
 
 

Table S1. Descriptions and sources for variables included in models. 
Source Description Pixel 

Size 
Pixel count Source 

FGLAN
DSAT 

Temperate or sub-polar 
needleleaf forest 

30m 2807647 LANDSAT 2017 satellite imagery classification (North American 
Environmental Atlas - Commission on Environmental Cooperation 
- http://www.cec.org/files/atlas/?z=8&x=-
120.2179&y=49.8114&lang=en&layers=polbounds%2Clandcover201
5ls%2Clandcover2010ls&opacities=100%2C100%2C100&labels=fals
e)\ 

Sub-polar taiga needleleaf 
forest 

5438 Landsat 2017 

Temperate or sub-polar 
broadleaf deciduous forest 

33753 Landsat 2017 

Mixed forest 66341 Landsat 2017 
Temperate or sub-polar 
shrubland 

426084 Landsat 2017 

Temperate or sub-polar 
grassland (Combined with 
layer below) 

2766154 Landsat 2017 

Sub-polar or polar 
shrubland-lichen-moss 

463 Landsat 2017 

Sub-polar or polar 
grassland-lichen-moss 

10997 Landsat 2017 

Wetland 1345 Landsat 2017 
Cropland 416361 Landsat 2017 
Barren lands 971984 Landsat 2017 
Urban 669632 Landsat 2017 



 
 

Water 614105 Landsat 2017 
Snow and Ice 38 Landsat 2017 

 Grassland layer    Grasslands Conservation Council of British Columbia; 
https://a100.gov.bc.ca/pub/acat/public/viewReport.do?reportId=541
74 

Agricultu
ral land 

Cropland (combined 
cultivated land C910, 
Fallow Land C920, Crop 
transition C930) 

  BC Department of Agriculture 

 Tree fruits (C200)   BC Department of Agriculture 
 Vines (C310) and berries 

(C320) 
  BC Department of Agriculture 

 Recreation -  Golf courses, 
ski hills, M320 

 4138 BC Department of Agriculture 

Topogra
phy 

Ruggedness 30m  SAGA GIS 

 Elevation (m) 30m  Provincial DEM SRTM 
Ministry of Forests, Lands, Natural Resources and Rural Development. Kamloops, 
BC 2019. Digital Elevation Model. Available: Geospatial Service British 
Columbia: https://www2.gov.bc.ca/gov/content/data/geographic-data-
services/topographic-data/elevation/digital-elevation-model  . 

Climate Mean Temperature (April 
to September) 

1km  Chelsa Bioclim available at:http://chelsa-climate.org/bioclim/ 

 Mean precipitation 
(April to September) 
 

1km  Chelsa BioClim available at:http://chelsa-climate.org/bioclim/ 

 Solar Insolation 30m  SAGA GIS 
Road  30 m  GeoBC. Digital Road Atlas available at: 



 
 

layer https://www2.gov.bc.ca/gov/content/data/geographic-data-
services/topographic-data/roads 

     



 

Supplement S1 Model selection 
These models operate on the principle that species’ observations are not available for 

all sites and detection is imperfect, but environmental covariates and proxies are ubiquitous 
to inform predictions of occurrence. While incomplete detection could result in 
underestimates of reality, the predictive accuracy of these models can be used to assess 
model performance. Usually, such models have shown high performance specifically with 
machine-learning algorithms that make the best use of available data [1–3]. Different 
subsets of data can be pooled and used for calibration, or as training data to assess model 
performance [4,5]. According to comparative reviews, among the best performing SDMs are 
Random Forests [6,7], Maximum Entropy (MaxEnt - [8]) and Boosted Regression Trees 
(BRTs) or Generalized Boosting Models (GBMs; see[2,9–12]. We used 675 observations of 
rattlesnakes for modelling; of these, 75% were used for fitting and 25% for evaluation. Our 
data were presence-background data as defined by [13]. We also generated pseudo-absence 
data from a random sample of 5,000 background sites from the environmental data. We ran 
10 replicates for the model in MaxEnt, which effectively randomly subsampled the 
rattlesnake observations 10 times.  

The most important factor was determining the threshold at which rattlesnakes would 
be considered present (see [14,15]. Two types of error prediction can occur in SDMs; false 
negatives (omission errors) which underestimate species’ distributions, and false positives 
(commission errors) which overestimate species’ distributions. These errors are then 
measured using specificity (the proportion of correctly classified absences) and sensitivity 
(representing the proportion of correctly classified presences) in the model results. To 
evaluate the quality of a model in predicting a species distribution, data were divided into 
two groups: 1) a training dataset, used to create the initial model and 2) an independent test 
dataset which was used to test model quality [16] . 

The first type of model platform we used was Random Forests [6,7,17]. Random 
Forests is part of the regression tree family but deploys bagging, rather than boosting and 
both the response variable and predictor variables can be either categorical or continuous. 
Computationally, Random Forests have many advantages including the fact that they are 
quite fast to train and predict, they can handle regression and classification, the 
generalization error is built into the model, they require only one or two tuning parameters, 
are used for high-dimensional solutions and are implemented in parallel. From a statistical 
perspective, other attributes include their visualization, missing value imputation, 
differential class weighting and evaluation of variable importance. 



 

Rather than using a regressive relationship, the second platform, Maximum Entropy 
(MaxEnt) is a machine-learning model that seeks the solution that is the most uniform 
between the species and environmental variables [18,19]. It “estimates a target probability 
distribution by finding the probability distribution of maximum entropy (i.e., that is, most 
spread out, or closest to uniform), subject to a set of constraints that represent incomplete 
information about the target distribution” [18]. The algorithm assigns the highest 
probability possible to each pixel in the area of study (the sum of which must equal to one) 
based on the species’ occurrences and a number of variables. The advantages of MaxEnt 
include the fact that it relies on presence-background data, provides continuous output, 
input data can be either categorical or continuous, it makes no prior assumptions about the 
distribution of the response curves and is not as sensitive to sample size as are most other 
algorithms [9,18,20,21]. The resulting maps are in logistic format, with probabilities of 
suitability varying between 0 and 1, and can be interpreted as an estimate of the probability 
of presence [18] Although MaxEnt tends to over-fit data, a regularization function can be 
used to prevent this (the default value is 1 but this can be changed, especially if different 
landscape scenarios or climate change scenarios are modeled). Moreover, predictions 
outside of the training data have high uncertainty —but this criticism applies to all 
predictive species distribution models [18,22]. Generalized Boosting Models (GBMs) or 
Boosted Regression Trees (BRTs) combine information from both statistical and machine 
learning modeling. Instead of producing a single ‘best model’ as in regression, they use a 
boosting technique originating from machine learning to combine hundreds or thousands 
of single regression trees (which use recursive binary splits to model the relationship 
between a response variable and predictors) and which optimize model performance [23]. It 
can fit a wide variety of models including logistic regression. To control for over-fitting we 
used a regularization factor of 1 (as in the default version of MaxEnt) which we considered 
was appropriate for our model. We stipulated a logistic output; thus, within the area of the 
training variable values are predicted probabilities whereas outside this range they 
represent relative suitability (see [19]).   

All of the model platforms that we deployed have been evaluated as having high 
performance. However, choosing which individual SDM to use can be challenging because 
of variation in performance according to different species, regions and applications. 
Therefore, it has been recommended by many authors that an average of several different 
models is used (an ensemble - see [24,25], although not all researchers are in agreement. We 



 

therefore chose to use an ensemble model by overlaying the lattices and creating average 
values using the BIOMOD2 Package in R.   
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Table S2 
Supplementary Results 
Pearson correlation coefficients for environmental covariates. 
 Temperature Precipitation Annual insolation Elevation Slope Ruggedness Road density 
Temperature 1       
Precipitation -0.361 1      
Annual insolation -0.049 0.219 1     
Elevation  -0.952 0.453 0.085 1    
Slope -0.297 0.027 -0.232 0.273 1   
Ruggedness -0.268 0.009 -0.244 0.243 0.888 1  
Road density 0.300 -0.064 0.030 -0.280 -0.285 -0.276 1 

 



 

Table S3: Thresholds  
We used the predicted values for the sampled sighting locations to determine the 

threshold for suitable and unsuitable land cover for the ensemble from the three model 
platforms. For the overall ensemble model the mean prediction value at the sampled 
sighting locations was 0.446. Using this figure as a critical threshold (and counting all pixels 
with values greater than this) gave 1,766,551 pixels (1,589.9 km2) that were classified as 
habitat for rattlesnakes.  While this area (1,589.9 km2) was close to the ‘area of occupancy’ 
used by COSEWIC (804-1,424 km2), the population estimate for this threshold (area of 
pixels multiplied by the average density from the three study areas) was unrealistically 
high (85,058 adults) and included many locations known not to be occupied by rattlesnakes. 
This estimate could represent the ‘potential’ population. Based on different thresholds for 
the ensemble model and using the average density from three study areas, the population 
was estimated at: 66,525 (0.5), 40,254 (0.6), 21,536 (0.7), 14,902 (0.75) and 9,722 (0.8).  For all 
the remaining calculations and scenarios in this paper we used a threshold of 0.8 which 
resulted in an estimated 204,319 pixels classified as suitable or 183.9 km2. This gave a mean 
population of 9,722 (± 3,009) adults from separate population estimates using the density 
values from the three intensive study areas (e.g., Osoyoos, 10,702; White Lake, 6,344; and 
Vernon, 12,118; see Table S3). This was very close to other provincial estimates, and was the 
most conservative.  
Table S3. Adult population estimates for entire range of the western rattlesnake (Crotalus 
oreganus) in British Columbia, Canada using the Ensemble model from Random Forests, 
MaxEnt and Generalized Boosting Models and density estimates from three different study 
populations. 

Threshold # of suitable 
pixels 

Osoyoos (58.2/km2) White Lake (34.5/km2) Vernon (65.9/km2) 

0.446 1766551 92531.94 54851.41 104774.1 

0.5 1398076 73231.22 43410.26 82919.89 

0.6 845964 44311.59 26267.18 50174.12 

0.7 452608 23707.61 14053.48 26844.18 

0.75 313177 16404.21 9724.146 18574.53 

0.8 204319 10702.23 6344.105 12118.16 

0.99 12 0.62856 0.3726 0.71172 



 

Figure S1. Response curves of rattlesnake occurrence in response to predictor variables 
used in individual models and ensemble model. Each graph shows how rattlesnakes’ 
Relative Index of Occurrence changes based on different values of each variable.  

 


