Planarians, a Neglected Component of Biodiversity in Groundwaters
Abstract
:1. Introduction
2. Material and Methods
3. Results
3.1. Spread of Studies on Stygobiont Planarians
3.2. Trophic Functional Role of Planarians in Groundwaters
3.3. Relevance of Troglomorphisms in Stygobiont Planarians
4. Discussion
4.1. Spread of Studies on Stygobiont Planarians
4.2. Trophic Functional Role of Planarians in Groundwaters
4.3. Relevance of Troglomorphisms in Stygobiont Planarians
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cardoso, P.; Erwin, T.L.; Borges, P.A.V. The seven impediments in invertebrate conservation and how to overcome them. Biol. Conserv. 2011, 144, 2647–2655. [Google Scholar] [CrossRef] [Green Version]
- Collen, B.; Böhm, M.; Kemp, R.; Baillie, J.E.M. Spineless: Status and Trends of the World’s Invertebrates; Zoological Society of London: London, UK, 2012. [Google Scholar]
- Ceríaco, L.M.P. Human attitudes towards herpetofauna: The influence of folklore and negative values on the conservation of amphibians and reptiles in Portugal. J. Ethnobiol. Ethnomed. 2012, 8, 8. [Google Scholar] [CrossRef] [Green Version]
- Decaëns, T.; Jiménez, J.J.; Gioia, C.; Measey, G.J.; Lavelle, P. The values of soil animals for conservation biology. Eur. J. Soil Biol. 2006, 42, S23–S38. [Google Scholar] [CrossRef]
- Collier, K.J.; Probert, P.K.; Jeffrie, M. Conservation of aquatic invertebrates: Concerns, challenges and conundrums. Aquat. Conserv. Mar. Freshw. Ecosyst. 2016, 26, 817–837. [Google Scholar] [CrossRef]
- Collier, K.J.; Smith, B.J. Distinctive invertebrate assemblages in rockface seepages enhance lotic biodiversity in northern New Zealand. Biodivers. Conserv. 2006, 15, 3591–3616. [Google Scholar] [CrossRef]
- Stubbington, R.; Wood, P.J.; Reid, I. Spatial variability in the hyporheic zone refugium of temporary streams. Aquat. Sci. 2011, 73, 499–511. [Google Scholar] [CrossRef]
- Scalici, M.; Bravi, R. Solving alpha-diversity by morphological markers contributes to arranging the systematic status of a crayfish species complex (Crustacea, Decapoda). J. Zool. Syst. Evol. Res. 2012, 50, 89–98. [Google Scholar] [CrossRef]
- Gupta, K.; Sharma, A. Macroinvertebrates as indicators of pollution. J. Environ. Biol. 2005, 26, 205–211. [Google Scholar]
- Koperski, P. Diversity of freshwater macrobenthos and its use in biological assessment: A critical review of current applications. Environ. Rev. 2011, 19, 16–31. [Google Scholar] [CrossRef]
- Dauba, F.; Lek, S.; Mastrorillo, S.; Copp, G.H. Long-term recovery of macrobenthos and fish assemblages after water pollution abatement measures in the River Petite Baise (France). Arch. Environ. Contam. Toxicol. 1997, 33, 277–285. [Google Scholar] [CrossRef]
- Kiffney, P.M.; Richardson, J.S.; Bull, J.P. Responses of periphyton and insects to experimental manipulation of riparian buffer width along forest streams. J. Appl. Ecol. 2003, 40, 1060–1076. [Google Scholar] [CrossRef]
- Araujo, A.P.G.; Carbayo, F.; Riutort, M.; Alvarez-Presas, M. Five new pseudocryptic land planarian species of Cratera (Platyhelminthes: Tricladida) unveiled through integrative taxonomy. PeerJ 2020, 8. [Google Scholar] [CrossRef]
- Hellmann, L.; Ferreira, R.L.; Rabelo, L.; Leal-Zanchet, A.M. Enhancing the still scattered knowledge on the taxonomic diversity of freshwater triclads (Platyhelminthes: Dugesiidae) in caves from two Brazilian Biomes. Stud. Neotrop. Fauna Environ. 2020. [Google Scholar] [CrossRef]
- Mateos, E.; Jones, H.D.; Riutort, M.; Alvarez-Presas, M. A new species of alien terrestrial planarian in Spain: Caenoplana decolorata. PeerJ 2020, 8. [Google Scholar] [CrossRef]
- Manenti, R.; Barzaghi, B. Is landscape of fear of macroinvertebrate communities a major determinant of mesopredator and prey activity? Knowl. Manag. Aquat. Ecosyst. 2020. [Google Scholar] [CrossRef]
- Manenti, R.; Lunghi, E.; Barzaghi, B.; Melotto, A.; Falaschi, M.; Ficetola, G.F. Do Salamanders Limit the Abundance of Groundwater Invertebrates in Subterranean Habitats? Diversity 2020, 12, 161. [Google Scholar] [CrossRef] [Green Version]
- Reynoldson, J.D.; Young, J.O. A Key to the Freshwater Triclads of Britain and Ireland with Notes on Their Ecology; Freshwater Biological Association: Ambleside (Cumbria), UK, 2000; p. 72. [Google Scholar]
- Knezovic, L.; Milisa, M.; Kalafatic, M.; Rajevic, N.; Planinic, A. A key to the freshwater triclads (Platyhelminthes, Tricladida) of Herzegovina watercourses. Period. Biol. 2015, 117, 425–433. [Google Scholar] [CrossRef]
- Navarro, B.S.; Jokela, J.; Michiels, N.K.; D’Souza, T.G. Population genetic structure of parthenogenetic flatworm populations with occasional sex. Freshw. Biol. 2013, 58, 416–429. [Google Scholar] [CrossRef]
- Carpenter, J.H. Observations on the biology of cave planarians of the United States. Int. J. Speleol. 1982, 12, 9–28. [Google Scholar] [CrossRef] [Green Version]
- De Beauchamp, P. Biospeleologica. Turbellariés, Hirudinées, Branchiobdellidés (Deuxième série). Arch. De Zool. Expérimentale Et Générale Hist. Nat. Morphol. Histol. Évolution Des Animaux 1932, 73, 113–380. [Google Scholar]
- Romero, A. Cave Biology; Cambridge University Press: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Gourbault, N. Recherches sur les Triclades Paludicoles hypogés. Mémoires Du Muséum Natl. D’histoire Nat. Ser. A 1972, 73, 1–249. [Google Scholar]
- Sluys, R.; Kawakatsu, M.; Riutort, M.; Baguna, J. A new higher classification of planarian flatworms (Platyhelminthes, Tricladida). J. Nat. Hist. 2009, 43, 1763–1777. [Google Scholar] [CrossRef]
- Manenti, R.; Barzaghi, B.; Lana, E.; Stocchino, G.A.; Manconi, R.; Lunghi, E. The stenoendemic cave-dwelling planarians (Platyhelminthes, Tricladida) of the Italian Alps and Apennines: Conservation issues. J. Nat. Conserv. 2018, 45, 90–97. [Google Scholar] [CrossRef]
- Enslin, E. Dendrocoelum cavaticum Fries: Verbreitung in der schwäbischen Alb. Anatomie nebst Bemerkungen über die Reduktion der Augen. Systematische Stellung. Jahresh. Des Ver. Für Vaterl. Nat. Im Württember 1906, 62, 312–360. [Google Scholar]
- Manenti, R.; Barzaghi, B.; Tonni, G.; Ficetola, G.F.; Melotto, A. Even worms matter: Cave habitat restoration for a planarian species has increased prey availability but not population density. Oryx 2019, 53, 216–221. [Google Scholar] [CrossRef] [Green Version]
- Ginet, R.; Puglisi, R. Ecologie de Fonticola notadena de Beaucham p (Turbellarie, Triclade) dans la grotte de La Balme (Isere, France); survie en periode de secheresse. Int. J. Speleol. 1964, 1, 203–216. [Google Scholar] [CrossRef]
- Culver, D.C.; Pipan, T. Redefining the extent of the aquatic subterranean biotope-shallow subterranean habitats. Ecohydrology 2011, 4, 721–730. [Google Scholar] [CrossRef]
- Barzaghi, B.; Ficetola, G.F.; Pennati, R.; Manenti, R. Biphasic predators provide biomass subsidies in small freshwater habitats: A case study of spring and cave pools. Freshw. Biol. 2017, 62, 1637–1644. [Google Scholar] [CrossRef]
- Culver, D.C.; Pipan, T. Shallow Subterranean Habitats: Ecology, Evolution, and Conservation; Oxford University Press: New York, NY, USA, 2014. [Google Scholar]
- Culver, D.C.; Pipan, T. The Biology of Caves and Other Subterranean Habitats, 2nd ed.; Oxford University Press: New York, NY, USA, 2019. [Google Scholar]
- Galassi, D.M.P.; Stoch, F.; Fiasca, B.; Di Lorenzo, T.; Gattone, E. Groundwater biodiversity patterns in the Lessinian Massif of northern Italy. Freshw. Biol. 2009, 54, 830–847. [Google Scholar] [CrossRef]
- Niemiller, M.L.; Glorioso, B.M.; Fenolio, D.B.; Reynolds, R.G.; Taylor, S.J.; Miller, B.T. Growth, Survival, Longevity, and Population Size of the Big Mouth Cave Salamander (Gyrinophilus palleucus necturoides) from the Type Locality in Grundy County, Tennessee, USA. Copeia 2016, 104, 35–41. [Google Scholar] [CrossRef]
- Romero, A. The Evolution of Cave Life. Am. Sci. 2011, 99, 144–151. [Google Scholar] [CrossRef]
- Romero, A. Hypogean Communities as Cybernetic Systems. Diversity 2020, 12, 413. [Google Scholar] [CrossRef]
- Culver, D.C.; Pipan, T. The Biology of Caves and Other Subterranean Habitats; Oxford Unuiversity Press: New York, NY, USA, 2009. [Google Scholar] [CrossRef] [Green Version]
- Vandel, A. Biospeleologie: La Biologie des Animaux Cavernicoles; Gauthiers-Villars: Paris, France, 1964; Volume XVIII, p. 619. [Google Scholar]
- Pipan, T.; Culver, D.C. Convergence and divergence in the subterranean realm: A reassessment. Biol. J. Linn. Soc. 2012, 107, 1–14. [Google Scholar] [CrossRef]
- Stocchino, G.A.; Sluys, R.; Marcia, P.; Manconi, R. Subterranean aquatic planarians of Sardinia, with a discussion on the penial flagellum and the bursal canal sphincter in the genus Dendrocoelum (Platyhelminthes, Tricladida, Dendrocoelidae). J. Cave Karst Stud. 2013, 75, 93–112. [Google Scholar] [CrossRef]
- De Beauchamp, P. Nouvelles diagnoses de Triclades obscuricoles. X. Polycelis benazzi n. sp. dans une grotte de Ligurie. Bull. De La Société Zool. Fr. 1955, 80, 119–124. [Google Scholar]
- Gillespie, J.H. Application of stable isotope analysis to study temporal changes in foraging ecology in a highly endangered amphibian. PLoS ONE 2013, 8, e53041. [Google Scholar] [CrossRef]
- Lunghi, E.; Cianferoni, F.; Ceccolini, F.; Zhao, Y.H.; Manenti, R.; Corti, C.; Ficetola, G.F.; Mancinelli, G. Same Diet, Different Strategies: Variability of Individual Feeding Habits across Three Populations of Ambrosi’s Cave Salamander (Hydromantes ambrosii). Diversity 2020, 12, 180. [Google Scholar] [CrossRef]
- Manenti, R. Role of cave features for aquatic troglobiont fauna occurrence: Effects on “accidentals” and troglomorphic organisms distribution. Acta Zool. Acad. Sci. Hung. 2014, 60, 257–270. [Google Scholar]
- Acreman, M.; Hughes, K.A.; Arthington, A.H.; Tickner, D.; Duenas, M.A. Protected areas and freshwater biodiversity: A novel systematic review distils eight lessons for effective conservation. Conserv. Lett. 2020, 13. [Google Scholar] [CrossRef]
- Page, M.J.; Moher, D. Evaluations of the uptake and impact of the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) Statement and extensions: A scoping review. Syst. Rev. 2017, 6. [Google Scholar] [CrossRef]
- Bolker, B.; Holyoak, M.; Krivan, V.; Rowe, L.; Schmitz, O. Connecting theoretical and empirical studies of trait-mediated interactions. Ecology 2003, 84, 1101–1114. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Buchanan, J.W. Notes on an American cave flatworm, Sphalloplana percaeca (Packard). Ecology 1936, 17, 194–211. [Google Scholar] [CrossRef]
- Ullyott, P. The behaviour of Dendrocoelum lacteum. Responses at light-and-dark boundaries. Lab. Freshw. Biol. Assoc. Wind. Zool. Lab. Camb. 1935, 13, 253–264. [Google Scholar]
- Sluys, R.; Benazzi, M. A new finding of a subterranean dendrocoelid flatworm from Italy (Platyhelminthes, Tricladida, Paludicola). Stygologia 1992, 7, 213–217. [Google Scholar]
- Stocchino, G.A.; Sluys, R.; Kawakatsu, M.; Sarbu, S.M.; Manconi, R. A new species of freshwater flatworm (Platyhelminthes, Tricladida, Dendrocoelidae) inhabiting a chemoautotrophic groundwater ecosystem in Romania. Eur. J. Taxon 2017, 342, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, R.W. Cave adapted flatworms of Texas systematics, natural history and responses to light and temperature. Am. Zool. 1970, 10, 547. [Google Scholar]
- Benazzi, M. Tricladi cavernicoli italiani. Biogeogr. J. Integr. Biogeogr. 1982, 7. [Google Scholar] [CrossRef]
- Benazzi, M.; Gourbault, N. Atrioplanaria morisii N.Sp., A New Cave Planarian from Italy. Bolletino Di Zool. 1977, 44, 327–335. [Google Scholar] [CrossRef]
- Christian, E.; Spötl, C. Karst geology and cave fauna of Austria: A concise review. Int. J. Speleol. 2010, 39, 71–90. [Google Scholar] [CrossRef] [Green Version]
- De Vries, E.J.; Benazzi, M. Dugesia brigantii n.sp., a freshwater planarianfound in an Italian cave. Bolletino Di Zool. 1983, 50, 263–268. [Google Scholar] [CrossRef] [Green Version]
- Del Papa, R. Dendrocoelum (Dendirocoelides) benazzii N. Sp. from the Cave of Stiffe (Abruzzo). Bolletino Di Zool. 1973, 40, 253–259. [Google Scholar] [CrossRef]
- Elliot, W.R.; Mitchell, R.E. Temperature Preference Responses of Some Aquatic, Cave-adapted Crustaceans from Central Texas and Northeastern Mexico. Int. J. Speleol. 1973, 5, 171–189. [Google Scholar] [CrossRef] [Green Version]
- Lunghi, E.; Corti, C.; Mulargia, M.; Zhao, Y.; Manenti, R.; Ficetola, G.F.; Veith, M. Cave morphology, microclimate and abundance of five cave predators from the Monte Albo (Sardinia, Italy). Biodivers. Data J. 2020, 8, e48623. [Google Scholar] [CrossRef]
- Patée, E.; Gourbault, N. Turbellaries triclades paludicoles (planaires d’eau douce). Société Linnéenne De Lyon 1981, 9, 279–304. [Google Scholar]
- Puccinelli, I.; Benazzi, M. Osservazioni sulla ecologia e cariologia della planaria. Dugesia brigantii. Atti Societa Toscana Sci. Nat. Resid. Pisa Mem. Process. Verbali Ser. B 1985, 92, 283–289. [Google Scholar]
- René, G.; Christian, J. Le peuplement animal des karsts de France (Éléments de biogéographie souterraine pour les Invertébrés). Première partie: La faune aquatique. Karstologia Rev. De Karstol. Et De Spéléol. Phys. 1987, 10, 43–51. [Google Scholar] [CrossRef]
- Sluys, R. A new, sibling species of cave flatworm from Switzerland (Platyhelminthes, Tricladida, Dendrocoelidae). Rev. Suisse De Zool. 2012, 119, 181–188. [Google Scholar] [CrossRef]
- Vialli, M. Una nuova specie di Dendrocoelum delle Grotte Bresciane. Bolletino Di Zool. 1973, 8, 179–187. [Google Scholar] [CrossRef] [Green Version]
- Von Heinz, N. Ökologisch-faunistische Untersuchungen über die Hydrofauna der Lurgrotte zwischen Peggau und Semriach in der Steiermark. Sitz. Ber. Österr. Akad. Wiss. Math. Naturw. Kl. 1974, 1, 103–139. [Google Scholar]
- Romero, A.; Green, S. The end of regressive evolution: Examining and interpreting the evidence from cave fishes. J. Fish Biol. 2005, 67, 3–32. [Google Scholar] [CrossRef] [Green Version]
- Juan, C.; Guzik, M.T.; Jaume, D.; Cooper, S.J. Evolution in caves: Darwin’s ‘wrecks of ancient life’in the molecular era. Mol. Ecol. 2010, 19, 3865–3880. [Google Scholar] [CrossRef] [Green Version]
- Porter, M.L.; Sumner-Rooney, L. Evolution in the Dark: Unifying our Understanding of Eye Loss Introduction. Integr. Comp. Biol. 2018, 58, 367–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Protas, M.; Jeffery, W.R. Evolution and development in cave animals: From fish to crustaceans. Wiley Interdiscip. Rev. Dev. Biol. 2012, 1, 823–845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fišer, Z.; Novak, L.; Lustrik, R.; Fiser, C. Light triggers habitat choice of eyeless subterranean but not of eyed surface amphipods. Sci. Nat. 2016, 103, 7. [Google Scholar] [CrossRef] [PubMed]
- Manenti, R.; Barzaghi, B. Diel Activity of Niphargus amphipods in spring habitats. Crustaceana 2021, in press. [Google Scholar]
- Jeffery, W.R. Cavefish as a model system in evolutionary developmental biology. Dev. Biol. 2001, 231, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lunghi, E.; Zhao, Y.H. Do Chinese cavefish show intraspecific variability in morphological traits? Ecol. Evol. 2020, 10, 7723–7730. [Google Scholar] [CrossRef]
- Romero, A.; Green, S.M.; Romero, A.; Lelonek, M.M.; Stropnicky, K.C. One eye but no vision: Cave fish with induced eyes do not respond to light. J. Exp. Zool. Part B-Mol. Dev. Evol. 2003, 300B, 72–79. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barzaghi, B.; De Giorgi, D.; Pennati, R.; Manenti, R. Planarians, a Neglected Component of Biodiversity in Groundwaters. Diversity 2021, 13, 178. https://doi.org/10.3390/d13050178
Barzaghi B, De Giorgi D, Pennati R, Manenti R. Planarians, a Neglected Component of Biodiversity in Groundwaters. Diversity. 2021; 13(5):178. https://doi.org/10.3390/d13050178
Chicago/Turabian StyleBarzaghi, Benedetta, Davide De Giorgi, Roberta Pennati, and Raoul Manenti. 2021. "Planarians, a Neglected Component of Biodiversity in Groundwaters" Diversity 13, no. 5: 178. https://doi.org/10.3390/d13050178
APA StyleBarzaghi, B., De Giorgi, D., Pennati, R., & Manenti, R. (2021). Planarians, a Neglected Component of Biodiversity in Groundwaters. Diversity, 13(5), 178. https://doi.org/10.3390/d13050178