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Abstract: Cyanobacteria are among the most diverse morphological microorganisms that inhabit a
great variety of habitats. Their presence in the Azores, a volcanic archipelago of nine islands in the
middle of the North Atlantic Ocean, has already been reported. However, due to the high diversity
of cyanobacteria habitats, their biodiversity is still understudied, mainly in extreme environments.
To address this, a total of 156 cyanobacteria strains from Azores lakes, streams, thermal and terrestrial
habitats were isolated. Identification was made based on a polyphasic approach using classical
taxonomy (morphological characteristics and environmental data) and phylogeny among 81 strains
assessed by maximum likelihood and Bayesian analysis of 165rDNA partial sequences. The 156isolates
showed a high genera diversity (38) belonging to the orders Chroococcales, Nostocales, Oscillatoriales,
and Synechococcales. Eleven new genera for the Azores habitats are here reported, reinforcing
that cyanobacteria biodiversity in these islands is still much understudied. Phylogenetic analysis
showed 14 clusters associated with these cyanobacteria orders, with evidence for six new genera and
valuable information towards Microchaete/Coleospermum taxonomic revision that better reflects species
environmental distribution. These results emphasize the need for cyanobacteria taxonomy revisions,
through polyphasic studies, mainly in Synechococcales order and in the Microchaete/Coleospermum,
Nostoc, and Anabaena genera.
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1. Introduction

Cyanobacteria are photoautotrophic prokaryotes with high morphological and ecological diversity,
that are able to produce specialized cells (e.g., heterocysts and akinetes), which makes them unique
organisms, allowing them to survive and endure in unfavorable and extreme environments (e.g., lack
of light or nutrients, high salinity and/or extreme oscillations of temperature) [1,2]. Cyanobacteria are
more frequently reported from freshwater, brackish water, marine, and terrestrial ecosystems [1,3,4], but
reports on their presence in extreme environments are rather scarce [4]. In the Azores, a remote Atlantic
Ocean archipelago of volcanic origin, the study of cyanobacteria on different types of ecosystems is
also biased. Although cyanobacteria have been reported in these islands since 1874 [5,6], most reports
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are from freshwater lakes (e.g., [5,7-9]), due to high abundance of these ecosystems (88) [10] and to the
occurrence of cyanobacteria blooms associated with lake cultural eutrophication [8,11]. Despite the
abundance of thermal sites [12] and other environments suitable for cyanobacteria inhabitance [13],
only a few studies on cyanobacteria diversity in these habitats were done [9,13]. In fact, a recent
work by Luz et al. [6] gathers almost 2.000 cyanobacteria occurrences (42 different taxa) only from
freshwater lakes.

Morphological and ecological features are crucial for cyanobacteria taxonomic
identification [1,3,14]. However, recent contributions from molecular studies challenged the
traditional classification based on morphological and ecological features. Taxonomic identification
should preferably be based not only on morphological features but also on genetic and biochemical
characters [14-20]. Cyanobacteria classification is in constant change, and the most used is the latest
taxonomic approach proposed by Komarek et al. [14], using morphological, ecological and genetic data,
that classified cyanobacteria into eight orders: Gloeobacterales (cyanobacteria without thylakoids),
Synechococcales and Spirulinales (unicellular and filamentous genera with parietal thylakoids),
Chroococcales and Pleurocapsales (coccoid), Oscillatoriales (filamentous without cell differentiation
and the coccoid Cyanothece), Chroococcidiopsidales (mostly from extreme habitats) and Nostocales
(filamentous with heterocysts and akinetes) [14].

A common taxonomic misconception is the identification of genera/species regardless of their
ecology, despite several recognized polyphyletic genera containing species from different habitats [21,22].
This problem was resolved, for instance, in the Lyngbya genus, where marine species were genetically
recognized as distinct (Moorea) [23] and more recently in the Calothrix cluster genus with the description
of freshwater/terrestrial genus Dulcicalothrix [24]. Many other studies address this problem, but
most of them do not consider other habitats, such as brackish or thermal habitats, mainly due to the
lack of available cultured strains. More complex genera are e.g., Nostoc and Leptolyngbya where the
lack of diacritical features has been of great concern for taxonomic identification in cultured strains
with difficult taxonomic identification [20,25]. Contributions to this problematic are being addressed
mainly by genetic techniques with the characterization of several Nostoc alike genera (e.g., Desmonostoc,
Halotia) [16,20] and Leptolyngbya alike genera (e.g., Pegethrix, Cartusia) [17].

Isolation of cyanobacteria from different ecosystems allows multidisciplinary and more complex
studies, thus the creation and preservation of cyanobacteria isolates in culture collections has increased
recently [26,27]. Isolated strains allow intricate studies to understand the detailed characteristics of
their morphology, genetics, physiology, and biochemistry [28,29]. Genetic studies using axenic cultures
are essential for cyanobacteria polyphasic taxonomic classification studies, especially for understudied
or unresolved polyphyletic families/genera/species [14]. In fact, in recent studies, many of the newly
described genera and species are based exclusively on cultivated strains [17,20,30,31].

Taking this into consideration, we aimed to increase cyanobacteria richness in our collection,
the Bank of Algae and Cyanobacteria of the Azores (BACA), and increase knowledge on cyanobacteria
diversity, by isolating cyanobacteria from various habitats from the Azores islands, as well as to infer
phylogenetic relationships among them.

2. Materials and Methods

2.1. Study Site and Sample Collection

The Azores archipelago located in the Northeast Atlantic Ocean is composed of nine volcanic
islands divided into three groups following a Southeast-Northwest alignment: Eastern (Santa Maria
and Sao Miguel), Central (Terceira, Graciosa, Sao Jorge, Pico, and Faial) and Western (Corvo and
Flores). For this study five of the nine islands were sampled, comprising a total of 47 sample sites from
25 volcanic lakes, one artificial lake, 12 thermal sites, four streams, and five terrestrial sites (detailed in
Table S1).
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Phytoplankton samples were collected from surface waters with a 10 um mesh plankton net, while
biofilm samples were collected by scraping rocks, sediment, algae, or plants. Sampling was carried out
seasonally between 2016 and 2017. During cyanobacteria sampling, environmental variables were
taken in situ with the multiparameter probe Horiba U-52 (Horiba, Pasadena, TX, USA).

2.2. Strains Isolation, Morphological Characterization and Culture Conditions

Primarily, ca. 1 mL of environmental sample was added to ca. 20 mL of liquid BG-11 media
with and without combined nitrogen (for aerobic N,-fixing cyanobacteria) [32] and subjected to an
adaptation phase for about two weeks. Freshwater and terrestrial samples stayed in a climate-controlled
room with a 14:10 h light:dark (1040 pmol photons m~2 s~1) photoperiod at 19 °C [32,33]. Thermal
samples stayed in a climate-controlled chamber (POL-EKO APARATURA®, Wodzistaw Slaski, Poland)
in a 14:10 h light:dark (30 umol photons m~2 s™!) photoperiod at 35 °C [34]. After adaptation and
visual growth, isolation was made by several replicates either in liquid media or agar plates using an
inverted microscope Leica DMil (Leica, Germany).

Species identification was performed by optical microscopy, with the microscope Leica DM4 B with
Digital Camera Leica MC 190 HD (Leica, Germany), following specific floras based on morphological
and ecological characterization (e.g., [35-37]). Isolated strains are maintained in unicyanobacterial
cultures in the Bank of Algae and Cyanobacteria of the Azores (BACA), created in the framework
of the REBECA project (MAC/1.1a/060). Strains BACA0203 and BACA(224 previously isolated by
Xavier et al. [38] under the codes MIA-SMG-2013-13 and MIA-SMG-2013-48, respectively, and later
deposited in BACA, were also included in the phylogenetic analysis.

2.3. DNA Extraction, Polymerase Chain Reaction (PCR) Amplification, and Sequencing

Total genomic DNA was extracted from the pellet of centrifuged 2-5 mL of fresh cultures with
the PureLinkTM Genomic DNA Mini Kit (Invitrogen, Carlsbad, CA, USA), following the protocol
recommended by the manufacturer for Gram-negative bacteria. DNA samples were stored at —20 °C.

For 16S rRNA gene (partial) amplification and sequencing the following primers were used:
CYA106F [39] and CYA785R [40]. Polymerase chain reactions (PCR) were performed with a total volume
of 50 pL containing 1x PCR Buffer, 1.25 mM MgCl,, 250 uM of each deoxynucleotide triphosphate
(Thermo Fisher, Waltham, MA, USA), 10 pmol of each primer, 5-10 ng of DNA and 1 U of Taq DNA
Polymerase (Thermo Fisher, USA). Thermal cycling was carried out in a ProFlex™ 3 x 32-well PCR
System (Thermo Fisher, USA). PCR conditions were as follows: initial denaturation at 94 °C for 4 min,
35 cycles of 94 °C for 30 s, 52 °C for 30 s and 72 °C for 60 s, and a final extension step at 72 °C for
6 min. PCR amplification products were visualized by electrophoresis in 1.5% agarose gel, in 0.5x
TBE (Tris-Borate-EDTA) buffer, stained with SYBR™SAFE (0.2 g mL~!) and gel image captured with
Molecular Imager® Gel Doc™ XR+ (BioRad, Hercules, CA, USA).

Amplified products were cleaned using the EXTRACTME® DNA clean-up kit (Blirt, Gdarnsk,
Poland) following the manufacturer’s protocol and sent directly to Macrogen Ltd. (Madrid, Spain)
for sequencing.

All nucleotide sequences were submitted to the NCBI (National Center for Biotechnology
Information) GenBank database under the accession numbers MT176684 to MT176764 (Table S3).

2.4. Phylogenetic Analysis

To verify if the sequences had cyanobacterial origin a BLAST (Basic Local Alignment Search Tool;
http://www.ncbi.nlm.nih.gov/BLAST/; accessed 24/02/2020) was performed running program “blastn”
in the “Nucleotide collection (nr/nt)” database. The database was constructed with the sequences from
this study and type species sequences retrieved from GenBank (https://www.ncbi.nlm.nih.gov/genbank/;
accessed 12/07/2020). All sequences were assembled and trimmed using BioEdit 7.0.5.3 software [41]
and aligned using MUSCLE [42] in Version 10.0.5 of MEGA software [43]. The sequence data matrix
with a final of 629 bp length was used to infer phylogenetic distances.
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16SrRNA gene phylogeny relations were calculated using Maximum Likelihood (ML) and Bayesian
inference (BI). The general time-reversible evolutionary model of substitution with gamma-distributed
evolutionary rates and with an estimated proportion of invariable sites (GTR+G+I) was selected
based on jModelTest 2.1.7 [44]. ML was calculated using the software RAXML 8.2.0 [45] and the
graphical interface raxmlGUI 2.0.0 [46], with the thorough bootstrap option (1000 replicates) and
general time-reversible with gamma model of rate heterogeneity (GTRGAMMA). Bl was calculated
with MrBayes 3.2 [47] with GTR+G+I model, applying two separate runs with four chains each and
3,000,000 Markov chain Monte Carlo generations (the first 300,000 sampled trees were discarded
as burn-in).

The tree was drawn with FigTree 1.4.3 (http://tree.bio.ed.ac.uk/software/figtree) and Inkscape
0.92.4 (https://inkscape.org/pt/). Only the BI tree is presented, with bootstrap percentages (ML) and BI
probabilities for branch support, since ML and BI methods resulted in similar trees. Only bootstrap
percentages above 50 and probabilities above 0.9 are shown at the branch nodes of the phylogenetic
distance trees. Gloeobacter violaceus PCC 721 (NR_074282.1) was used as the out group.

3. Results

3.1. Sampling Site Features

Water temperature varied between 12-23 °C in lakes, 14-15 °C in streams, and from 28 °C to over
100 °C in thermal sites. Lake water pH varied from slightly acid to alkaline (6-9), while in streams
it was mainly neutral (around 7), and more acidic in thermal sites (5.9-6.9). Dissolved oxygen was
similar in lakes and streams (9-12 mg L~1), however lower in thermal sites (2—6 mg L~1), while electric
conductivity was higher in thermal sites (477-2440 uS cm™'), and streams (93-380 uS cm™!), and lower
in lakes (30-148 uS cm™!). The environmental characteristics of all sampling sites are presented in
Table S1.

3.2. Cyanobacterial Isolation and Morphological Identification

A total of 156 cyanobacteria strains were deposited in BACA from the 47 sampled environments
(Figure 1; Table 1), presented in detail in supplementary materials (Table S2). Isolated cyanobacteria
belonged to orders Chroococcales, Nostocales, Oscillatoriales, and Synechococcales with most of the
isolated cultures belonging to Nostocales (118), mainly Nostoc species (32) (Table 1).

Most strains were isolated from lakes (99 strains, 28 genera), with eight isolated strains from streams
and 12 from terrestrial environments. Cyanobacteria from terrestrial environments, such as trees and
caves (Tables S1 and S2), belonged to genera Hapalosiphon, Coleospermum (Figure 1L), Cylindrospermum,
Nostoc, Lyngbya (Figure 1K), Pegethrix (Figure 1G), and Cyanobium. From the 156 strains, 37 were
isolated from thermal environments belonging to the genera Gloeocapsopsis, Chlorogloeopsis (Figure 1M),
Mastigocladus, Coleospermum, Microchaete, and Leptolyngbya (Table 1).

3.3. Phylogeny Analysis

A total of 97 OTUs (operational taxonomic units) were used for the phylogenetic analyses, 79 from
isolated strains during this study, two retrieved from the BACA collection, BACA(0203 and BACA0224,
(Table S3) and 16 from type species available in the literature. Blastn results showed that most of the
strains had a good correlation between the phenotypic and genotypic identifications. Nonetheless,
49 strains had less than 98.5% similarity and within these 12 were below 95% similarity in Blastn results
(Table S3), which suggest that they belong to novel genera and/or species.
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Figure 1. Selected strains photomicrographs of cyanobacteria from the Azores islands. (A) Anabaena sp.
BACAO0003; (B) Calothrix sp. BACA0004; (C) Tildeniella sp. BACA0012; (D) Aphanizomenon sp. BACA0293;
(E) Nostocaceae BACA0013; (F) Microchaete tenera BACA0017; (G) Pegethrix sp. BACA0077; (H) Nostoc sp.
BACAQ238; (I) Tolypothrix sp. BACA0028; (J) Nostoc sp. BACA0096; (K) Lyngbya martensiana BACA0108;
(L) Coleospermum sp. BACA0101; (M) Chlorogloeopsis fritschii BACA0136; (N) Pseudanabaena sp. BACAQ0141;
(O) Westiellopsis sp. BACAO0150; (P) Leptolyngbya sp. BACA0229. Scale bars-20 um.

The phylogenetic tree based on the 16S rRNA gene presents 14 clusters that include four
cyanobacteria orders: Nostocales (clusters I to VIII), Synechococcales (clusters IX, XI, XIII, and XIV),
Oscillatoriales (cluster X) and Chroococcales (cluster XII) (Figure 2).

In the Nostocales order, cluster I has two clades, one with thermal strains of Coleospermum genus
and the other of Scytonematopsis strains (Figure 2); clusters II, III, and IV are mainly composed of
Nostocaceae taxa (Anabaena, Isocystis, and Nostoc), also with one clade of Tolypothrix genus (cluster
III). Cluster V contains Nostoc type species Nostoc commune (BACA0023; UTEX 504), Nostoc punctiforme
(BACAO0026), and thermal species Westiellopsis sp. (BACA0114 BACAQ150). Cluster VI contains
Aphanizomenaceae taxa with Aphanizomenon, Dolichospermum, and Sphaerospermopsis genera. Cluster
VII consists of Microchaetaceae cultures, Chlorogloeopsis fritschii (BACAQ136), and Anabaena sp.
(BACAO0003). Cluster VIII consists of Rivulariaceae genera with Rivularia and Calothrix, together
with one thermal species, Microchaete bulbosa (BACA01111).
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Table 1. Isolated cyanobacteria (number) by order, family, and genera. Strains isolated from different
types of ecosystems.

Order Family Genera No. ! Ecosystem
Chroococcales Chroococcaceae Gloeocapsopsis 1 Th
Chroococcales Cyanobacteriaceae Cyanobacterium 1 L
Chroococcales Microcystaceae Microcystis 2 L

Nostocales Aphanizomenonaceae Anabaenopsis 1 L
Nostocales Aphanizomenonaceae Aphanizomenon 4 L
Nostocales Aphanizomenonaceae Dolichospermum 3 L
Nostocales Aphanizomenonaceae Sphaerospermopsis 1 L
Nostocales Chlorogloeopsidaceae Chlorogloeopsis 5 Th
Nostocales Fortieaceae Fortiea 2 L
Nostocales Hapalosiphonaceae Fischerella 1 Th
Nostocales Hapalosiphonaceae Hapalosiphon 1 Tr
Nostocales Hapalosiphonaceae Mastigocladus 8 Th
Nostocales Hapalosiphonaceae Westiellopsis 2 Th
Nostocales Microchaetaceae Coleospermum 19 L, Th, Tr
Nostocales Microchaetaceae Goleter 1 L
Nostocales Microchaetaceae Microchaete 2 L, Th
Nostocales Nostocaceae - 1 L
Nostocales Nostocaceae Anabaena 5 L
Nostocales Nostocaceae Cylindrospermum 2 S, Tr
Nostocales Nostocaceae Hydrocoryne 1 L
Nostocales Nostocaceae Isocystis 1 L
Nostocales Nostocaceae Nostoc 32 L,S Tr
Nostocales Rivulariaceae Calothrix 11 LS
Nostocales Rivulariaceae Rivularia 3 L
Nostocales Scytonemataceae Scytonematopsis 2 L
Nostocales Tolypothrichaceae Tolypothrix 9 LS
Oscillatoriales Oscillatoriaceae Kamptonema 1 L
Oscillatoriales Oscillatoriaceae Lyngbya 1 Tr
Oscillatoriales Oscillatoriaceae Phormidium 2 L, Th
Oscillatoriales Oscillatoriaceae Tychonema 1 L
Oscillatoriales Microcoleaceae Arthrospira 3 L
Synechococcales Leptolyngbyaceae Leptolyngbya 12 L, Th
Synechococcales Leptolyngbyaceae Stenomitos 1 L
Synechococcales Oculatellaceae Pegethrix 1 Tr
Synechococcales Oculatellaceae Tildeniella 1 L
Synechococcales Pseudanabaenaceae Pseudanabaena 5 L
Synechococcales Pseudanabaenaceae Limnothrix 3 L
Synechococcales Synechococcaceae Cyanobium 3 L, Tr

1 Number of cyanobacterial strains isolated and deposited in BACA. L: lake, S: stream, Tr: terrestrial; Th: thermal.

Cluster X includes the Oscillatoriales taxa from the genera Arthrospira, Tychonema, Kamptonema,
and Lyngbya. Cluster XII consists of Chroococcales species Microcystis aeruginosa (BACA0148) and
Microcystis flos-aquae (BACA0230). Clusters IX, XI, XIII, and XIV represent Synechococcales strains,
with clusters IX and XI including Leptolyngbyaceae, cluster XIII Pseudanabaenaceae and in cluster
XIV the coccoid Cyanobium genus.
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Figure 2. Bayesian inference phylogenetic tree based on the partial 165 rRNA gene sequences.
A bootstrap test involving 1000 pseudo-replicates was performed. Bootstrap (greater than 50%) and
probabilities values (greater than 0.9) are displayed in front of the relevant nodes obtained from
ML and Bayesian methods, respectively. Colors represent cyanobacteria orders: Nostocales (blue),
Synechococcales (yellow), Oscillatoriales (orange), and Chroococcales (green). The 14 identified
clusters (I-XIV) are indicated along the tree and described in the text. L: lake, S: stream, Tr: terrestrial;
Th: thermal.

4. Discussion

Cyanobacteria studies in the Azores have been reported since 1874 [48], mainly from freshwater
habitats (e.g., [5,8,13]) with only a few references to terrestrial and thermal environments [13] despite
the abundance of thermal habitats in these islands [12]. With this work, we report 11 genera that have
not been identified in the Azores archipelago following the published checklist by Luz [13], namely,
Cyanobacterium, Fischerella, Westiellopsis, Goleter, Isocystis, Scytonematopsis, Tychonema, Arthrospira,
Stenomitos, Pegethrix and Tildeniella here reported for the first time in the Azores.

Nostoc is a polyphyletic genus, with a wide genetic diversity, that lacks morphological diacritical
features making its identification based on morphological data problematic, thus the necessity
of genetic information [14,25]. Our results show that Nostoc is widely spread, among clusters 1II
to V, separated with high phylogenetic distances (Figure 2), which is in accordance with previous
studies [18,19,49-53]. The positions of Nostoc strains from this study, Nostoc type species Nostoc commune
UTEX 584 (AY218833.1) and Nostoc alike type species such as Halotia branconii CENA 392 (KJ843312.1),
Aliinostoc morphoplasticum NOS (KY403996.1) and Desmonostoc muscorum Lukesova 2/91 (AM711524.1)
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highlights Nostoc polyphyletic status. It has been suggested previously that the polyphyletic separation
of Nostoc is not related to habitats [18,52], which is in accordance with our results as terrestrial strains
are positioned near freshwater strains (Figure 2). Unlike thermal, terrestrial habitat does not seem to
be a feature that separates strains in our phylogenetic tree (Figure 2).

Nostoc taxonomy has undergone several revisions with the creation of new monophyletic
genera [14,25], such as Aliinostoc [54], Desmonostoc [16], Halotia [20], and Mojavia [55]. Our results support
Nostoc as a polyphyletic genus and highlights the important need for further taxonomical revision.

Besides Nostoc other genera are reported as polyphyletic such as Anabaena, Rivularia, Tolypothrix,
and Westiellopsis [25,56-58]. Our results are not enough to support this assumption, however, the three
strains of Anabaena (BACA0003, BACA0067, and BACA0079) in the phylogeny analysis are separated
and have high phylogenetic distances. The blastn results showed that strains Anabaena cf. cylindrica
BACAO0067 and Anabaena sp. BACA0079, in cluster IV near Nostocaceae strains (Figure 2) and closer
to Anabaena type species A. oscillatorioides BO HINDAK 1984/43 (AJ630428.1), are related to Nostoc
strains with similarities between 98.5% and 97.4% (Table S3). However, strain Anabaena sp. BACA0003,
with similarities close to 99% with Anabaena sp. PCC 7108 (AJ133162.1) (Table S3), is in cluster VII
closer to Aphanizomenaceae strains (Figure 2) and more distant from A. oscillatorioides BO HINDAK
1984/43 (AJ630428.1). In fact, previous studies have reported that some Anabaena strains are closer to
Aphanizomenaceae than to Nostocaceae [56,58].

Westiellopsis is a widespread genus first described in terrestrial habitats [59] but also known to
withstand high temperatures [60,61]. Strains BACA0114 and BACAO0150 isolated from a thermal stream,
reinforce the idea of plasticity and adaptation to several habitats among Westiellopsis species. This
pattern is also observed in BACAQ135 a Fischerella strain (Table S2), a genus with close phylogenetic
distance to Westiellopsis [60].

Not well described in the literature is the phylogenetic distance between Microchaete/Coleospermum.
The Microchaete genus has been revised, separating freshwater and marine species in different
phylogenetic clades [18,30], with Microchaete freshwater species (Coleospermum) positioned in the
Microchaetaceae family and marine species in the Rivulariaceae family [18,30]. Our work reinforces
the different phylogenetic positions of thermal species, with two clades, one in the Rivulariaceae
family and another near Scytonematopsis, a genus with unclear family position [62]. Thermal
Microchaete/Coleospermum strains form a well-supported clade in cluster I (Figure 2), while strains from
lakes and terrestrial habitats form two clades in cluster VII (Figure 2). Except for Coleospermum sp.
BACAO0117 which was isolated from a thermal stream; however, this can be supported by the
fact that this stream had temperatures around 27.7 °C which may indicate that this species is not
really an extremophile but a tolerant species that survive at these temperatures such as already
explained previously with Westiellopsis [60,61]. Microchaete bulbosa BACA0111 and Microchaete tenera
BACAQO017 strains are also separated in the phylogeny tree, the thermal strain is in cluster VIII, closer
to Rivulariaceae strains, and the freshwater strain is in cluster VII, between other freshwater and
terrestrial strains (Figure 2). Our results support the polyphyletic status of Microchaete/Coleospermum,
namely in habitat differentiation where there is a clear genetic separation in genera between freshwater,
thermal and marine species, providing useful information for the taxonomic revision of these genera.

Phylogenetic distances are bigger in the Synechococcales clades (IX, XI, XIII, and XIV; Figure 2)
which suggests fewer similarities between these strains. Synechococcales is a polyphyletic group of
both unicellular and filamentous cyanobacteria that needs revision, even at the family level [14,25].
The threshold accepted for distinguishing cyanobacteria genus is 95% for sequence similarity based on
the 165 rRNA gene [63]. Blastn results show that strains BACA0024/BACA0229, BACA0112, BACA0142,
BACAO0146, and BACAOQ151, in cluster IX, morphological identified as Leptolyngbya sp. have very low
similarities, between 91% and 95%, with the sequences available in NCBI (Table S3), indicating that
these are probably novel genera. This is also supported by the phylogenetic distance to Leptolyngbya
type species L. boryana_NIES-2135 (AP018203.1) positioned in cluster XI (Figure 2). Most of these
strains are from thermal environments (Table S2), where there is a lack of studies and knowledge of
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cyanobacteria [4], reinforcing the suggestion that these strains can be novel cyanobacteria. Leptolyngbya
is a polyphyletic genus recently divided into more genera such as Leptodesmis [31], Pegethrix, and
Tildeniella [17]. This study provides evidence for cyanobacteria taxonomic identification of novel genera
in thermal habitats.

In the well-supported clade of Pseudanabaena strains (Figure 2), BACA0141 has a higher
phylogenetic distance supported by the blastn results, with the closest match to Pseudanabaena sp. PCC
7403 strain (AB075995.1) with a similarity of 96.72% (Table S3). Pseudanabaena is not a well-defined
genus [64], with three different morphological groups [35] that probably can be genetically separated.
The results from BACAO0141 blastn indicates a possible new genus, which is also supported by
significant morphological differences (Figure 1N) and by the phylogenetic distance (cluster XIII;
Figure 2), in respect to Pseudanabaena holotype species P. catenata (PCC7408; AB039020.1). Contrarily to
the Pseudanabaena genus description, BACA(0141 is organized in dense and irregular mats, with small
trichomes, generally with 3-5 cells per trichome (8.82 + 1.81 um long). This differs significantly from
P. catenata as it is characterized by bigger trichomes 40-200 um long (up to 1 mm) that are solitary
or arranged in small mats [35]. The combination of morphological and phylogenetic (165 rRNA)
results supports the establishment of a new possible genera to include BACA0141 and supports the
polyphyletic nature of the genus Pseudanabaena.

Cyanobacteria taxonomy, as reported by numerous authors (e.g., [14,18,25]), still has several
problems and needs further revision. Our work supports this statement, reporting valuable information
for genera and species restructuration based on their phylogenetic, morphological, and ecological
characteristics. This work enhanced cyanobacteria knowledge in the Azores, mainly in thermal habitats,
supporting the assumption that cyanobacteria biodiversity in these islands is still understudied. This
is especially true for extreme habitats, where diversity has already been shown to be higher than
previously thought [53]. We report 11 new genera for this archipelago, as well as indications for six
novel cyanobacteria genera, mainly from thermal environments.

The isolation and deposition of these cyanobacteria strains in a culture collection (BACA) will
allow future studies regarding cyanobacteria taxonomical classification following a modern polyphasic
approach. Furthermore, these strains can also be used for biotechnological applications for natural
compounds investigation or to respond to cyanobacteria related issues such as blooms developments,
cyanotoxin occurrence, and toxicity risk assessment.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-2818/12/8/298/s1:
Table S1: Sample sites, and environmental variables (sample sites with mean and standard deviation had multiple
samplings, samples without mean and standard deviation were sampled once). Table S2: Isolated cyanobacteria
from different types of ecosystems. Table S3: Sequence identity (%) of 165 rRNA gene fragment between BACA
strains and other cyanobacterial sequences available in GenBank (NCBI).
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