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Abstract: Endophytic bacteria are relevant symbionts that contribute to plant growth and development.
However, the diversity of bacteria associated with the roots of terrestrial orchids colonizing Andean
ecosystems is limited. This study identifies and examines the capabilities of endophytic bacteria
associated with peloton-containing roots of six terrestrial orchid species from southern Chile.
To achieve our goals, we placed superficially disinfected root fragments harboring pelotons on
oatmeal agar (OMA) with no antibiotic addition and cultured them until the bacteria appeared.
Subsequently, they were purified and identified using molecular tools and examined for plant
growth metabolites production and antifungal activity. In total, 168 bacterial strains were isolated
and assigned to 8 OTUs. The orders Pseudomonadales, Burkholderiales, and Xanthomonadales of
phylum Proteobacteria were the most frequent. The orders Bacillales and Flavobacteriales of the
phylla Firmicutes and Bacteroidetes were also obtained. Phosphate solubilization was detected in
majority of isolates; however, it was significantly higher in Collimonas pratensis and Chryseobacterium sp.
(PSI = 1.505 ± 0.09 and 1.405 ± 0.24, respectively). Siderophore production was recorded only for
C. pratensis (0.657 ± 0.14 mm day−1), Dyella marensis (0.131 ± 0.02 mm day−1), and Luteibacter
rhizovicinus (0.343 ± 0.12 mm day−1). Indole acetic acid production was highly influenced by
the isolate identity; however, the significantly higher activity was recorded for Pseudomonas spp.
(ranging from 5.507 ± 1.57 µg mL−1 to 7.437 ± 0.99 µg mL−1). Additionally, six bacterial isolates
were able to inhibit the growth of some potential plant pathogenic fungi. Our findings demonstrate
the potential for plant growth promoting capabilities and some antifungal activities of endophytic
bacteria inhabiting the mycorrhizal tissue of terrestrial orchids, which may contribute especially at
early developmental stages of orchid seedlings.
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1. Introduction

Plant endophytes cover a broad spectrum of microorganisms with beneficial, neutral, or detrimental
effects on plant growth and development [1]. Worldwide, the study of endophytic microorganisms
are focused mainly on fungi [2,3], but in the last decade research on bacterial endophytes has gained
attention due to their high presence in various interior tissues of almost all higher plants [4–6].
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Plant growth-promoting bacteria (PGPB) were first mentioned and examined by Kloepper and
Schroth [7]. PGPB are primarily soil microorganisms living in close vicinity of plant roots (rhizosphere)
under the direct influence of the root exudates [8]. From the rhizosphere, the bacteria colonize the root
cortical cells and establish a symbiotic relationship with the plant host [9]. Although the bacteria are
one of the most common soil microorganisms [6], only a very limited number of them can be cultivated
under laboratory conditions in order to examine their beneficial capabilities [10,11].

Orchidaceae is one of the most numerous plant families with more than 30,000 species and almost
worldwide distribution growing under diverse climatic conditions, colonizing the soil, the bark of trees,
and rocks [12]. In Chile, almost 70 orchid species occur, and their distribution, mycorrhizal associations
together with the seed germination have been described by Novoa et al. [13] and Herrera et al. [14].
However, information regarding bacteria associated with native orchids is limited.

Various mycorrhizal fungi and endophytic bacteria can be isolated from orchid root tissue [15–17].
The beneficial effect of orchid mycorrhizae on seed germination and further seedling development has
been described and demonstrated [18]. Orchid seeds lack the essential nutrients to sustain plant growth,
needing compatible mycorrhizal fungi as the primary source of carbon for the embryo [19]. This is the
main characteristic of the orchid mycorrhizal process, and several articles analyzing mycorrhizal fungi
associated with orchids and their potential to promote plant growth support this [20–22]. However,
the effect of endophytic bacteria on orchid development still unclear [23]. Generally, PGPB are able to
promote plant growth by direct or indirect mechanisms, including phosphate solubilization activity,
phytohormones production, signaling modification, protection against pathogens, and facilitation
of nutrient uptake [9]. Few studies have analyzed the potential of isolated endophytic bacteria to
promote plant growth [24–26]. Therefore, the mechanisms responsible for plant growth promotion in
terrestrial orchids from Andean ecosystems need to be investigated to consider bacteria as potentially
beneficial in order to ascertain a putative role of these microorganisms in symbiotic seed germination
or plantlet development.

In this study we examined taxonomical diversity of culturable endophytic bacteria associated with
peloton-containing root tissue of some native terrestrial orchids from southern Chile. Furthermore,
we analyzed their potential beneficial traits such as phosphate solubilization, indole acetic acid
(IAA) production and siderophore production together with their ability to inhibit growth of some
fungal pathogens. These characteristics may play a key role in growth and development of orchid
seedlings. For this, several orchids were sampled at different locations in the Region of La Araucanía
(Southern Chile), inspected for the presence of mycorrhizal structures, and bacteria associated with
the mycorrhizal root segments were isolated, cultured, and identified to explore their plant growth
promotion capabilities.

2. Materials and Methods

2.1. Sampling

The roots of six terrestrial orchid species were sampled at five localities of the Andean and Coastal
ecosystem in the Region of La Araucanía in southern Chile (December 2018–February 2019; Table 1).
The identification of the orchid species was performed based on floral characteristics according to
Novoa et al. [13]. The species of interest occurred in grasslands and understoreys of native and exotic
forests, colonizing the first 15 cm of soil (Table 1). Mycorrhizal root segments (brownish zones within a
root) were collected from the rhizomes growing within the upper part of soil and kept in paper bags
for further laboratory processing. The study material was sampled from 10 plants per examined orchid
species (where orchid populations were large).
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Table 1. List of plants and locations of orchids sampled in the experiments.

Species Location Sample Site Number of
Root Samples

Chloraea barbata Lindl. Imperial (38◦43′31.5′′ S 72◦59′45.0′′ W) Grassland 10
Chloraea collicensis Kraenzl. Cholchol (38◦36′40.9′′ S 72◦49′16.0′′ W) Grassland 10

Chloraea gavilu Lindl. Malalche (38◦34′01.7′′ S 72◦56′57.3′′ W) Understorey exotic forest 10
Chloraea magellanica Hook. F. Galletue (38◦37′05.8′′ S 71◦26′02.4′′ W) Grassland 10

Gavilea Araucana (Phil.) M.N. Correa Malalche (38◦33′38.5′′ S 72◦56′19.5′′ W) Understorey native forest 4
Gavilea lutea (Pers.) M.N. Correa Melipeuco (38◦45′02.8′′ S 71◦36′09.8′′ W) Understorey native forest 4

2.2. Isolation of Endophytic Bacteria

Isolation of bacteria was performed following the standard protocol for isolation of mycorrhizal
fungi from peloton-containing roots [15]. Briefly, the collected roots were washed under tap water
and cut into 3 cm segments. They were surface-sterilized (disinfection solution comprising 90:5:5
of sterile deionized water, ethanol 96% and sodium hypochlorite solution (5% active chlorine)) for
10 min under continuous agitation, followed by five rinsings in sterile deionized water under a laminar
flow cabinet. Additionally, 300 µL of the last wash were dispersed on potato dextrose agar (PDA;
supplemented with 100 mg L−1 cycloheximide) and Luria-Bertani Agar (LBA; supplemented with
100 mg L−1 cycloheximide) to ensure no contamination with surface-adherent ectobacteria. Afterwards,
the roots were transversally sliced and visually inspected for the presence of hyphal coils inside the
root cortex (pelotons). Brownish zones containing pelotons were separated from non-colonized root
segments using a sterile scalpel and the pelotons were placed on PDA and LBA media and incubated
for 3 weeks at 27 ± 1 ◦C, or until bacterial growth appeared near the root segment. Subsequently,
they were subcultured on LBA, incubated at 27 ± 1 ◦C, and stored at 4 ◦C for further analyses.

2.3. Molecular Identification of Bacteria

Molecular identification of bacteria was performed based on the sequence of the 16S ribosomal
RNA gene. DNA was extracted from liquid cultures of bacteria in Luria-Bertani broth (LBB) using
the UltraClean® Microbial DNA Isolation Kit (Mo Bio Laboratories. Carlsbad, CA), according to the
manufacturer’s instructions. PCR amplifications were performed using the universal primer pair for
bacteria 27F (5′-AGAGTTTGATCCTGGCTCAG-3′) and 1492R (5′-TACGGTTACCTTGTTACGACTT-3′)
according to Zhang et al. [27]. The PCR cycle consisted of an initial denaturing at 95 ◦C for 5 min,
followed by 30 cycles of denaturing at 95 ◦C for 1 min each, annealing at 58 ◦C for 1 min, an extension
at 72 ◦C for 1 min and a final extension for 5 min at 72 ◦C. PCR products were checked in 2% agarose
gel stained with GelRed®. Sequencing was performed by Macrogen (Seoul, South Korea).

BLAST searches were conducted to find the closest match, accepting the genus and species
classification according to Chen et al. [28]. The sequences were aligned and edited using the ClustalX
and BioEdit software [29,30]. The phylogenetic relationships were estimated using the neighbor-joining
method in the MEGA X software [31], according to Herrera et al. [32]. The obtained sequences were
submitted to the GenBank database under the codes MK790613–MK790627.

2.4. Screening of Plant Growth-Promoting Traits

Potential plant growth-promoting characteristics were evaluated as in Ortiz et al. [33] with
modifications. Briefly, phosphate solubilization was estimated on Pikovskaya agar plates containing
tricalcium phosphate (Ca3(PO4)2) as the insoluble phosphate source and incubated in the dark at
27 ± 1 ◦C for 14 days. The phosphate solubilization capability was positive if a clear halo around the
bacteria was present. A phosphate solubilization index (PSI) was estimated by the diameter of the
halo (mm)/diameter of colony (mm), with 10 repetitions per bacterium. Siderophore production was
estimated using the chrome azurol S (CAS) agar [34]. Plates were incubated in the dark at 27 ± 1 ◦C
for 7 days. CAS-reaction rates were expressed in mm per day, considering 10 replicates per bacterial
strain. To examine IAA production, bacteria were cultured in LBB supplemented with 0.5 mg mL−1
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of L-tryptophan and incubated at 27 ± 1 ◦C for 14 days under agitation at 150 rpm. Then 2 mL of
cell suspension were mixed with 4 mL of Salkowski’s reagent and incubated at room temperature in
darkness for 30 min. The absorbance was measured at 530 nm considering 10 replicates per bacterium.

2.5. Antifungal Activity

Antifungal activity of the obtained bacteria was tested on several isolates of potential fungal
pathogens (Phoma sp., Ulocladium consortiale, Fusarium sp., Botrytis cinerea, Alternaria infectoria, and one
orchid mycorrhizal fungus previously isolated from Chloraea philippi, Ceratobasidium sp. (accession
number MK793002)) kept in the fungal bank of the Bioremediation Laboratory at the Universidad de La
Frontera. The tested procedure was developed following Petatan-Sagahon et al. [35] with modifications.
Briefly, a particular bacterial strain was inoculated at 2 cm distance from a plug (ø 5 mm) with fungal
hyphae placed in the center of petri plate with PDA; five replicates were prepared per examined fungal
strain. The plates were incubated in darkness at 27 ± 1 ◦C for 7 days and visually inspected every
24 h. The inhibition rate was considered positive when distinctive deceleration of mycelial growth was
observed compared to a control treatment without bacterial inoculation.

2.6. Data Analyses

Quantitative analyses were performed using a one-way analysis of variance (ANOVA), considering
each bacterium as treatment. To evaluate significant differences between treatments, post hoc pair-wise
comparisons were performed, using the SD of means and Tukey’s test, establishing statistical significance
at p < 0.05. All statistical tests were conducted using the R software (R Core Team 2018; https:
//www.R-project.org).

3. Results

In total 15 endobacterial strains were obtained from the mycorrhizal tissues of the examined
orchid species with a variable diversity (Table 2; Table S1). The frequency of isolation of bacteria from
the mycorrhizal fragments varied from 15 to 38% in Gavilea lutea and Chloraea barbata, respectively.

In total, 168 bacterial colonies were obtained from the pelotons containing tissues. The greatest
diversity of bacteria was found in G. lutea and Chloraea magellanica, which showed the presence
of 8 and 7 different bacterial strains (Figure 1). The isolation of bacteria varied according to the
orchids: (i) six bacterial strains were isolated from C. barbata (strains CM01, CB01, CC03, GA01, GA03,
and CM03), accounting 14 bacterial colonies (Figure 1); (ii) five bacterial strains were isolated from
Chloraea collicensis (strains CG01, CC01, CC02, CC03, and CC04), accounting 32 bacterial colonies
(Figure 1); (iii) five bacterial strains were detected in Chloraea gavilu (strains CG01, CC02, CC03, CC04
and GA02), accounting 21 bacterial colonies (Figure 1); (iv) seven bacterial strains were isolated from
C. magellanica (strains CM01, GL01, CC04, GL02, CM02, CM03 and CM04), accounting 40 bacterial
colonies (Figure 1); (v) five bacterial strains were isolated from Gavilea araucana (strains CG01, CC02,
GA01, GL02, and GA04), accounting 31 bacterial colonies (Figure 1); and (vi) eight bacterial strains were
isolated from G. lutea (strains CM01, GL01, CC02, CC04, GL02, GA02, CM02, and CM04), accounting
30 bacterial colonies (Figure 1). They were subsequently clustered into 8 OTUs (Table 2; Figure 2).
The isolates GL01 and CM01 were the most frequent with the frequency of isolation, 0.10 and 0.09,
respectively Table S1. They were obtained from the roots of C. magellanica and G. araucana, accounting
for 17 and 15 colonies, respectively (Figure 1).

https://www.R-project.org
https://www.R-project.org
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Table 2. Molecular identification of culturable bacteria isolated from peloton-containing root segments based on the closest match in the GenBank database.

Isolated
Bacteria

GenBank
Accession Number Isolation Source Close Relatives (Accession Number) % Identity Source Reference

CM01 MK790613 Chloraea magellanica Collimonas pratensis (KU311457) 100 Not defined GenBank

GL01 MK790614 Gavilea lutea Pseudomonas sp.
(MK371074) 100 Permafrost soil GenBank

CG01 MK790615 Chloraea gavilu Pandoraea oxalativorans (CP011253) 100 Soil litter close to Oxalic sp. Sahin et al. [36]

CB01 MK790616 Chloraea barbata Pseudomonas koreensis (KT008003) 100 Rhizosphere from
metallophyte plants Benidire et al. [37]

CC01 MK790617 C. collicensis Exiguobacterium aurantiacum (MH819695) 100 Coastal soil Genbank

CC02 MK790618 C. collicensis Dyella marensis
(KF475806) 100 Tea roots GenBank

CC03 MK790619 C. collicensis Luteibacter rhizovicinus
(AY785744) 100 Tree roots Leigh et al. [38]

CC04 MK790620 C. collicensis Bacillus sp.(KX959542) 99 Orchid mycorrhizal fungi Novotna and Suárez [24]

GL02 MK790621 G. lutea Pseudomonas sp.
(KY849590) 100 Roots GenBank

GA01 MK790622 G. araucana Pseudomonas azotoformans (MF598585) 100 Sporomes of Lactarius
salmonicolor GenBank

GA02 MK790623 G. araucana Pseudomonas sp.
(MG833398) 99 Tailing soils GenBank

GA03 MK790624 G. araucana Pseudomonas azotoformans
(MF598585) 100 Sporomes of Lactarius

salmonicolor GenBank

CM02 MK790625 C. magellanica Chryseobacterium sp.
(KC306432) 99 Frog skin GenBank

CM03 MK790626 C. magellanica Pseudomonas sp.
(MH392636) 99 Water GenBank

CM04 MK790627 C. magellanica Pseudomonas costantinii
(KP218045) 100 Pleurotus ostreatus meia GenBank
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Most of the obtained isolates belonged to the phylum Proteobacteria. The isolates GA02, GL01,
GL02, GA03, CM04, GA01, CM03, and CB01 showed high similarity with strains from the order
Pseudomonadales (Figure 2). Specifically, the isolates CM03, GA02, GL02, and GL01 showed high
similarity (>99%) with different Pseudomonas spp. (Table 2; Figure 2). The isolates GA01 and GA03
showed 100% similarity with Pseudomonas azotoformans, whereas CM04 and CB01 showed 100%
similarity with Pseudomonas constantinii and Pseudomonas koreensis, respectively (Table 2; Figure 2).
Additionally, the isolates CG01 and CM01 showed 100% similarity with Collimonas pratensis and
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Pandoraea oxalativorans, respectively, included in the order Burkholderiales (Table 2; Figure 2).
Furthermore, the isolates CC02 and CC03, showed 100% similarity with Dyella marensis and Luteibacter
rhizovicinus, respectively, both included in the order Xanthomonadales (Table 2; Figure 2). The phylum
Firmicutes was also detected in our analyses. The isolates CC01 and CC04 match with bacterial
strains from the order Bacillales (Table 2; Figure 1). The isolate CC01 showed 100% similarity with
Exiguobacterium aurantiacum, whereas CC04 showed 99% similarity with Bacillus sp. (Table 2; Figure 2).
Finally, the isolate CM02 showed 99% similarity with Chryseobacterium sp., included in the order
Flavobacteriales from the phylum Bacteroidetes (Table 2; Figure 2).

Production of plant growth metabolites was different between bacteria. Most bacterial isolates
were able to solubilize phosphate, with PSI being significantly higher in C. pratensis (1.505 ± 0.09).
On the other hand, isolates CG01 and CC02 did not demonstrate any P solubilization ability (Table S1).
Only 3 out of 15 examined isolates showed siderophore production (CM01, CC02, CC03), whereas it
was significantly higher in the isolate C. pratensis (0.657 ± 0.14). Production of IAA from L-tryptophan
was achieved in most of the isolates. The quantification of IAA ranged from 0.799 ± 0.13 µg mL−1 in
E. aurantiacum to 6.716 ± 0.83 µg mL−1 in Pseudomonas sp. The strains P. oxalativorans, D. marensis and
Chryseobacterium sp. did not show auxin production (Table S1).

Regarding fungal growth inhibition, seven out of 15 examined isolates (CM01, CB01, CC01, CC02,
GA01, GA03, and CM02) induced a reduction of the area colonized by the fungal hyphae in the Petri
dish, which was highest in C. pratensis and D. marensis, showing a reduction in the hyphal growth
ranging from 25% to 20% of the fungal mycelia (Table S2). This reduction was achieved in the fungi
Phoma sp., U. consortiale, Fusarium sp. and A. infectoria at different intensities, whereas no significant
reduction was detected in B. cinerea or Ceratobasidium sp. (Table S2).

4. Discussion

Our study identified bacteria associated with peloton-containing roots from several terrestrial
orchids on the Pacific side of the Andes mountains in southern Chile and suggest the existence of
a broad diversity of bacteria associated with mycorrhizal tissues, which has been scarcely explored
in Andean ecosystems. Such bacterial isolates match with four phyla already known as common
plant endophytes inhabiting seeds, roots and leaves [39,40]. Despite several studies have reported
association with bacteria in orchids from different locations, particularly in epiphytic orchids [26],
the study of association with partially mycoheterotrophic terrestrial orchids is limited [23,41]. Hence,
we focused our study on endophytic bacteria associated with peloton-containing roots that can be
isolated in the traditional isolation methods of orchid mycorrhizal fungi [15]. A common practice in the
isolation of compatible mycorrhizal fungi is the addition of antibiotics such as streptomycin to avoid
bacterial growth [42,43]. Such a practice interferes with the growth of the bacteria inhabiting orchid
roots and causes an underestimation of the presence of bacteria inside pelotons that can also have
positive effects on plant growth promotion, especially after the mycoheterotrophic stage, where other
nutritional compounds are needed to initiate plantlet growth [16,25]. Certainly, carbon is the main
nutritional compound required by the embryo during the protocorm stage, but when the plantlet
stage starts, the nutritional demand requires other nutrients to start growth and development [44–46].
Here, plant growth-promoting bacteria can have a direct role by the production of auxin, phosphate
solubilization or providing nutrients necessary to support growth and autotrophy [47].

Inside orchid roots, bacteria may interact with fungi and orchid root cells to maintain the beneficial
effect of the symbiosis, directly by production of plant growth-promoting metabolites or indirectly
by the inhibition of fungal growth that can be harmful to the plant [48–50]. Such processes have
been widely reported in endophytic and rhizospheric bacteria isolated from several plants; however,
association of partially mycoheterotrophic terrestrial orchids from the southern Andes has not yet been
reported. Our study isolated a broad diversity of bacteria that match with genera with clear capabilities
to promote plant growth, such as Pseudomonas spp., which have been reported as microorganisms able
to promote Zea mays growth under normal and stressed conditions [51], to produce siderophores to



Diversity 2020, 12, 55 8 of 12

complement iron nutrition of Vigma radiata plants [52], to improve inorganic phosphate solubilization to
Pisum sativum plants [53], to improve growth of Triticum aestivum plants by auxin-producing strains [54],
among others. Similarly, the genera Collimonas, Bacillus, Exiguobacterium, and Luteibacter, which were
isolated in our study, have been reported as plant growth-promoting rhizobacteria that contributes
to plant with beneficial metabolites such as volatile organic compounds, improve the proline and
bacoside content and limit the levels of lipid peroxidation in stressed plants, or produce molecules able
to chelate ferric ions and solubilize monocalcium phosphate, among others [55–57].

Our results suggest that bacteria associated with terrestrial orchids can have a positive role in
plant growth promotion, which is in line with the studies of Tsavkelova et al. [41] showing root
associations of Paphiopedilum appletonianum and Pholidota articulata with the genera Pseudomonas,
Bacillus, and Chryseobacterium. Additionally, Galdiano et al. [58] identified Bacillus sp. strains from
roots of Cattleya walkeriana. These previous works agree with our results and may reflect a widespread
occurrence of these microorganisms in orchid roots and other myco-heterotrophs [59], which can
differ according to the ecosystems and the physiological state of the plants. The substantial diversity
of bacteria isolated in our study might relate to the diversity of plants colonizing the orchid-related
sampling points, which certainly influences the diversity of endophytic bacteria [17,60].

Plant growth capabilities were detected in some bacterial strains isolated in our study, especially
in C. pratensis and Pseudomonas spp., which showed plant growth-promoting attributes such as
phosphate solubilization and the production of IAA, which is consistent with the results obtained
by Tsavkelova et al. [61], who identified several auxin-producing bacteria associated with roots of
Dendrobium moschatum, as well as a beneficial effect of some endophytic bacteria on growth and root
formation in two tropical orchids [41], and in the germination of the seeds [62] via indole-3-acetic
acid (IAA). Similarly to our study, Faria et al. [25] isolated endophytic bacteria (Paenibacillus spp.)
from roots of the orchid Cymbidium eburneum that have a positive effect to stimulate plant growth via
IAA, in spite of no phosphate solubilization being reported. Certainly, production of auxin is one of
the most plant growth-promoting mechanisms reported in bacteria isolated from orchids and have
clear roles in plant growth promotion, especially in epiphytic orchids. In the soil, orchids need the
associations with other microorganisms to improve the growth rate of the young plantlets, those with
plant growth-promoting characteristics that might contribute to the plant metabolism [14]. Despite
phosphate solubilization, production of siderophores and production of auxin being lower than other
amounts reported in similar works, these bacteria may represent beneficial orchid endophytes that
may contribute to growth and development, especially after the plantlet stage.

Inhibition of fungal growth is a characteristic that was present in seven of the bacterial isolates.
C. pratensis was the most effective bacterium restricting the growth in four of the five fungi tested.
Such inhibition may relate to the mycophagous nature of the genus Collimonas, which can grow at the
expense of living fungal hyphae as a source of nutrients [63]. These characteristics may underline a
beneficial role for the plant, in which bacteria may contribute to the control of the intraradical growth
of fungi to avoid colonization of vital plant tissues. This ability has been reported by Garbeva et al. [64],
who showed that the production of volatiles by C. pratensis is enhanced by the presence of fungi in a
sand microcosm, which is related to the mycophagous lifestyle of the bacteria. Additionally, our results
agree with Poosakkannu et al. [65], who detected this bacteria as an endophyte of Deschampsia flexuosa,
as well as in living fungal hyphae of soil fungi [66]. The ability of Luteibacter sp. to colonize fungal
hyphae and form a functional association has been reported in a foliar endophytic fungus isolated
from Platycladus orientalis plants [67], which agrees with our results regarding bacteria colonizing
mycorrhizal tissues of C. collicensis. Additionally, we showed that some of the bacterial strains did not
survive after successive subcultures (3 months), which may underscore a dependence of some bacteria
on plant or fungal metabolites, or reflect a symbiotic association with fungi such as the association of
the orchid Stanhopea connata with the mycorrhizal fungi Serendipita sp. [24].

Certainly, the diversity of endophytic bacteria is greater than what has been reported in our study,
but the culturable bacteria associated with pelotons may reflect an interesting alternative to improve
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the growth and yield of plantlets developed from orchids cultured in vitro. Likewise, the specific
mechanisms in which endophytic bacteria contribute to orchid development need to be addressed in
order to know the contribution of these widespread endophytes to the life cycle of terrestrial orchids.

5. Conclusions

Our results report for the first time bacteria associated with peloton-containing root segments of
terrestrial orchids from the southern Andes. The data reported here suggest that terrestrial orchids
associated with many phyla of bacteria that vary with species and have the potential to promote plant
growth. Additionally, the ability of bacteria to restrict the growth of potential pathogenic fungi may
contribute to the intraradical control of mycorrhizal fungus and help protect orchid roots from harmful
fungi. Further studies need to test the effect of the isolated bacteria on the fungus-orchid interaction
and growth.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-2818/12/2/55/s1,
Table S1: Isolation frequency and plant growth promoting traits of the bacterial strains obtained from the
peloton-containing root slices, Table S2: Assessment of the inhibition potential of the isolated bacterial strains on
the growth of potential plant fungal pathogens.
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