutylammonium fluoride trihydrate
(98%), acetic acid (99.99%), powdered 4 Å molecular sieves (5 µm average particle size), and
Celite were purchased from Sigma-Aldrich (Saint-Quentin-Fallavier, France). The reactions
were monitored by TLC on silica gel 60 F254 (Merck, Molsheim, France) with detection by
charring with sulfuric acid. Flash column chromatography was performed on silica gel
60 (40–63 µm, Merck). Optical rotations were measured at 20 ± 2 ◦C in the stated solvent;
[α]D values are given in deg mL g−1 dm−1. 1H NMR (300 and 400 MHz), 13C NMR (75 and
100 MHz), and 19F NMR (282 MHz) spectra were recorded in CDCl3 at room temperature
with a Varian Gemini 300 MHz and a Bruker Avance 400 MHz spectrometer. In the 1H NMR
spectra reported below, the n and m values quoted in geminal or vicinal proton–proton
coupling constants Jn,m refer to the number of the corresponding sugar protons. FT-IR
spectra were recorded using a Perkin Elmer Spectrum 3 instrument equipped with an ATR
accessory. High-resolution mass spectrometry (Waters Micromass Q-TOF, Waters Corp.,
Milford, MS, USA) analyses were carried out at the “Laboratoire de Mesures Physiques”
(University of Montpellier).

(1R)-2,3,4,6-Tetra-O-benzyl-1-C-allyl-1-deoxy-1-C-(2-thiazolyl)-D-galactopyranose (10)

A mixture of 2 (500 mg, 0.75 mmol), activated 4 Å powdered molecular sieves (0.50 g),
and anhydrous CH2Cl2 (7.5 mL) was stirred at room temperature under a nitrogen atmo-
sphere for 10 min, then allyltrimethylsilane (1.20 mL, 7.50 mmol) and trimethylsilyl triflate
(140 µL, 0.75 mmol) were added. The mixture was stirred at room temperature for 5 h,
then diluted with triethylamine (0.30 mL) and CH2Cl2 (50 mL), filtered through a pad of
Celite, and concentrated to afford crude 11. A solution of the latter and nBu4NF·3H2O
(2.37 g, 7.50 mmol) in anhydrous THF (7.5 mL) was stirred at 50 ◦C for 2 h, then cooled
to room temperature, diluted with acetic acid (2 mL), and concentrated. The residue was
eluted from a column of silica gel with 8:1 cyclohexane-AcOEt to give 10 (467 mg, 96%) as a
colorless syrup; [α]D = −7.9 (c = 0.8, CHCl3). 1H NMR (400 MHz): δ 7.77 (d, 1H, J = 4.0 Hz,
Th), 7.40–7.26 (m, 21H, 4 Ph, Th), 5.69 (dddd, 1H, J = 5.6, 8.0, 10.2, 17.2 Hz, CH=CH2), 5.17
(dddd, 1H, J = 1.0, 1.5, 2.0, 17.2 Hz, 1 H of CH=CH2), 5.08 and 4.67 (2 d, 2H, J = 12.0 Hz,
PhCH2), 5.02 (dddd, 1H, J = 1.0, 1.0, 2.0, 10.2 Hz, 1 H of CH=CH2), 4.77 (s, 2H, PhCH2),
4.54 and 4.48 (2 d, 2H, J = 11.6 Hz, PhCH2), 4.54 and 4.25 (2 d, 2H, J = 10.4 Hz, PhCH2),
4.10 (dd, 1H, J3,4 = 2.8, J4,5 = 0.8 Hz, H-4), 4.06 (d, 1H, J2,3 = 9.6 Hz, H-2), 3.93 (ddd, 1H,
J5,6a = 7.6, J5,6b = 5.2 Hz, H-5), 3.88 (dd, 1H, H-3), 3.77 (dd, 1H, J6a,6b = 9.2 Hz, H-6a), 3.63
(dd, 1H, H-6b), 3.60 (dddd, 1H, J = 1.0, 1.5, 5.6, 14.8 Hz, 1 H of CH2-CH=), and 2.85 (dddd,
1H, J = 1.0, 1.0, 8.0, 14.8 Hz, 1 H of CH2-CH=). 13C NMR (100 MHz): δ 174.7 (C), 141.9 (CH),
139.3 (C), 138.6 (C), 138.5 (C), 138.1 (C), 132.8 (CH), 128.45 (CH), 128.42 (CH), 128.3 (CH),
128.23 (CH), 128.20 (CH), 127.83 (CH), 127.77 (CH), 127.6 (CH), 127.51 (CH), 127.47 (CH),
127.35 (CH), 127.29 (CH), 119.9 (CH), 118.0 (CH2), 82.2 (CH), 82.1 (C), 81.0 (CH), 75.9 (CH2),
74.6 (CH), 74.4 (CH2), 73.6 (CH2), 72.8 (CH2), 71.6 (CH), 68.8 (CH2), and 33.4 (CH2). FT-IR
(cm−1): 3088, 3064, 3030, 2917, 2868, 1496, 1453, 1361, 1093, 992, 913, 731, and 694. HRMS
(ESI/Q-TOF): m/z calcd. for C40H42NO5S [M+H]+ 648.2778, found 648.2780.

4. Conclusions
The allyl C-thiazolylketoside 10 constitutes a versatile building block since it is bearing

two orthogonal functional groups. In fact, while the thiazole ring can be easily converted
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into a formyl group, which is then reduced or oxidized, the allyl moiety is a suitable
substrate for the well-known dihydroxylation (leading to a vicinal diol) [25–27] or cross-
metathesis (affording longer chain derivatives) reactions [28,29]. Moreover, it is expected
that all the above-mentioned transformations will take place, leaving unaltered the configu-
ration of the starting material 10 due to the quaternary nature of the anomeric carbon.

Supplementary Materials: The following supporting information can be downloaded at 1H- and 13C-
NMR spectra of 11 (Figures S1−S3); 19F-NMR spectrum of 11 (Figure S4); NOEDIF NMR spectrum of
10 (Figure S5); 1H- and 13C-NMR spectra of 10 (Figures S6 and S7); and HRMS and IR spectra of 10
(Figures S8 and S9).
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