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Abstract: Plant–soil microbe interactions are complex and affected by many factors including soil
type, edaphic conditions, plant genotype and phenotype, and developmental stage. The rice rhizo-
sphere microbial community composition of nine recombinant inbred lines (RILs) and their parents,
Francis and Rondo, segregating for root and shoot biomass, was determined using metagenomic
sequencing as a means to examine how biomass phenotype influences the rhizosphere community.
Two plant developmental stages were studied, heading and physiological maturity, based on root
and shoot biomass growth patterns across the selected genotypes. We used partial least squares
(PLS) regression analysis to examine plant trait-driven microbial populations and identify microbial
species, functions, and genes corresponding to root and shoot biomass as well as developmental
stage patterns. Species identified correlated with increases in either root or shoot biomass were
widely present in soil and included species involved in nitrogen cycling (Anaeromyxobacter spp.) and
methane production (Methanocella avoryzae), as well as known endophytes (Bradyrhizobium spp.).
Additionally, PLS analysis allowed us to explore the relationship of developmental stage with species,
microbial functions, and genes. Many of the community functions and genes observed during the
heading stage were representative of cell growth (e.g., carbohydrate and nitrogen metabolism), while
functions correlated with physiological maturity were indicative of cell decay. These results are
consistent with the hypothesis that microbial communities exist whose metabolic and gene functions
correspond to plant biomass traits.

Keywords: rhizosphere microbiome; shotgun metagenomic sequencing; partial least squares (PLS)
regression analysis; rice; recombinant inbred lines; root and shoot biomass; heading and physiological
maturity stage

1. Introduction

Soil microbial communities can increase nutrient availability to plants and influence
plant growth and overall health [1]. In turn, rhizosphere soil microorganisms rely on root
exudates, such as carbon metabolites and other nutrients, as growth substrates. Plant
species directly influence soil microbial communities through these root exudates which
change as the plant matures [2,3]. Even within a plant species, the rhizosphere soil microbial
community can be altered by plant genotypic differences [4,5]. Plant breeding efforts have
the potential to make use of beneficial plant–soil microbiome interactions to increase the
health and productivity of a crop [6]. However, more needs to be learned regarding

Diversity 2021, 13, 125. https://doi.org/10.3390/d13030125 https://www.mdpi.com/journal/diversity

https://www.mdpi.com/journal/diversity
https://www.mdpi.com
https://orcid.org/0000-0002-3703-834X
https://orcid.org/0000-0003-1441-1137
https://orcid.org/0000-0001-6507-9985
https://doi.org/10.3390/d13030125
https://doi.org/10.3390/d13030125
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/d13030125
https://www.mdpi.com/journal/diversity
https://www.mdpi.com/article/10.3390/d13030125?type=check_update&version=3


Diversity 2021, 13, 125 2 of 19

how plant developmental stages and their physiological traits influence soil microbial
communities before this plant breeding potential can be realized. Rice is a staple crop for
half the world’s population; thus understanding rice-soil microbial community interactions
is important [7–15].

Previous studies exploring plant–soil microbiome interactions report plant devel-
opmental stage, soil type, and genotype influence the rhizosphere soil microbial com-
munity [2,16,17]. It is established that plant developmental stage influences rhizosphere
microbial community structure [4,5,8,18] in part, as root exudation patterns change with
plant age [3]. Plant developmental impacts on the rhizosphere soil microbiome have
been studied for rice [8,13,14,19] and other crops including potato [4,5,20] and maize [3].
Developmental stages from vegetative to maturity result in changes in numerous plant
physiological traits. For example, roots and young leaves are major carbon and nutri-
ent sinks during the vegetative stage whereas, after anthesis (i.e., heading) and during
the subsequent grain fill stages, fruits and seeds become the dominant metabolic sinks
as plants reallocate carbon to these reproductive tissues [21]. The transition that occurs
between heading and physiological maturity is, therefore, a critical period to study in
order to capture the interactions between root and shoot biomass growth and soil microbial
community composition.

Likewise, plant genotypic variation has been shown to modulate the soil microbial
community structure in rice [7–9,22] and other crops such as maize [23–25]. Many stud-
ies examined the plant genotype effect on soil microbe interactions using one or a few
genetically diverse cultivars, whereas other studies used plants possessing a single gene
mutation that modifies a trait of interest. A study by Zhang et al. (2019) examined the effect
of mutating NRT1.1B, a nitrate transporter in rice, on the soil microbial community compo-
sition compared to that of the wild type. They found the single gene mutation in nrt1.1b
decreased the relative abundance of nitrogen-cycling microbial populations compared to
the wild-type [26].

Although it is well known that plants can shape the rhizosphere soil microbial com-
munity structure through qualitative traits such as root exudates, it remains largely elusive
whether quantifiable traits, such as shoot biomass, play a similar role. However, a study
by van der Heijden (1990) showed that both root and shoot biomass were positively corre-
lated with mycorrhizal fungal community diversity in grassland species [27]. More recent
studies have examined the connection between aboveground plant quantitative traits and
belowground soil microbial communities [28,29].

We performed this study with the globally important rice crop, to understand how
changes in growth patterns of plant traits, such as root and shoot biomass, during the
developmental transition from heading to ripening stages impact plant trait–driven shifts
in microbial community structure. This study used nine rice recombinant inbred lines
(RILs), and their parents, differing for root and shoot biomass to examine the impact
of these traits, measured at heading and physiological maturity, on the rice rhizosphere
microbial community structure. RILs represent a genetic composition of the genomes from
two parents generally having contrasting phenotypes. They are valuable for studying the
impact of differences in plant quantitative traits on the soil microbial community because
of their shared genetic background.

Many soil microbiome studies use exploratory methods, such as principal coordinate
analyses (PCoA) among others, to characterize the observed shifts in the overall microbial
communities between treatments [30]. However, these methods may obscure specific taxa
or genes that significantly affect growth but are present as a small proportion of the overall
microbial community. For example, it has been observed that relatively high abundance
taxa are found across all rice growth stages but low abundance taxa can be characteristic of
specific developmental stages [19] and this principle may apply to other plant traits. Partial
least squares (PLS) analysis is a statistical tool that can discriminate between treatment
groups by a trait of interest. Several soil microbiome studies have used PLS methods
to differentiate and group microbial taxa by treatment [31–33]. Here we used nine rice
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recombinant inbred lines, and their parents, segregating for root and shoot biomass at two
important developmental stages, i.e., heading and ripening, to understand how changes in
microbial taxa, functions, or genes are related to plant biomass traits and developmental
changes using both PCoA and PLS regression analysis.

2. Materials and Methods
2.1. Rice Genotype Selection and Experimental Design

All studies were conducted in fields or greenhouses at the Dale Bumpers National
Rice Research Center (DBNRRC) in Stuttgart, AR in 2017. From a Francis (FRCS) and
Rondo (ROND) (FR) mapping population of 217 recombinant inbred lines (RILs) grown
to maturity in the field, 62 RILs were chosen based on similarity in developmental and
physiological stages, i.e., heading date similarity (within 10 days) and plant height (within
30 cm) for a preliminary greenhouse study. The 62 selected RILs were grown for six weeks
to evaluate their shoot and root biomass traits (Figure S1). Seeds were planted (roughly
5 seeds per pot) in small pots (7.6 cm square and 10.2 cm high). Pots used for transplanting
were filled with soil collected from a field with a history of rice cultivation at the DBNRRC
in Stuttgart, AR. The soil is characterized as a Dewitt silt loam soil (fine, smectite, thermic,
Typic Albaqualf), slightly acidic (pH of 5.6), with total C and N contents of 0.66% and
0.085%, respectively. Prior to soil collection for the greenhouse study, basal fertilizer of P
(29 kg P ha−1) and K (84 kg K ha−1) was applied to the field and incorporated. Flooded
conditions were maintained in the pots beginning at transplanting and continued for
6-weeks with a water depth of 5–7 cm above the soil surface.

Based on this preliminary study, nine RILs and their parents (Francis and Rondo) were
selected which displayed a range in shoot and root biomass. Three replicates of the nine
selected FR-RILs (except for RIL 9 which only had 2 replicates), and the two parents were
grown in a greenhouse (plant date: 4 April 2017) using a completely randomized design, as
described above, and after emergence, seedlings were thinned to one per pot. Four weeks
after sowing, seedlings were transplanted into larger pots (27 l volume) with one seedling
per pot and pots were placed at a uniform distance from each other. Additionally, two
pots, containing soil but no plant, were used as replicated soil controls. Flooded conditions
were maintained in the pots beginning at transplanting and continuing to maturity with a
water depth of 5–7 cm above the soil surface. Each pot received nitrogen fertilizer in the
form of urea (80 kg N ha−1) applied in a three-way split during the two months following
transplanting. Total photosynthetic active radiation (PAR) fluxes in the greenhouse during
the study were 2398.3 mmol m−2 and the average air temperature in the greenhouse was
24.9 ± 0.14 ◦C.

2.2. Plant and Soil Sampling and DNA Extraction

Plants were destructively sampled for biomass traits at the reproductive stage (head-
ing, R4-R5), and ripening stage (maturity, R8-9) [34]. Plant samples and their associated
rhizosphere soil samples were taken based on plant developmental stages as the selected
FR-RILs matured at different rates. The entire plant was removed from the pot, and soil
samples were taken from the center of the soil-root aggregate at a depth between 13–18 cm
below the crown, where roots were most abundant. The soil-root aggregate was shaken to
remove loose soil, leaving roughly a 1–2 cm soil layer on the roots. Approximately 5 g of
soil covered roots were placed in a sterile flask with 50 mL of sterilized phosphate-buffered
saline (PBS) solution and shaken gently to wash soil from the roots. Sterile forceps were
used to remove roots from the soil slurry solution which was subsequently used for DNA
extraction (see below). From the remaining soil-root aggregate, the soil was washed off.
Plant tissue was divided into root biomass (RB) (below the crown) and shoot biomass
(SB) (crown and above). Plant tissues were weighed after drying at 60 ◦C for 4–5 days to
determine root and shoot dry weight.

Soil DNA was extracted from samples according to Kepler et al. (2018). The DNeasy
PowerSoil HTP 96 Kit (Qiagen, Germantown, MD, USA) was used to extract gDNA from
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800 µl of soil slurry according to manufacturer’s instructions [35]. DNA was quantified
using a Qubit dsDNA high sensitivity assay (Invitrogen, Waltham, MA, USA). All samples
were diluted to 2.5 ng µL−1 using deionized, autoclaved water for sequencing preparation.
A subsample of soil was taken for total C and N analysis using a TruSpec CN analyzer
(LECO Corp., Saint Joseph, MI, USA).

2.3. Shotgun Metagenomic Library Construction and Illumina Sequencing

Shotgun metagenomic sequencing was conducted in order to capture both the taxon-
omy and functions of the microbial community associated with SB, RB, and developmental
stages heading and maturity. Diluted DNA samples were used for the shotgun metage-
nomic library construction using the Nextera XT DNA Library Preparation Kit (96 samples)
and the Nextera XT Index Kit v2 Set A (96 indexes) (Illumina Inc., www.illumina.com,
accessed on 14 March 2021) following the Illumina protocol. Briefly, DNA was fragmented
and tagged with adapter sequences. Tagmented DNA was then amplified to add indexed
adapters. After amplification, libraries were cleaned up using AMPure XP beads and
quality checked on the Agilent Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA).
Libraries were normalized to 0.5 nM using 10 nM TRIS-HCl and 0.1% Tween 20 (pH 8.5)
and pooled. Rhizosphere soil samples were sequenced on the Illumina NextSeq 500 plat-
form at the USDA Agricultural Research Service, Beltsville Area Research Center, Beltsville,
MD, USA.

2.4. Sequence Processing

Reads were trimmed of adaptors and contaminant reads were removed using BBMap
version 37.66 (https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/bbduk-
guide/, accessed on 1 February 2018). BBMap was then used to filter reads with kmers
matching to the reference rice genome. DIAMOND (v0.9.17.118) [36] was used to perform
searches of the reads against the NCBI NR database retrieved (February 2018) in protein
space. Taxonomic and functional gene assignments to the NCBI taxonomy database
(November 2018) and SEED DB, a functional gene database, (May 2015) [37,38], respectively,
were made using the Megan 6 (version 6.15.2) command line tool “daa-meganizer” with the
weighted lowest common ancestor (LCA) algorithm using a top percent setting of 3.0. Read
counts from the analysis were exported from Megan Community Edition [39]. The data
produced by sequencing is compositional count data [40]. For that reason, samples were
closed, multiplicative replacement was run, and a centered log-ratio (CLR) transformation
was performed using Skbio 0.5.5 (https://scikit-bio.org, accessed on 1 November 2018).

2.5. Community and Multivariate Statistical Analyses (PCoA and PLS)

Principal coordinate analysis (PCoA), using Bray-Curtis distance, was used to examine
the soil microbial community structure as a whole using Megan Community Edition. Alpha
diversity was measured by the Shannon index and calculations were performed using R
(version 3.5.1) and Welch’s t-tests were conducted to test significant differences at p = 0.05
between developmental stages by genotype [41]. Partial least squares (PLS) regression
analysis was performed on the whole soil microbial community to differentiate species,
metabolic pathways, and genes as a function of SB or RB dry weight. All PLS regression
analysis steps were carried out in JMP v. 14.2.0 (2018 SAS Institute Inc., Cary, NC, USA).

As both PCoA and PLS regression analyses were performed on the entire microbial
community, specific species, functions, or gene responses may have been masked by more
abundant taxa, functions, or genes. For this reason, we performed a linear least squares fit
analysis for each, individual dependent variable (species, function, or gene) as a function
of SB or RB. Candidate lists were created for further analyses based on analysis of variance
(ANOVA) significance tests (p < 0.05) of the linear least squares fit. These p-values were used
only for creating candidate lists, and not used for multiple comparisons between species.

PLS analysis was performed on the selected candidate list of variables (species, func-
tion, or gene level), to differentiate their patterns with traits, i.e., SB, RB, and developmental
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stages (heading and physiological maturity), and to further identify which variable(s) sig-
nificantly contribute to trait differences. PLS regression analyses can be used to discriminate
between treatment groups by a trait of interest and are particularly useful when the number
of independent variables (e.g., number of microbial taxa or genes) are significantly greater
than the number of response variables (e.g., traits of interest). For the PLS analysis, SB and
RB were used as continuous variables and developmental stage (heading or physiological
maturity) was used as pseudo-continuous variable by coding samples as either members (1)
or non-members (0) for the specific developmental stage [42]. Regression beta coefficients
were calculated and used to present the correlation patterns of traits with the selected
variables. Developmental stages coefficient values are presented alongside SB and RB
coefficients, to visualize their responses, however because they are compared to each other
in the model (i.e., members vs. non-members), the coefficient values display equal and
opposite patterns. Variable importance in projection (VIP) values were used to approximate
trait variation. VIP scores greater than 0.8 are generally considered significant [43,44] and
this cut-off was used in our study. Hierarchical cluster analyses (using the Ward method)
based on beta coefficient data were used only for ease of visualization to identify groups of
variables showing similar trends with traits of interest. These clusters were then used to
create coefficient plots which grouped variables by their similarity in response to our traits
of interest.

Following selection of metabolic functions related to SB and RB through PLS analyses,
a regression analysis of selected dependent variables as a function of plant biomass traits
(i.e., RB or SB) meeting a p < 0.05 were examined using CLR transformed count data. This
was done to confirm PLS results and examine the correlation between microbial functions
and SB and/or RB.

3. Results
3.1. Selection of Recombinant Inbred Lines Segregating for Root and Shoot Biomass

From a Francis and Rondo (FR) mapping population of 217 recombinant inbred
lines (RILs), 62 were chosen based on similar developmental and physiological stages,
i.e., heading date similarity (within 10 days, Figure S1A) and plant height (within 30 cm,
Figure S1B). From this candidate list, nine Francis (FRCS) and Rondo (ROND) recombinant
inbred lines (FR-RILs), along with their two parents, were selected for the soil microbiome
study. The selected genotypes resulted in a range of low, intermediate, and high shoot
biomass (SB) and root biomass (RB) phenotypes (range of 29.3–188.5 g dry weight and
4.6–46.3 g dry weight for shoot and root biomass, respectively, Figure S2) at heading
and maturity. In general, root biomass decreased between heading and harvest maturity
(harvest maturity was considered to be R7-9) while shoot biomass continued to increase at
this stage (Figure S2).

3.2. Whole Microbial Community Structure and Impact of Shoot and Root Biomass Traits

Principal coordinate analysis (PCoA) plots demonstrated that microbial community
composition varies by plant genotype and developmental stage. Plant genotype influences
microbial community structure at both heading (Figure 1A) and at maturity (Figure 1B).
Francis and Rondo have distinct microbial communities at heading and maturity differ-
entiated in PC1, with the exception of one Rondo replicate that groups close to Francis at
maturity. Taxa identified in both developmental stages include the genera Sphingomonas,
Bradyrhizobium, and Anaeromyxobacter and the phyla Acidobacteria and Chloroflexi. Both
shoot biomass and root biomass influenced the community structure during heading
and at maturity. In contrast, soil percent total C and N did not influence the community
structure strongly likely because it did not vary much between samples (mean total C
and N 0.73% ± 0.02% and 0.083% ± 0.002%, respectively). Alpha diversity, measured
by the Shannon index, showed sample variance by genotype and developmental stage.
The mean alpha diversity of each genotype tended to decrease from heading to maturity
for RIL1, RIL5, RIL6, and Francis, increase for RIL2, RIL4, and RIL7 but did not change
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for RIL3, RIL8, RIL9, Rondo, and the soil control samples (Figure S3). These differences
by developmental stage were significant for Francis and RIL4 (p = 0.128 and p = 0.0322,
respectively). Additionally, the top 1% of phyla (Figure S4) and top 2% of species (Figure
S5) by genotype were plotted to examine their overlap with those species influencing the
microbial community structure in the PCoA. The relative abundance plots revealed that
all taxa influencing the community structure were highly abundant at both heading and
maturity stages across all genotypes.

Figure 1. Principal coordinate analysis (PCoA) of whole soil microbial community for two parents Francis (FRCS) and
Rondo (ROND) and 9 RILs at two developmental stages heading (A) and physiological maturity (B). Microbial populations
influencing community structure are shown in blue. Shoot biomass (SB) and root biomass (RB) as well as soil percent total
nitrogen (%N) and soil percent total carbon (%C) influences on community structure are shown in pink.

3.3. Shoot and Root Biomass Driven Species Level Analysis

We used PLS to identify taxa, functions and genes that are related to changes in SB
and RB at heading and physiological maturity. To focus our analysis on those species,
functions, or genes most affected by SB and RB, we used a linear least squares regression
analysis to identify those variables from within the larger microbial population. The
species, functions, or genes identified as correlated to either biomass trait and passing
an ANOVA significance test of p < 0.05 were then used in the PLS regression analyses to
further distinguish which displayed differential responses by SB and/or RB as well as their
patterns by developmental stages. Regression beta coefficients and variable importance
in projection (VIP) scores were plotted to visualize microbial species, function, or gene
patterns with SB, RB, and/or the two developmental stages. Hierarchical clustering was
used to visualize groups of species, functions, or genes based on their response patterns for
SB, RB and the two developmental stages.

Approximately 100 candidate species were identified through ANOVA significance
testing as a function of SB and RB (Table 1). PLS beta coefficient values were clustered
for visualization, based on their SB, RB, and two developmental stage patterns, resulting
in 7 species clusters (SC) ordered by increasing magnitude from SC1-SC7 (Table 1 and
Figure 2). The greater the difference between coefficient values of a dependent variable,
i.e., species, the greater the contribution of that variable to the model differentiating traits
of interest. Additionally, variable importance in projection (VIP) values are presented
and are used to approximate trait variation. VIP scores greater than 0.8 were considered
significant [43,44].

Species in SC1 through SC4 had a higher abundance at heading when SB was lower
as compared to maturity when SB was greater. In contrast, taxa in SC5 to SC7 showed
the opposite pattern and were more abundant at maturity. The response due to changes
in RB were the same direction as SB but were comparatively small (Table 1 and Figure 2).
Species clusters SC4 and SC7 contain the species most significantly differentiated by
biomass traits and developmental stages as demonstrated by the comparatively large
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coefficient values and the VIP scores greater than 1. Species which increase as both
shoot and root biomass increase, include several bacterial species from the Planctomycetes,
Proteobactera (Alphaproteobacteria), and Verrucomicrobia phyla, and two archaea from the
phyla Euryarchaeota and Thaumarchaeota (SC7 in Figure 2). In SC4, species displaying
a negative correlation with both SB and RB include mostly those in the Actinobacteria,
Chloroflexi, and Proteobacteria (Alpha– and Gamma– proteobacteria) phyla.

Table 1. Species clusters (SC1-SC7) significantly correlated with shoot biomass (SB) or root biomass (RB) across two
developmental stages. Species names, as well as numerical species ID used for coefficient plots, are shown. Beta coefficient
values are reported for SB and RB. Variable importance in projection (VIP) scores are shown, VIP scores greater than 0.8 are
considered significantly different by responses, i.e., biomass traits and developmental stages, in the model. All species in
clusters 4 and 7 have VIP scores greater than 1.

Species
Cluster Species Name ID SB Coefficient RB Coefficient VIP

SC1

Acidobacteria bacterium 13_2_20CM_2_66_4 25 −4.5 × 10−3 −6.8 × 10−5 0.491
Acidobacteria bacterium RIFCSPLOWO2_12_FULL_66_10 34 −4.0 × 10−3 −6.0 × 10−5 0.433
Niastella koreensis 42 −3.6 × 10−3 −5.4 × 10−5 0.393
Bacteriodetes bacterium 13_1_20CM_4_60_6 44 −3.9 × 10−3 −5.8 × 10−5 0.422
Gemmatimonadetes bacterium 59 −4.7 × 10−3 −7.0 × 10−5 0.508
Gemmatimonadetes bacterium SCN 70−22 64 −4.5 × 10−3 −6.7 × 10−5 0.484
Cyanobacteria bacterium 13_1_20CM_4_61_6 269 −3.6 × 10−3 −5.5 × 10−5 0.395
Betaproteobacteria bacterium
RIFCSPLOWO2_12_FULL_62_13 116 −4.0 × 10−3 −6.0 × 10−5 0.431

Deltaproteobacteria bacterium
RIFCSPLOWO2_12_FULL_60_19 135 −4.4 × 10−3 −6.5 × 10−5 0.471

SC2

Rhizobacter sp. Root404 110 −5.7 × 10−3 −8.5 × 10−5 0.614
Hyalangium minutum 124 −5.4 × 10−3 −8.1 × 10−5 0.583
Singulisphaera sp. GP187 152 −7.6 × 10−3 −1.1 × 10−4 0.824
Gemmatirosa kalamazoonesis 58 −6.1 × 10−3 −9.1 × 10−5 0.660
Gemmatimonadetes bacterium 21-71-4 61 −6.0 × 10−3 −9.0 × 10−5 0.652
Alphaproteobacteria bacterium 64-11 106 −7.0 × 10−3 −1.0 × 10−4 0.756
Dactylosporangium aurantiacum 190 −7.7 × 10−3 −1.2 × 10−4 0.832
Gaiella sp. SCGC AG-212-M14 196 −7.6 × 10−3 −1.1 × 10−4 0.819
Solirubrobacter soli 199 −6.3 × 10−3 −9.5 × 10−5 0.686
Solirubrobacterales bacterium URHD0059 203 −6.8 × 10−3 −1.0 × 10−4 0.733
Actinobacteria bacterium 13_1_20CM_4_68_12 208 −7.6 × 10−3 −1.1 × 10−4 0.826
Actinobacteria bacterium 13_1_20CM_4_69_9 209 −7.8 × 10−3 −1.2 × 10−4 0.848
Fimbriimonas ginsengisoli 218 −7.2 × 10−3 −1.1 × 10−4 0.778

SC3

Betaproteobacteria bacterium GR16-43 114 −8.7 × 10−3 −1.3 × 10−4 0.938
Rudaea cellulosilytica 141 −9.7 × 10−3 −1.5 × 10−4 1.048
Solirubrobacter sp. URHD0082 200 −8.6 × 10−3 −1.3 × 10−4 0.927
Solirubrobacterales bacterium 67−14 201 −9.3 × 10−3 −1.4 × 10−4 1.012
Actinobacteria bacterium 13_2_20CM_68_14 212 −9.1 × 10−3 −1.4 × 10−4 0.988
Actinobacteria bacterium RBG_16_68_12 215 −8.5 × 10−3 −1.3 × 10−4 0.924
Kouleothrix aurantiaca 241 −8.2 × 10−3 −1.2 × 10−4 0.883

SC4

Phycicoccus cremeus 184 −1.1 × 10−2 −1.6 × 10−4 1.178
Phenylobacterium sp. RIFCSPHIGHO2_01_FULL_69_31 66 −1.1 × 10−2 −1.6 × 10−4 1.192
Gammaproteobacteria bacterium
RIFCSPHIGHO2_12_FULL_63_22 138 −1.1 × 10−2 −1.6 × 10−4 1.159

Dokdonella immobilis 139 −1.2 × 10−2 −1.8 × 10−4 1.319
Jatrophihabitans endophyticus 181 −1.2 × 10−2 −1.8 × 10−4 1.316
Kineosporia sp. A_224 182 −1.2 × 10−2 −1.8 × 10−4 1.321
Actinoplanes awajinensis 186 −1.1 × 10−2 −1.7 × 10−4 1.242
Nocardioides halotolerans 192 −1.1 × 10−2 −1.6 × 10−4 1.144
Actinobacteria bacterium IMCC26256 195 −1.1 × 10−2 −1.7 × 10−4 1.220
Thermoleophilum album 204 −1.3 × 10−2 −1.9 × 10−4 1.364
Actinobacteria bacterium 13_1_20CM_3_71_11 207 −1.2 × 10−2 −1.8 × 10−4 1.275
Actinobacteria bacterium 13_2_20CM_2_66_6 210 −1.1 × 10−2 −1.7 × 10−4 1.233
Actinobacteria bacterium RBG_16_67_10 214 −1.2 × 10−2 −1.8 × 10−4 1.309
Chloroflexi bacterium 13_1_40CM_4_68_4 246 −1.1 × 10−2 −1.6 × 10−4 1.137
Chloroflexi bacterium GWC2_73_18 250 −1.1 × 10−2 −1.7 × 10−4 1.231
bacterium JGI 053 278 −1.2 × 10−2 −1.8 × 10−4 1.272
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Table 1. Cont.

Species
Cluster Species Name ID SB Coefficient RB Coefficient VIP

SC5

Bacteroidetes bacterium RBG_13_42_15 50 5.4 × 10−3 8.1 × 10−5 0.583
Bacteroidetes bacterium RBG_13_43_22 51 7.2 × 10−3 1.1 × 10−4 0.781
Rhodopseudomonas palustris 73 7.2 × 10−3 1.1 × 10−4 0.778
Pseudorhodoplanes sinuspersici 84 3.4 × 10−3 5.1 × 10−5 0.372
Planctomycetes bacterium RBG_16_55_9 165 6.1 × 10−3 9.2 × 10−5 0.665
Anaerolinea thermophila 223 6.3 × 10−3 9.5 × 10−5 0.687
Bellilinea caldifistulae 224 4.8 × 10−3 7.2 × 10−5 0.521
Leptolinea tardivitalis 225 5.5 × 10−3 8.2 × 10−5 0.596
Levilinea saccharolytica 226 7.5 × 10−3 1.1 × 10−4 0.809
Longilinea arvoryzae 227 5.7 × 10−3 8.5 × 10−5 0.614
Chloroflexi bacterium HGW-Chloroflexi-10 252 5.4 × 10−3 8.1 × 10−5 0.583
Chloroflexi bacterium RBG_16_54_18 258 6.5 × 10−3 9.8 × 10−5 0.706
Chloroflexi bacterium RBG_16_57_11 259 7.2 × 10−3 1.1 × 10−4 0.779
Candidatus Nitrososphaera evergladensis 283 5.1 × 10−3 7.6 × 10−5 0.550
Oxytricha trifallax 285 7.7 × 10−3 1.1 × 10−4 0.828
Acidobacteria bacterium RBG_13_68_16 28 4.6 × 10−3 6.9 × 10−5 0.500

SC6

Pseudolabrys sp. Root1462 86 1.0 × 10−2 1.5 × 10−4 1.097
Bradyrhizobium erythrophlei 70 9.1 × 10−3 1.4 × 10−4 0.983
Rhodospirillales bacterium 69-11 94 1.0 × 10−2 1.5 × 10−4 1.094
Rhodospirillales bacterium URHD0088 96 8.8 × 10−3 1.3 × 10−4 0.956
Anaeromyxobacter dehalogenans 118 9.3 × 10−3 1.4 × 10−4 1.008
Anaeromyxobacter sp. RBG_16_69_14 120 8.4 × 10−3 1.3 × 10−4 0.913
Labilithrix luteola 128 8.2 × 10−3 1.2 × 10−4 0.886
Myxococcales bacterium 68-20 134 9.0 × 10−3 1.3 × 10−4 0.973
Planctomycetes bacterium GWF2_41_51 158 8.7 × 10−3 1.3 × 10−4 0.945
Planctomycetes bacterium RBG_13_50_24 161 9.7 × 10−3 1.4 × 10−4 1.047
Anaerolineae bacterium CG2_30_64_16 231 9.1 × 10−3 1.4 × 10−4 0.983
Candidatus Nitrososphaera gargensis 284 9.0 × 10−3 1.3 × 10−4 0.970
Verrucomicrobia bacterium 13_2_20CM_54_12 175 8.1 × 10−3 1.2 × 10−4 0.872

SC7

Alphaproteobacteria bacterium 13_2_20CM_2_64_7 105 1.3 × 10−2 1.9 × 10−4 1.382
Phycisphaerae bacterium SG8_4 143 1.3 × 10−2 2.0 × 10−4 1.452
Verrucomicrobia bacterium 13_1_20CM_4_54_11 170 1.1 × 10−2 1.7 × 10−4 1.207
Verrucomicrobia bacterium 13_2_20CM_55_10 176 1.4 × 10−2 2.1 × 10−4 1.528
Methanocella arvoryzae 279 1.3 × 10−2 2.0 × 10−4 1.427
Candidatus Nitrosocosmicus oleophilus 282 1.2 × 10−2 1.8 × 10−4 1.276
Acidobacteria bacterium RBG_16_70_10 29 1.3 × 10−2 1.9 × 10−4 1.409
Bradyrhizobium elkanii 69 1.2 × 10−2 1.8 × 10−4 1.306
Bradyrhizobium japonicum 71 1.2 × 10−2 1.8 × 10−4 1.290
Rhodospirillales bacterium 20-64-7 93 1.3 × 10−2 1.9 × 10−4 1.381
Anaeromyxobacter sp. Fw109-5 119 1.1 × 10−2 1.6 × 10−4 1.182
Phycisphaerae bacterium SM23_33 145 1.1 × 10−2 1.7 × 10−4 1.214
Planctomycetes bacterium RBG_13_60_9 162 1.3 × 10−2 1.9 × 10−4 1.400
Planctomycetes bacterium RBG_13_62_9 163 1.3 × 10−2 1.9 × 10−4 1.391
Planctomycetes bacterium RBG_16_64_12 166 1.4 × 10−2 2.1 × 10−4 1.518
Verrucomicrobia bacterium 13_1_20CM_3_54_17 169 1.1 × 10−2 1.6 × 10−4 1.164
Pedosphaera parvula 179 1.3 × 10−2 2.0 × 10−4 1.421

3.4. Rhizosphere Soil Microbial Community Function Analysis

At the functional level, three distinct clusters were associated with SB and RB at
the two developmental stages (Figure 3A). To confirm observations made with PLS anal-
yses, CLR transformed read counts for one to two representative microbial functions
from each of the three clusters are shown that were significantly correlated to SB, RB,
or both (Figure 3B–F). All other metabolic functions were plotted to confirm results and
are presented in Supplementary Materials (Figure S6). All microbial functions from each
of the three clusters exhibited the same pattern as the representative function shown in
Figure 3B–F. Microbial functional cluster 1 (FC1) was divided into those functions (de-
picted by hashed bars in Figure 3A) displaying significant negative correlations with shoot
biomass and significant positive correlations with root biomass (p < 0.05) (Figure 3B), and
those functions with a negative correlation to shoot biomass (p < 0.05) and no significant
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relationship to root biomass (p > 0.05) (Figure 3C). CLR transformed functional count data
was plotted as a function of SB and RB to verify the correlations found by PLS analyses
for fatty acid synthesis (Figure 3B), metabolism of aromatic compounds, amino acids and
derivatives, metabolite damage and repair, cofactor, vitamins, prosthetics groups, and
pigment (Figure S6A). The remaining four functions identified in FC1, had VIP scores
greater than 0.8 and showed significant negative correlations with shoot biomass, but
weak or no correlation to root biomass including carbohydrate metabolism (Figure 3C and
Figure S6B). FC2 contains metabolic functions considered of lesser importance to the model
(VIP < 0.8 for all) compared to all functions in FC1 and three functions in FC3. Among these
FC2 functions are stress response and cell division and cell cycle functions (Figure 3D). In
FC3, dormancy and sporulation are significantly positively correlated with shoot biomass
but negatively correlated with root biomass (Figure 3E). All other functions in FC3 display
the same significant positive correlation with SB. However, this was not the case for RB
as the negative correlation pattern predicted from the PLS model was not present when
CLR–transformed count data was plotted as a function of RB, indicating no correlation
with RB. These functions include virulence, disease, and defense (Figure 3F) and motility
and chemotaxis (Figure S6C).

1 

 

 
 

Figure 2 

  

Figure 2. Partial least squares (PLS) regression coefficients of species differentiated by shoot biomass (SB), root biomass
(RB), as well as the developmental stages, heading vs. maturity. The larger the difference between coefficient values, the
greater that variable contributes to the model. Developmental stage was visualized as either a member or non–member,
and thus heading and maturity show equal and opposite trends. Variable importance in projection (VIP) scores are shown,
VIP scores greater than 0.8 (red line) are considered significantly different by variable responses, i.e., biomass traits and
developmental stages, in the model. Species clusters (SC1–SC7) show species based on their coefficient variance patterns of
responses, i.e., SB, RB, and two developmental stages, in the PLS model.

Interestingly, microbial community functions correlated with root biomass were also
related to heading stage, while shoot biomass and maturity stage displayed similar func-
tional trends. However, functions correlated with RB and heading showed opposite trends
to those correlated with SB and maturity. This opposing trend of RB and SB associated
genes was observed for all functions in the PLS–selected candidate list.

3.5. Metagenomic Gene Level Analysis With PLS

The PLS analysis used in this study was particularly powerful when examining the
more than 7000 microbial gene annotations, to discover genes differentially correlated with
plant biomass traits and developmental stage. From the thousands of annotated genes,
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PLS analysis revealed 249 genes that were significantly associated with both SB and RB
(Figure 4 and Table S1). Genes displaying particularly contrasting patterns in SB and RB,
and VIP scores greater than 0.8, are summarized in Table 2. Genes grouped into 11 clusters
that displayed similar gene coefficient patterns with RB or SB (Figure 4). 

2 

 

 
Figure 3 

  
Figure 3. Microbial community functions identified with PLS analysis for shoot biomass (SB) and root biomass (RB)
across two developmental stages (heading and maturity). (A) Coefficient values from PLS depicting directionality of trait
rela-tionships with functions and variable importance in projection (VIP) scores indicate importance in the model (VIP > 0.8
are considered significantly different by responses, i.e., biomass traits and developmental stages, in the model). Hashed bars
in functional cluster 1 (FC1) indicate functions that are negatively correlated to SB and positively correlated to RB, while
non–hashed bars in FC1 are negatively correlated to SB but show no correlation with RB. SB and RB patterns with center–log
ratio transformed count data are shown for selected functions: fatty acid synthesis (B), carbohydrate metabolism (C), cell
division and cell cycle (D), dormancy and sporulation (E), and virulence, defense, and disease (F). Contour lines in-dicate
quantile density at 5% intervals. This means that approximately 5% of points generated from the estimated non-parametric
distribution are below the lowest contour, 10% are below the next contour, etc. The highest contour has about 95% of the
points below it.

Genes significantly positively correlated with RB and heading (and negatively corre-
lated with SB and maturity) are largely found in gene clusters 1 through 5 (GC1–GC5). The
most frequent genes identified in GC1 and GC2 were involved in amino acid metabolism,
carbohydrate metabolism of mannose and maltose, fatty acid synthesis, and several stress
response genes. Additionally, genes involved in iron acquisition by siderophore biosyn-
thesis, polysaccharide synthesis, nitrogen metabolism genes, cell signaling genes, and
metabolism of aromatic compounds, were all found to be negatively correlated with
SB/maturity and positively correlated with RB/heading.
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Figure 4 

Figure 4. Partial least squares (PLS) regression coefficients for genes associated with shoot biomass (SB), root biomass (RB)
as well as heading and maturity stages, presented in a stacked bar plot. Variable importance in projection (VIP) scores are
shown, VIP scores greater than 0.8 (red line) are considered significantly different by responses, i.e., biomass traits and
developmental stages, in the model. Gene clusters (GC1–GC11) are indicated on the plot and reveal genes with differential
coefficient patterns based on the SB and RB as well as developmental stage in the PLS model.

Table 2. Genes identified as significantly correlated with shoot biomass (SB) and root biomass (RB) and showing contrasting
trends with biomass traits (gene clusters 1, 2, 8, 10, 11). Gene names as well as numerical IDs (gene ID) used for coefficient
plots are shown. Beta coefficient values are reported for SB and RB. Variable importance in projection (VIP) scores greater
than 0.8 are considered significantly different by responses, i.e., biomass traits and developmental stages, in the model.

Gene Cluster Gene Gene ID SB Coefficient RB Coefficient VIP

GC1

2–methylcitrate dehydratase FeS dependent (EC 4.2.1.79) 23 −0.008 0.018 0.98
Arginine ABC transporter, permease protein ArtM 36 −0.010 0.027 1.46
Ornithine aminotransferase (EC 2.6.1.13) 63 −0.004 0.021 1.31
3,5–diaminohexanoate dehydrogenase (EC 1.4.1.11) 401 −0.006 0.022 1.25
L–threonine transporter, anaerobically inducible 555 −0.011 0.017 1.38
2–ketogluconate kinase (EC 2.7.1.13) 626 −0.012 0.029 1.55
Maltose operon transcriptional repressor MalR, LacI family 1439 −0.007 0.024 1.34
Putative regulator of the mannose operon, ManO 1509 −0.010 0.023 1.23
poly(beta–D–mannuronate) lyase (EC 4.2.2.3) 1899 −0.007 0.023 1.19
Substrate–specific component YkoE of thiamin–regulated ECF transporter for
HydroxyMethylPyrimidine 2442 −0.008 0.014 0.91

DNA polymerase–like protein MT3142 2904 −0.010 0.016 1.12
Polyketide beta–ketoacyl synthase WhiE–KS paralog 3131 −0.008 0.016 0.91
Phytoene desaturase, neurosporene or lycopene producing (EC 1.3.–.–) 3246 −0.011 0.019 1.20
Fatty acyl–coenzyme A elongase 3263 −0.009 0.027 1.42
Acyl carrier protein (ACP1) 3331 −0.011 0.029 1.51
FIG027190: Putative transmembrane protein 3338 −0.007 0.020 1.06
Triacylglycerol lipase precursor (EC 3.1.1.3) 3372 −0.009 0.012 0.97
UPF0225 protein YchJ 3385 −0.008 0.021 1.08
Haemin uptake system permease protein 3422 −0.011 0.024 1.40
Probable Lysine n(6)–hydroxylase associated with siderophore S biosynthesis
(EC 1.14.13.59) 3502 −0.006 0.020 1.10

Dipeptide transport system permease protein DppC (TC 3.A.1.5.2) 3605 −0.004 0.019 1.27
Transcriptional regulator of fimbriae expression FimZ (LuxR/UhpA family) 3791 −0.012 0.020 1.41
Phenylacetaldehyde dehydrogenase (EC 1.2.1.39) 3929 −0.007 0.019 0.99
Vanillate O–demethylase oxygenase subunit (EC 1.14.13.82) 4059 −0.005 0.018 0.99
Protein gp47, recombination–related [Bacteriophage A118] 4705 −0.006 0.020 1.10
Uncharacterized transporter, similarity to citrate transporter 4969 −0.008 0.015 0.88
SSU ribosomal protein S10p (S20e), chloroplast 5339 −0.006 0.020 1.10
SSU ribosomal protein S13p (S18e), mitochondrial 5382 −0.009 0.029 1.53
Putative succinate dehydrogenase cytochrome b subunit 6059 −0.007 0.014 0.83
Sigma factor RpoE negative regulatory protein RseB precursor 6373 −0.006 0.025 1.46
tRNA methylase YGL050w homolog Wyeosine biosynthesis 6399 −0.006 0.020 1.10
Diaminobutyrate–pyruvate aminotransferase (EC 2.6.1.46) 6476 −0.008 0.025 1.33
Glutaredoxin 1 6486 −0.010 0.022 1.26
RsbS, negative regulator of sigma–B 6603 −0.005 0.028 1.72
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Table 2. Cont.

Gene Cluster Gene Gene ID SB Coefficient RB Coefficient VIP

GC2

(GlcNAc)2 ABC transporter, permease component 2 621 −0.015 0.035 1.94
Alpha–N–acetylglucosaminidase (EC 3.2.1.50) 811 −0.012 0.039 2.06
Cyanate ABC transporter, ATP–binding protein 4406 −0.012 0.041 2.23
Phage capsid and scaffold 4639 −0.012 0.038 1.99
Autoinducer 2 (AI–2) ABC transport system, membrane channel protein LsrC 5486 −0.018 0.043 2.38
High–affinity choline uptake protein BetT 6461 −0.013 0.032 1.71

GC8

Arginine pathway regulatory protein ArgR, repressor of arg regulon 44 0.003 −0.014 0.99
Acetyl–CoA acetyltransferase (EC 2.3.1.9) 406 0.004 −0.013 1.00
Methionyl–tRNA formyltransferase (EC 2.1.2.9) 2587 0.006 −0.016 1.19
O–succinylbenzoate synthase (EC 4.2.1.113) 2616 0.003 −0.014 1.05
Phosphoribosylaminoimidazole carboxylase catalytic subunit (EC 4.1.1.21) 4527 0.004 −0.014 1.02
Pyridine nucleotide–disulphide oxidoreductase associated with reductive
pyrimidine catabolism 4616 0.004 −0.018 1.19

Glutamyl–tRNA(Gln) amidotransferase subunit B (EC 6.3.5.7) 4993 0.004 −0.014 1.03
LSU ribosomal protein L5p (L11e) 5240 0.005 −0.011 1.04
UbiD family decarboxylase, MJ1133 type 412 0.011 −0.005 1.62
Lacto–N–biose phosphorylase (EC 2.4.1.211) 1381 0.011 −0.006 1.72
Putative DNA–binding protein in cluster with Type I restriction–modification
system 3047 0.013 −0.011 1.68

Dipicolinate synthase subunit B 3076 0.010 −0.011 1.22
Spore germination protein GerKB 3109 0.008 −0.012 0.97
Stage IV sporulation protein A 3177 0.013 −0.005 1.96
LSU ribosomal protein L18e 5267 0.009 −0.012 1.07
LSU ribosomal protein L23Ae (L23p) 5271 0.011 −0.009 1.50
LSU ribosomal protein L30e 5276 0.012 −0.011 1.49
SSU ribosomal protein S27e 5362 0.007 −0.015 0.83
DNA–directed RNA polymerase II second largest subunit (EC 2.7.7.6) 6261 0.007 −0.015 0.84

GC10

Meso–diaminopimelate D–dehydrogenase (EC 1.4.1.16) 374 0.015 −0.023 1.76
S–adenosylmethionine decarboxylase proenzyme (EC 4.1.1.50), prokaryotic class
1A 502 0.009 −0.017 1.10

Predicted cellobiose ABC transport system, ATP–binding protein 1 764 0.010 −0.032 1.74
Multiple sugar ABC transporter, substrate–binding protein 1123 0.012 −0.024 1.55
Predicted regulator of fructose utilization, DeoR family 1138 0.011 −0.022 1.27
Predicted L–rhamnose permease RhaY 1341 0.010 −0.022 1.23
Formylmethanofuran dehydrogenase (tungsten) operon gene G 1526 0.010 −0.020 1.17
Potassium uptake protein, integral membrane component, KtrB 4938 0.012 −0.015 1.40
Similar to ribosomal large subunit pseudouridine synthase D, CAC1266–type 5215 0.009 −0.026 1.35
SSU ribosomal protein S4p (S9e), mitochondrial 5397 0.009 −0.021 1.16
Signal peptidase, type IV – prepilin/preflagellin 5413 0.012 −0.017 1.35
Coenzyme F420H2 dehydrogenase (methanophenazine) subunit FpoM 5845 0.013 −0.022 1.48
Sulfhydrogenase II subunit g 5959 0.014 −0.027 1.64
Conjugative transfer protein TrbG 6889 0.014 −0.029 1.77

GC11

IcmB (DotO) protein 3646 0.017 −0.038 2.12
Possible alpha/beta hydrolase superfamily, slr1917 homolog 4225 0.013 −0.034 1.81
photosystem I subunit XI (PsaL) 4833 0.015 −0.037 2.01
Phycobilisome rod–core linker polypeptide, phycocyanin–associated 4871 0.012 −0.038 2.03
Conjugative signal peptidase TrhF 6881 0.012 −0.040 2.13
Inclusion membrane protein–52 6958 0.015 −0.034 1.92

GC6 to GC11 represent genes positively correlated with SB and maturity and nega-
tively correlated with RB and heading. Clusters GC8, GC10 and GC11 include virulence
related genes involved in conjugative signaling and transfer and genes involved in potas-
sium uptake, photosynthesis, and nucleotide synthesis. Additionally, several genes related
to spore formulation are strongly related to increasing SB and decreasing RB. Many genes
related to protein metabolism, specifically large subunit ribosomal proteins, and amino acid
synthesis and degradation functions (including Acetyl–CoA acetyltransferase involved in
lysine degradation) were also identified. Interestingly, the gene level patterns observed
in GC8, GC10, and GC11 mirror the patterns observed in the functional level cluster
3 (FC3). PLS analyses were likewise carried out for genes specifically associated with
SB or RB, individually and can be found in Supplementary Materials (Figures S7 and S8,
respectively).

4. Discussion

A number of studies have shown that microbial community structure changes with
plant genotype and developmental stage and this trend was observed in our study in
which microbial communities differed across the FR–RILs and shifted between heading and
maturity stages within genotypes [3,8,17]. Although we did observe genotypic differences,
they were not based on the observed SB and RB trend that we selected for (i.e., two
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parents, Francis and Rondo, displaying contrasting SB and RB traits and their nine FR–RILs,
encompassing a range of SB and RB) when the soil microbial community was examined as
a whole.

4.1. Soil Microbial Populations Associated With Rice Shoot and Root Biomass

To identify specific taxa, microbial functions, and genes related to biomass traits
of interest, we used two multivariate analysis tools: PCoA and PLS regression analysis.
The PCoA was conducted first to examine the whole microbial community shifts in the
heading and physiological maturity stages. RB and SB explained some of the rhizosphere
community structure in both stages, with SB being dominant over RB in both stages.
Several taxa explained the microbial community structure in both stages and were also
found to be highly abundant (Figures S5 and S6) including the genera Bradyrhizobium
and Anaeromyxobacter. However, PCoA did not allow us to interrogate which specific
taxa, functions, and genes were correlated with SB and RB, to do this we used PLS regres-
sion analysis.

PLS regression analyses were performed on the entire microbial community to identify
microbial species correlated with SB and RB. However, when linear regressions of species
CLR–transformed count data were plotted against SB or RB to confirm the model, many
of the coefficient patterns identified through the PLS model showed a very weak, non–
significant correlation (p > 0.05). We speculated that the presence of abundant microbial taxa
that do not necessarily respond to SB and RB may have obscured changes in community
structure of SB or RB associated species. For this reason, we used linear least squares
regression analyses to identify species, functions, and genes that are associated with SB or
RB for use in the PLS analysis. In this discussion we consider only species showing the most
differentiation in PLS results, i.e., species in SC4, SC6, and SC7, with VIP scores greater than
0.8 as they are considered significant effectors in the PLS models [43,44]. Microbial taxa
identified through the PLS analysis are all widely present in soil, including species from the
Actinobacteria, Chloroflexi, Planctomycetes, Proteobacteria, and Verrucomicrobia phyla. Within
the Proteobacteria, several Alphaproteobacteria species were identified as correlated with
shoot and root biomass. Within this phylum, a Phenylobacterium sp. (ID = 66, VIP = 1.192),
aerobic or facultatively anaerobic non–spore forming bacteria [45,46], was negatively
correlated with RB, SB, and maturity. Perhaps unsurprisingly, several Bradyrhizobium spp.,
which are known rice root endophytes capable of nitrogen–fixation [47], were identified
as positively associated with root biomass, but, interestingly, also with shoot biomass
and physiological maturity (Table 1 IDs 69, 70, 71 and VIP scores of 1.306, 1.209, 0.983,
respectively). A previous study by Hirano et al. (2001), found that rice grown without
nitrogen fertilizer, in soils with a high abundance of nitrogen–fixing bacteria in late growth
stages, had similar yields to rice grown under conventional fertilization practices [48,49].
This underscores the importance of rice endophytes, including Bradyrhizobium spp., in rice
cultivation. The fact that the abundance of these bacteria was found to correlate with both
root and shoot biomass patterns with 11 genotypes suggests these traits could be used for
breeding to select for nitrogen–fixing microbial populations.

Several species showed a significant positive correlation with rice shoot biomass and
this pattern was well–presented at maturity. Especially interesting, Anaeromyxobacter spp.
(Table 1 IDs 118, 119, 120 and VIP scores of 1.008, 1.182, 0.913, respectively) are Gram
negative facultative anaerobes that are known to perform dissimilatory iron reduction [50]
and have been shown to use nitrate [50] as an electron acceptor making it an important
species for biogeochemical cycling of nutrients. A methanogen, Methanocella avoryzae
(ID 279, VIP = 1.427), was also positively correlated with increased shoot biomass and
physiological maturity. Peak methane emissions are typically observed during heading
stage [51], however, higher shoot biomass likely creates a larger conduit for methane to
diffuse from the soil to the atmosphere through aerenchyma tissue [9,52]. Additionally,
Candidatus Nitrosocosmicus oleophilus (ID 282, VIP = 1.276), an ammonia oxidizing archaea
(AOA) was found to correlate positively with biomass traits and physiological maturity.
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AOA are autotrophs that fix inorganic carbon and are thought to be the dominant microbial
population performing ammonia oxidation in soil [53,54]. AOA and ammonia oxidizing
bacteria (AOB) are involved in nitrate formation on rice root surfaces which have been
shown to be an important nitrogen source for rice grown in submerged conditions [55,56].
They are key players in the nitrification pathway, which oxidize ammonia to nitrite, a
nitrogen form less amenable for assimilation by rice. Interestingly, this archaea is negatively
correlated during the heading stage, when rice is transitioning from its reproductive
phase to the ripening phase and requires more nitrogen in the easily assimilated form of
ammonia [22].

There were a number of overlapping taxa between the predominant taxa present in
the soil samples (Figures S4 and S5) and the taxa identified by PCoA (Figure 1) and PLS
(Figure 2) analysis. Methanocella avoryzae and several Anaeromyxobacter species were among
those identified as having relatively high abundance (Figure S5) and positively correlated
with shoot and root biomass (Figure 2 and Table 1). However, other species, including
Bradyrhizobium spp. and Candidatus Nitrosocosmicus oleophilus, were not in the top 2%
of taxa but were significantly positively correlated with higher biomass. Species within
Bradyrhizobium and Anaeromyxobacter influenced the community structure at both heading
and maturity (Figure 1) with the latter species having relatively high abundance (in the
top 2%) across genotypes and developmental stages (Figure S5). Other high abundance
taxa including Sphingomonas spp., and unclassified taxa within the Actinobacteria, Chlo-
roflexi, Planctomycetes, Proteobacteria, and Verrucomicrobia phyla, likewise influenced the
PCoA structure (Figure 1 and Figure S4). Thus, while the PCoA did identify some of the
same species as PLS, these results underscore the importance of the PLS analysis which
specifically identified those species positively correlated with biomass traits regardless
of abundance.

PLS analysis was able to differentiate microbial species based on root biomass; how-
ever, coefficient values for root biomass were one to two orders of magnitude smaller
than those of shoot biomass, indicating RB had less impact in the species level model
than SB. The nine selected RILs and their parents exhibited a lower and wider range in
root biomass (roughly 10–fold difference) as compared to shoot biomass (roughly 6.5–fold
difference). This likely allowed for stronger trends to arise from PLS analysis with SB data,
which surpasses any relationships seen with RB. Additionally, processing soil samples for
root quantification is difficult and time–consuming which may lead to underestimation
of plant root biomass [57]. Despite the potential for underestimation in RB quantification,
PLS analyses were still able to identify functions related to RB. This demonstrates that
PLS analyses, used in conjunction with ANOVA significance selection from the microbial
community by traits of interest, have the potential to be used to identify trait–associated
microbial populations and to understand the relationship between traits of interest.

Overall, through PLS analysis, we were able to identify species that were abundant
with lines that had a lower range of root and shoot biomass at heading, and other species
that were more abundant with lines that had a higher range of root and shoot biomass at
maturity. Our results also indicate that microbial populations are influenced by RB and SB
in the same manner. This suggests that shoot biomass has potential to be used as a proxy
for root biomass in breeding to select for beneficial soil microbial species.

4.2. Microbial Community Functions Correlated to Biomass Traits

Microbial community functions identified in our analysis were distinct between the
two developmental stages, heading and physiological maturity. Heading stage represents
a dynamic phase of plant growth as rice transitions from reproductive to ripening stages.
This growth phase was reflected in the microbial functions related to cell growth (synthesis
of amino acids and fatty acids) and metabolism (carbohydrate and aromatic compound
metabolism) in our study. In contrast, many of the microbial functions indicative of cell
growth plateauing or decaying, such as sporulation, virulence defense, and motility and
chemotaxis, were represented at maturity. Chemotaxis functions may indicate bacterial
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populations are searching for nutrients as root exudates decrease with plant maturation
and they are required to search further out to find growth substrates [3,58].

Shoot and root biomass related functions followed the same trends as developmental
stages maturity and heading, respectively. Root biomass related functions showed an
opposing pattern to SB related functions. Although differences in coefficient values for RB
were smaller than those of SB at the species level, they were greater at the functional level,
indicating the PLS model was able to discern microbial functions differentially correlated
with RB. This suggests that RB may more strongly influence overall community function
than it does the abundance of specific taxa.

4.3. Gene Trends Related to Shoot and Root Biomass

Many of the genes correlated with RB or SB belonged to the pathways identified at
the functional level. However, in contrast to the functional level analysis, RB showed a
stronger pattern with gene abundance than SB. This suggests that PLS analyses can make
use of relatively small variation in observed traits to differentiate changes in abundance
among thousands of genes and identify those related to traits of interest. Even though only
a few RB–associated species and functions were identified with PLS as compared to SB, it
appears RB may be a more dominant driver of soil microbial community gene abundance
than SB. This implies there may be functional redundancy across species; thus, although
individual species or functions do not correlate with the RB phenotype, specific genes do.

As expected, the genes most frequently identified were involved in amino acid, carbo-
hydrate, and protein metabolism, all processes central to microbial life. Genes identified as
specifically positively associated with RB and heading include those involved in amino
acid degradation including an aminotransferase. Additionally, two genes for mannose and
maltose metabolism as well as a 2–ketogluconate kinase, part of the pentose phosphate
metabolic pathway, were identified as positively associated with RB. A gene related to
nitrogen metabolism by nitrite transport showed a similar positive correlation with RB
and heading which indicates bacterial nitrogen cycling is prominent during the heading
stage. Fatty acid synthesis genes and several stress response genes were likewise posi-
tively correlated with RB. Genes involved in iron acquisition by siderophore biosynthesis,
polysaccharide synthesis, cell signaling, and metabolism of the phenolic compound vanillic
acid, found in plant root exudates [59], are all representative of cell growth, and were found
to be positively correlated with RB/heading and negatively correlated with SB/maturity.

Genes that were identified as being positively correlated with SB and maturity and
strongly negatively correlated with RB and heading belong to many of the cell decaying
functions observed at the functional level. Virulence related genes, for example, were
identified as uniquely related to RB and maturity, particularly genes predicted to be
involved in conjugative signaling and transfer, indicate cells are undergoing attack. Several
genes involved in spore formulation are strongly related to increasing SB and decreasing
RB, suggesting microbial populations are preparing for dormancy as plants mature from
heading to maturity and RB begins to decrease. Two photosynthesis–related genes were
identified as positively correlated with SB and maturity and negatively correlated with
RB and heading. As roots decay and root exudates decrease with age, a decrease in
available carbon metabolites that bacteria rely on may cause the soil microbial community
to favor autotrophs capable of photosynthesis resulting in a negative correlation between
photosynthesis–related genes and root biomass.

4.4. Relationship of Developmental Stage to Microbial Community Structure and Functions

In general, beta coefficient patterns during heading stage followed those of SB while
coefficient patterns for maturity were more closely associated with RB patterns in our study.
During heading stage, plants experience rapid growth whereas during maturation stages
rice is remobilizing resources to grain development, and as a consequence, belowground
carbon allocation decreases [60] as do overall root exudates [61]. As plants age, root
exudates change and consequently modulate the microbial community structure and
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function. In our study, FR–RIL SB increased from heading through the grain fill stages
while RB decreased between these stages. Thus, up until maturity, SB is in a growth phase,
influencing, and likewise being influenced by, the microbial community. At maturity,
FR–RIL root biomass decreased relative to heading. Since RB is in direct contact with the
soil microbial community, it follows that during RB growth (i.e., heading stage), when root
exudates are high, it is driving the microbial community structure and function.

It is difficult to disentangle the effect of biomass traits from developmental stage,
thus focusing on two developmental stages, heading and physiological maturity, that
show contrasting biomass traits was a key component of this study. However, further
studies validating the results herein are needed. For example, inoculation studies using
PLS–identified species or species harboring PLS–identified genes could be used to verify if
they positively impact RB and SB growth during the critical heading and maturing stages.
A study by Mayer et al. (2019), did just this, using identified endophyte isolates to inoculate
several plant species and evaluating their impact on root and shoot growth [62]. Future
work in this vein could prove useful for validation, following identification of specific taxa
or genes related to RB and SB growth.

5. Conclusions

Overall, these results suggest species, functions, and gene abundance patterns vary
by shoot and root biomass, and across developmental stages of heading and maturity.
This study indicates changes in root and shoot biomass may play an equally important
role in driving the microbial community as does developmental stage. However, our
results suggest that SB may be used as a surrogate for root biomass in future plant trait-
based breeding, as we found that rhizosphere microbial species vary with SB and RB
in the same manner. Using SB as a breeding trait would be advantageous over RB, as
RB quantification is time–consuming and prone to error, while SB quantification is more
efficient and accurate. This study underscores the potential of exploiting rice phenotypic
variation in plant breeding to promote beneficial plant–soil microbiome interactions.
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