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Abstract: The reaction of thorium nitrate hydrate with 2,6-dipicolinoylbis
(N,N-diethylthiourea), H2Lpic, results in the hydrolysis of the organic ligand and the
formation of [Th(2,6-dipicolinolate)2(H2O)4] (1). Hydrolysis can be avoided by the use of
[ThCl4(DME)2] (DME = 1,2-dimethoxyethane) as the starting material and the exclusion of
water. The product, [Th(Lpic)3]2− (2), crystallizes as diammonium salt in form of yellow
crystals in moderate yields. The thorium ion in the complex is nine-coordinate by the
central O,N,O donor atoms of three deprotonated {Lpic}2− ligands. The sulfur atoms of
the ligands do not bind to the actinide ion, but establish hydrogen bonds to the ammo-
nium counter ions. A similar coordination sphere is also observed in the uranium(IV)
complex [UAu2(Lpic)3}] (3), which was obtained from a reaction between H2Lpic, [U2I6(1,4-
dioxane)3] and [AuCl(tht)] (tht = tetrahydrothiophene) in the presence of triethylamine.
Charge compensation is established by the linear coordination of two Au+ ions between
each two sulfur atoms of the ligands. The products have been studied by X-ray diffrac-
tion and IR spectroscopy. The actinide ions in both {Lpic}2− complexes have coordination
number nine, but establish slightly different coordination spheres.

Keywords: thorium; uranium; gold; actinides; aroylthioureas

1. Introduction
2,6-Dipicolinoylbis(N,N-diethylthiourea), H2Lpic, is a representative of the large class

of aroylthiourea ligands, which was introduced into coordination chemistry research by
Lothar Beyer et al. about 50 years ago with the first S,O chelates [1]. Since then, a huge
number of complexes with main-group and transition metal ions have been synthesized
and structurally characterized, including several hundreds of X-ray structures [2–4]. Most
of them involve S,O chelates with ligands of the type HL1 (see Figure 1). The development
of aroylthiourea derivatives with more than one S,O chelating group and the introduction
of additional donor atoms in a central aryl ring (e.g., compound H2L2, H2Lfur or H2Lpic)
provide completely new synthetic opportunities, such as the access to complexes with
“hard” donor atoms and the synthesis of multinuclear assemblies [5–11]. The synthesis
of the latter compounds is supported by the central molecular position, which provides a
coordinating O,N,O or O,O,O unit and is perfectly suitable for “medium” or “hard” metal
ions, while the peripheral O,S donors prefer “soft” metal ions.

The selective choice of “hard” or “soft” donor atom positions for “hard” or ”soft”
metal ions aligns with the classical concept of Pearson [12]. This principle allows for the
synthesis of complexes with “hard” lanthanide ions [13–17] and, more recently, the first

Molbank 2025, 2025, 0 https://doi.org/10.3390/0

https://doi.org/10.3390/0
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molbank
https://www.mdpi.com
https://orcid.org/0000-0002-1747-7927
https://doi.org/10.3390/0
https://www.mdpi.com/article/10.3390/M1957?type=check_update&version=2


Molbank 2025, 2025, 0 2 of 9

uranyl complexes have also been isolated following this concept [18–20]. In the present
paper, we present the first attempts to synthesize complexes of 2,6-dipicolinoylbis(N,N-
diethylthiourea) with lower-valent actinide ions.
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other alcohols did not result in the formation of thorium complexes with intact {Lpic}2− lig-
ands. Instead, hydrolysis of the aroylthiourea units and the formation of 2,6-dipicolinate 
was observed, which finally reacted with the Th4+ ions under the formation of the complex 
[Th(2,6-dipicolinate)2(H2O)4] (1); see Scheme 1. The compound precipitated from the reac-
tion mixture as a colorless solid. Single crystals suitable for X-ray diffraction were ob-
tained from CH2Cl2/MeOH. 

 

Scheme 1. The reactions of H2Lpic with thorium(IV) and uranium(III) compounds and their prod-
ucts. 

The observed reaction and the formation of a complex with the hydrolysis product 
2,6-dipicolinic acid is not without precedent in the chemistry of the aroylthiourea ligands 
under study. Similar reactions giving the hexameric complex [UO2(2,6-dipico-
linate)(H2O)]6 were observed during the treatment of H2Lpic with uranyl compounds such 
as acetate, nitrate, or (NBu4)2[UO2Cl4] [18]. Another type of hydrolysis, the conversion of 
a thiourea moiety into a coordinated urea unit, was observed when an excess of NEt3 was 
added as a supporting base [20] to such mixtures, while the hydrolysis could be avoided 
with the addition of only a small amount of the supporting base [19]. The laĴer approach 
and the use of a non-aqueous thorium starting material and absolutely dry solvents also 
avoided the hydrolysis of H2Lpic in reactions with thorium(IV) ions. Thus, the reaction of 
[ThCl4(DME)2] (DME = 1,2-dimethoxyethane) with H2Lpic in dry methanol gave the anionic 
tris chelate [Th(Lpic)3]2− (2). Yellow-brown single crystals of the product could be isolated  
as the diammonium salt after the addition of (NH4)PF6. 

Compound 1 has been synthesized before by the treatment of Th(NO3)4·5 H2O with 
dipicolinic acid [21]. Since in this early work no details about the structure have been re-
ported and no coordinates have been deposited in the Cambridge structural database, we 
decided to include some structural details of [Th(2,6-dipicolinate)2(H2O)4] in the present 

Figure 1. Aroylthioureas as potential chelating ligands.

2. Results and Discussion
The attempted reactions of Th(NO3)4·4 H2O with the proligand H2Lpic in methanol

or other alcohols did not result in the formation of thorium complexes with intact {Lpic}2−

ligands. Instead, hydrolysis of the aroylthiourea units and the formation of 2,6-dipicolinate
was observed, which finally reacted with the Th4+ ions under the formation of the complex
[Th(2,6-dipicolinate)2(H2O)4] (1); see Scheme 1. The compound precipitated from the
reaction mixture as a colorless solid. Single crystals suitable for X-ray diffraction were
obtained from CH2Cl2/MeOH.
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Scheme 1. The reactions of H2Lpic with thorium(IV) and uranium(III) compounds and their products.

The observed reaction and the formation of a complex with the hydrolysis product
2,6-dipicolinic acid is not without precedent in the chemistry of the aroylthiourea ligands
under study. Similar reactions giving the hexameric complex [UO2(2,6-dipicolinate)(H2O)]6

were observed during the treatment of H2Lpic with uranyl compounds such as acetate,
nitrate, or (NBu4)2[UO2Cl4] [18]. Another type of hydrolysis, the conversion of a thiourea
moiety into a coordinated urea unit, was observed when an excess of NEt3 was added
as a supporting base [20] to such mixtures, while the hydrolysis could be avoided with
the addition of only a small amount of the supporting base [19]. The latter approach
and the use of a non-aqueous thorium starting material and absolutely dry solvents also
avoided the hydrolysis of H2Lpic in reactions with thorium(IV) ions. Thus, the reaction
of [ThCl4(DME)2] (DME = 1,2-dimethoxyethane) with H2Lpic in dry methanol gave the
anionic tris chelate [Th(Lpic)3]2− (2). Yellow-brown single crystals of the product could be
isolated as the diammonium salt after the addition of (NH4)PF6.

Compound 1 has been synthesized before by the treatment of Th(NO3)4·5 H2O with
dipicolinic acid [21]. Since in this early work no details about the structure have been
reported and no coordinates have been deposited in the Cambridge structural database, we
decided to include some structural details of [Th(2,6-dipicolinate)2(H2O)4] in the present
communication. The compound crystallizes as hydrate in the monoclinic space group
C2/c with two different molecules in the unit cell. One of these molecules contains the
thorium atom Th2 located on a 2-fold symmetry axis, while the other molecule contains
all atoms on general positions. The inherent symmetry in one of the complex molecules
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results in slight differences in the coordination spheres of the two thorium atoms. Ellipsoid
representations of both individuals are shown in Figure 2, together with a visualization
of the resulting coordination polyhedra. Some selected bond lengths are summarized in
Table 1. Full listings of the bond lengths and angles are given as Supplementary Materials.
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Table 1. Selected bond lengths (Å) in [Th(2,6-dipicolinate)2(H2O)4].

Th1–O1 2.427(4) Th1–N1 2.629(5) Th1–O3 2.432(4) Th1–O11 2.411(4) Th1–N11 2.620(5)
Th1–O13 2.437(4) Th1–O10 2.551(4) Th1–O20 2.583(5) Th1–O30 2.581(4) Th1–O40 2.503(5)
O1–C7 1.270(7) C7–O2 1.242(7) O3–C8 1.295(7) C8–O4 1.236(7) O11–C17 1.290(7)

C17–O12 1.228(6) O13–C18 1.297(7) C18–O14 1.234(7) Th2–O21 2.419(4) Th2–N21 2.629(5)
Th2–O23 2.417(4) Th2–O50 2.544(4) Th2–O60 2.583(4) O21–C27 1.288(7) C27–O22 1.234(7)
O23–C28 1.277(7) C28–O24 1.238(7)

The coordination polyhedra around both thorium atoms can be interpreted as a mix-
ture between distorted bicapped square antiprisms and sphenocoronas, which corresponds
to the situation in numerous complexes of coordination number ten [22]. A closer inspection
with the SHAPE algorithm [23–28], however, shows that the polyhedron around thorium
atom Th1 is better described as a sphenocorona, and that around Th2 is dominated by
contributions of a bicapped square antiprism. A table containing the continuous SHAPE
measures for all contributing polyhedra is given as Supplementary Materials.

The discussed differences are also found for the angles between the planes formed
by the two planar chelating ligands binding to Th1 (47.6◦) and Th2 (44.3◦). No significant
differences could be detected for the Th–N bond lengths, which are between 2.620(5) and
2.629(5) Å in both species, or for the Th–O(carboxyl) bonds (2.411(4) − 2.437(4) Å). The
Th–O(water) bond lengths are variable in both species.

The chelate rings in compound 1 are exclusively formed by “hard” O,N,O donor
atoms. A similar situation is obtained in the anion of compound 2, which contains three
intact {Lpic}2− ligands. The six sulfur atoms remain uncoordinated, but establish hydrogen
bonds with the two ammonium counter ions. Details about the obtained H bond network
are given as Supplementary Materials. The bonding situation in the [Th(Lpic)3]2− anion
is illustrated in Figure 3a, and selected bond lengths are contained in Table 2. The de-
protonation of aroylthioureas and related ligands in their transition metal complexes is
common for corresponding S,O chelates [1–3,5–11], but has recently also been observed
for other coordination modes, including a few complexes with the actinides uranium
and thorium [17–20,28]. Such a bonding feature supports the formation of chelate rings
with extended π-systems. Also, in the present case, the double deprotonation of H2Lpic is
observed, which causes marked changes in the bond lengths within the skeletons of the
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ligands with respect to the situation in the uncoordinated proligand [11]. Also, remarkably,
peripheral bonds, such as the C–S bonds which are not directly concerned by the complex
formation, are lengthened, while the frequently observed C–N bond equalization in the
S,O chelates [1–3,5–11] does not apply in [Th(Lpic)3]2−.
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A similar bonding situation, with an actinide ion being coordinated by three {Lpic}2−

ligands, is observed in [UAu2(Lpic)3] (3). This compound is formed during reactions of
[U2I6(1,4-dioxane)3] with H2Lpic in the presence of [AuCl(tht)] (tht = tetrahythiophene)
in dry THF. Although the reaction was carried out under anaerobic conditions in a glove
box, the oxidation of the uranium(III) starting material was observed and a uranium(IV)
complex was formed. This is not completely unexpected with respect to the redox potentials
of the involved redox couples (U(III)/U(IV): −0.63 V and Au(I)/Au(0): +1.68 V).

The coordination environment of the uranium atom in compound 3 is similar to that
of the thorium atom in compound 2. Generally, the respective U–O and U–N bonds in 3
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are somewhat shorter than the respective bonds around the thorium atom in 2, which is in
accord with the different ionic radii of the two actinide ions [29]. However, some exceptions
apply, which can most probably be attributed to the influence of the peripheral coordination
of four of the six sulfur atoms to Au(I) ions (Figure 3b). The fixation of these sulfur atoms
in almost linear S–Au–S bonds (angles of 175.38(9)◦ and 177.04(9)◦ are observed) produces
steric restraints, which also take effect in the coordination sphere of the uranium ion, as can
be seen by some changes in its coordination environment (vide infra). The C–S bonds to
the coordinating sulfur atoms are clearly longer than those to the non-coordinating atoms
S31 and S51. The Au–S bond lengths are between 2.28 and 2.29 Å, which is in the range
observed for corresponding cage compounds with lanthanide ions [17].

The thorium and uranium atoms in 2 and 3 have the coordination number nine. In a de-
tailed structural survey of nine-coordinate metal complexes, it has been outlined that most
of the compounds with mono- or bidentate ligands, as well as those with three tridentate
grasping ligands, can be correlated with tricapped trigonal prismatic (TCTPR) or capped
trigonal antiprismatic (CSAPR) coordination polyhedra [30]. This general information also
holds true for the compounds of the present study, but neither compound 2 nor compound
3 are adequately described by only one of these ideal polyhedral, as becomes evident during
a closer inspection by means of the SHAPE algorithm [23–27]. Also, the contributions of a
tridiminished icosahedron (JTDIC) and a muffin (MFF) play a role. Figure 4 illustrates the
coordination polyhedra of 2 (green) and 3 (blue). Additionally, the shape of contributing
polyhedra together with their continuous SHAPE measures (CShM) are shown. The CShMs
are read in such a way that the lower their numerical value, the higher the contribution of
the idealized polyhedron to the geometry of the compound under study. Consequently, the
coordination sphere of [Th(Lpic)3]2− (2) is best described by a spherical tricapped trigonal
prism, while for [UAu2(Lpic)3] (3), a mixture of a spherical capped square antiprism, a
tricapped trigonal prism, and a muffin is more suitable. More details and the values for the
less relevant polyhedra are provided as Supplementary Materials.

We were able to demonstrate that the pyridine-centered aroylthiourea derivative
H2Lpic forms stable complexes with Th4+ and U4+ ions. In both cases, the central O,N,O
donor atoms are exclusively used for the coordination of the actinides. The peripheral
“soft” sulfur atoms can establish bonds to additional “soft” metal ions such as Au+, as has
been demonstrated for the uranium compound.
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3. Materials and Methods
3.1. General Considerations

IR spectra were measured as KBr pellets on Shimadzu IR Affinity-1 (Shimadzu, Kyoto,
Japan) or Agilent Cary 630 spectrometers (Agilent, Santa Clara, CA, USA). Elemental
analyses of carbon, hydrogen, nitrogen, and sulfur were carried out using a Heraeus vario
EL elemental analyzer (Elementar, Langensebold, Germany). The intensities for the X-ray
determinations were collected on STOE IPDS T2 (STOE, Darmstadt, Germany) or Bruker
D8 Venture (BRUKER, Billerica, MA, USA) instruments with Mo/Kα radiation. Absorption
correction was carried out with the APEX 3 software (version 1.0) suite and the STOE
XRED32 routine [31,32]. Structure solution and refinement were performed with the SHELX
programs [33,34] included in OLEX2, version 1.5 [35]. Hydrogen atoms were calculated for
idealized positions and treated with the ‘riding model’ option of SHELXL. Details are given
as Supplementary Materials. The representation of the molecular structures was achieved
using the program MERCURY, version 2024, 2.0 [36].

3.2. Radiation Precautions

All synthetic work with thorium or uranium compounds was performed in a labo-
ratory approved for the handling of radioactive material. All personnel working on this
project were permanently monitored for potential contaminations.

3.3. Synthesis of [Th(2,6-dipicolinate)2(H2O)4] (1)

H2Lpic (39.5 mg, 0.1 mmol) was dissolved in MeOH (3 mL) and added to a solution of
Th(NO3)2·4 H2O (50.2 mg, 0.1 mmol) in MeOH (3 mL). The reaction mixture was stirred
at room temperature for 1 h. The obtained colorless precipitate was filtered off, washed
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with MeOH, and dried under vacuum. Single crystals for X-ray diffraction were obtained
by a slow evaporation of a CH2Cl2/MeOH 1:1 (v/v) solution at room temperature. Yield:
30% (19 mg). Elemental analysis: calculated for C14H14N2O12Th: C, 26.5; H, 2.2; N, 4.4%.
Found: C, 25.9; H, 2.4; N, 4.3%. IR (KBr, cm−1): 3449(s), 3094(w), 3046(m), 2926(w), 1626(vs),
1427(s), 1377(vs), 1271(m), 1186(m), 1078 (s), 1018(m), 921(m), 860(m), 773(s), 729(s), 691(s),
586 (m), 520(w), 411(m).

3.4. Synthesis of (NH4)2[Th(Lpic)3] (2)

The reaction was performed in an MBraun MB 200B glove box under an argon at-
mosphere. H2Lpic (39.5 mg, 0.1 mmol) was added to a stirred solution of [ThCl4(DME)2]
(20.3 mg, 0.05 mmol) in dry MeOH (3 mL). After 20 min, 3 drops of NEt3 were added
and the reaction mixture was stirred at room temperature for 1 h. NH4(PF6) (16 mg,
0.1 mmol) was added to the reaction mixture. The color of the solution turned to yellow-
green. After 1 h, the mixture was filtered and overlayered with diethyl ether. Single
crystals for X-ray diffraction were obtained by slow diffusion of the solvents. Yield: 60%
(44.7 mg). IR (KBr, cm−1): 2974(m), 2932(m), 2603(m), 2496(m), 1590(s), 1566(s), 1493(s),
1481(s), 1420(m), 1366(vs), 1306(m), 1278(m), 1243(s), 1203(w), 1172(w), 1158(w), 1121(m),
1097(m), 1065(s), 1035(m), 1019(m), 948(m), 912(s), 876(s), 836(vs), 763(s), 700(m), 683(w),
658(w). Elemental analysis could not be determined for the air- and moisture-sensitive
products due to radiation protection restrictions.

3.5. Synthesis of [UAu2(Lpic)3] (3)

The reaction was performed in an MBraun MB 200B glove box under an argon atmo-
sphere. H2Lpic) 39.5 mg, 0.1 mmol) and [Au(tht)Cl] (32 mg, 0.1 mmol) were added to a
stirred solution of [U2I6(1,4-dioxane)3] (75.2 mg, 0.05 mmol) in THF (3 mL). After 20 min,
3 drops of NEt3 were added and the reaction mixture was stirred for another 1 h. The color
of the solution turned brown, and a dark, insoluble precipitate was formed. The solid was
filtered off and washed with THF. Filtrates were collected and overlayered with diethyl
ether. Single crystals for X-ray diffraction were obtained by slow diffusion of the solvents.
Yield: 40% (36 mg). Elemental analysis: calculated for C51H69N15O6S6U·(C4H8O): C, 35.0;
H, 4.1; N, 11.2; S, 10.2%. Found: C, 35.0; H, 4.2; N, 11.2; S, 10.2%. IR (KBr, cm−1): 2971(s),
2931(s), 2872(w), 2764(m), 2681(m), 2479(w), 1577(s), 1559(vs), 1523(vs) 1420(s), 1390(s),
1309(m), 1290(m), 1238(s), 1197(m), 1146(m), 1117(m), 1067(m), 1018(m), 947(m), 910(s),
870(m), 835(m), 794(m), 770(s), 752(m), 730(m), 695(m).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/0/s1, Table S1: Crystallographic data and data collection param-
eters. Figure S1: An ellipsoid representation of the structure of 3 [Th(2,6-dipicolinolate)2(H2O)4]·4
H2O. The thermal ellipsoids are set at a 30% probability level. Hydrogen atoms bonded to carbon
atoms are omitted for clarity. Table S2: Bond lengths (Å) in 3 [Th(2,6-dipicolinolate)2(H2O)4]·4 H2O.
Table S3: Bond angles (◦) in 3 [Th(2,6-dipicolinolate)2(H2O)4]·4 H2O. Figure S2: An ellipsoid repre-
sentation of the structure of (NH4)2[Th(Lpic)3]·MeOH, also illustrating the positional disorders of
some sulfur atoms. The thermal ellipsoids are set at a 30% probability level. Hydrogen atoms bonded
to carbon atoms are omitted for clarity. Table S4: Bond lengths (Å) in (NH4)2[Th(Lpic)3]·MeOH.
Table S5: Bond angles (◦) in (NH4)2[Th(Lpic)3]·MeOH. Figure S3: The hydrogen bonding network
between the complex anion and the two ammonium cations in (NH4)2[Th(Lpic)3]·MeOH. Figure
S4: An ellipsoid representation of the structure of [UAu2(Lpic)3]·THF, also illustrating the posi-
tional disorders of two ethyl groups. The thermal ellipsoids are set at a 30% probability level.
Hydrogen atoms bonded to carbon atoms are omitted for clarity. Table S6: Bond lengths (Å) in
[UAu2(Lpic)3]·THF. Table S7: Bond angles (◦) in [UAu2(Lpic)3]·THF. Figure S5: IR spectrum (KBr) of
[Th(2,6-dipicolinolate)2(H2O)4]. Figure S6: IR spectrum of (NH4)2[Th(Lpic)3]. Figure S7: IR spectrum

https://www.mdpi.com/article/10.3390/0/s1
https://www.mdpi.com/article/10.3390/0/s1
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of [UAu2(Lpic)3]. Table S8: The continuous SHAPE measures (CShM) for the ten-coordinate complex
[Th(2,6-dipicolinolate)2(H2O)4], considering all idealized relevant polyhedra. Polyhedra with sig-
nificant distributions are highlighted. Table S9: The continuous SHAPE measures (CShM) for the
nine-coordinate complexes (NH4)2[Th(Lpic)3] and [UAu2(Lpic)3], considering all idealized relevant
polyhedra. Polyhedra with significant distributions are highlighted.
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