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Abstract: Copepods have been known to be able to cause an increase in phytoplankton through
trophic cascades, as copepods consume heterotrophic protists that feed on phytoplankton. However,
how the intensity of copepod-induced trophic cascades varies with environmental conditions remains
elusive. We hypothesized that a higher proportion of large phytoplankton in the phytoplankton
size distribution, a higher stoichiometric quality of phytoplankton, and a higher temperature could
mitigate the intensity of a trophic cascade through increasing direct grazing on phytoplankton by
copepods. To explore this issue, we quantified the intensity of a trophic cascade as the difference
in phytoplankton concentration reduction by grazing using in situ incubations with and without
copepods in the East China Sea. We then investigated the relationship between the intensity of trophic
cascades versus the slope of the normalized biomass size spectrum (NBSS) of the phytoplankton
community, the C:N ratio of particulate organic matter (POM), and temperature. We found that the
intensity of trophic cascades weakly decreased with the NBSS slope and increased with temperature;
however, both relationships were not statistically significant. We did not find a clear relationship
between the strength of the trophic cascades and the C:N ratio of POM. Our results do not support the
hypothesis that the proportion of large phytoplankton, the stoichiometric quality of phytoplankton,
and the temperature affect trophic cascades. Instead, we suggest that other critical factors, such as
protist abundance, play a role in affecting trophic cascades in the plankton food web in the East
China Sea. We further propose some issues which should be addressed when conducting in situ
shipboard incubation.

Keywords: top-down control; indirect trophic interactions; plankton food web; copepod grazing
impact; subtropical shelf

1. Introduction

Trophic cascades are defined as indirect trophic interactions triggered by predators
and propagate downward the food web, thus influencing the density and productivity of
prey across more than one trophic level [1,2]. Trophic cascades have substantial impacts
on food web dynamics and are widely found in aquatic ecosystems [3]. For example, in
freshwater and marine food webs, the addition or removal of piscivores would change the
abundance of planktivorous fishes, and the effects are propagated down to regulate the
abundance of zooplankton and the grazing pressure of phytoplankton [4,5].

In plankton food webs, copepods are the key predators that have been known to be
able to induce trophic cascades to microbes and phytoplankton [6,7]. Copepods, consti-
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tuting about 80% of the mesozooplankton biomass in the ocean [8], play a central role in
trophic transferring in marine food webs. As a predator of unicellular eukaryotic protists,
copepods feed on and control the density of phytoplankton, heterotrophic protists, and
other microplankton [9,10]. Copepods link the primary production and microbial pro-
duction with higher trophic levels, regulating the abundance and productivity of their
planktonic prey [6,11–13].

The preference of copepods for grazing on diverse unicellular eukaryotic protists
affects the abundance and composition of phytoplankton via trophic cascades [7,14–16].
Heterotrophic protists, such as ciliates and heterotrophic dinoflagellates that consume
phytoplankton, fall in the range of optimal prey sizes for copepods [11,17]; their higher
stoichiometric and biochemical quality are usually preferred by copepods over autotrophic
phytoplankton [11,18–21]. Therefore, the selective grazing of copepods on heterotrophic
protists decreases the abundance of heterotrophic protists, reduces the grazing pressure
of heterotrophic protists on phytoplankton [16,22,23], and indirectly increases the phyto-
plankton abundance [24,25].

Although the preference of copepods for heterotrophic protists is suggested to generate
trophic cascades [26], the preference of copepods may change with the trophic state of the
environment and alter the strength of trophic cascades. In more eutrophic environments,
the phytoplankton community is dominated by large species, and copepods can thus
directly feed on large phytoplankton, which reduces trophic cascades. On the contrary, in
oligotrophic environments small phytoplankton dominate the community and copepods
feed more on heterotrophic protists, inducing stronger trophic cascades [6]. In addition to
the cell size of phytoplankton, and improved phytoplankton stoichiometric quality (i.e.,
lower C:N ratio) may shift the diet preference of copepods to phytoplankton [27–30] and
lower the trophic cascade.

In addition to the cell size and stoichiometric quality of phytoplankton, changes in
the dietary demand of copepods caused by temperature may alter the copepods’ prey
preference. Temperature has been found to regulate copepod grazing and metabolic rate in
lab-manipulated experiments [31–33]; high temperatures increase the demand for metabolic
carbon, and thus copepods consume more phytoplankton for carbon supply [34,35]. High
temperatures increase the ratio of phytoplankton in copepod diets and non-selective
feeding, which is suggested to reduce the intensity of trophic cascades [36,37].

To understand the changes in the intensity of trophic cascades under different en-
vironmental conditions, in situ grazing experiments were conducted in the East China
Sea (ECS) to estimate the intensity of trophic cascade in the plankton community. We
proposed that (1) a higher proportion of large phytoplankton in the prey community, (2)
improved phytoplankton stoichiometric quality (low phytoplankton C:N ratio), and (3)
higher temperatures would reduce the intensity of trophic cascades by altering copepod
prey preference for phytoplankton.

2. Materials and Methods
2.1. Study Area

In situ grazing incubation experiments were conducted in the southern part of the
East China Sea (ECS) during four cruises (15 incubation experiments) from September
2014 to June 2017 (Figure 1 and Table S1). The southern ECS is a subtropical continental
shelf affected by several water masses and multiple ocean currents. Large environmental
gradients, such as temperature and resource quantity, form from the coastal to offshore
areas [38]. The strong environmental gradients make the southern ECS an ideal region in
which to study the influence of environmental variations on trophic cascades (Figure S1).
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anics). The collected seawater was filtered through a 50 μm mesh to exclude crustacean 
zooplankton and leave only unicellular heterotrophic protists and phytoplankton. Fil-
tered seawater was then filled into 500 mL plastic bottles. For the control group, mesh-
filtered seawater with only heterotrophic protists and phytoplankton was poured into 
three replicates of bottles. For the group with copepod grazing, the zooplankton commu-
nity collected from the seawater was added into the bottles with filtered seawater. To col-
lect living copepods, at each sampling site a 50 μm meshed Norpac net was set to a 10 m 
depth and allowed to drift with the ship for 5~10 min. The collected zooplankton were 
gently filtered through sieves of 202 and 104 μm sizes, and living zooplankton (mainly 
copepods) within this size range were randomly selected and placed into incubation bot-
tles. The initial abundance of phytoplankton and heterotrophic protists were preserved in 
seawater-buffered 0.2% paraformaldehyde in 100 mL bottles in triplicate before the incu-
bation (protists without cell walls may not be well preserved by this method). Both control 
and experimental bottles were incubated for 24 h in 200 L dark incubation tanks filled 
with constantly circulating surface seawater to inhibit photosynthesis (Figure 2). 

After incubation, zooplankton were preserved in seawater-buffered formalin (final 
concentration 5%) and phytoplankton and protist cells smaller than 50 μm in seawater-
buffered paraformaldehyde (final concentration 0.2%). All zooplankton samples were 
preserved at room temperature and the phytoplankton and heterotrophic protist samples 
were preserved at 4 °C until analysis. 

Figure 1. Sampling area and sites (1, 3, 5, 7, 9, 11) in the southern East China Sea.

2.2. Shipboard Grazing Experiment

Incubation seawater was taken at a 10 m depth by 20 L Go-Flo bottles (General Ocean-
ics). The collected seawater was filtered through a 50 µm mesh to exclude crustacean
zooplankton and leave only unicellular heterotrophic protists and phytoplankton. Filtered
seawater was then filled into 500 mL plastic bottles. For the control group, mesh-filtered sea-
water with only heterotrophic protists and phytoplankton was poured into three replicates
of bottles. For the group with copepod grazing, the zooplankton community collected from
the seawater was added into the bottles with filtered seawater. To collect living copepods,
at each sampling site a 50 µm meshed Norpac net was set to a 10 m depth and allowed to
drift with the ship for 5~10 min. The collected zooplankton were gently filtered through
sieves of 202 and 104 µm sizes, and living zooplankton (mainly copepods) within this size
range were randomly selected and placed into incubation bottles. The initial abundance
of phytoplankton and heterotrophic protists were preserved in seawater-buffered 0.2%
paraformaldehyde in 100 mL bottles in triplicate before the incubation (protists without cell
walls may not be well preserved by this method). Both control and experimental bottles
were incubated for 24 h in 200 L dark incubation tanks filled with constantly circulating
surface seawater to inhibit photosynthesis (Figure 2).

After incubation, zooplankton were preserved in seawater-buffered formalin (final
concentration 5%) and phytoplankton and protist cells smaller than 50 µm in seawater-
buffered paraformaldehyde (final concentration 0.2%). All zooplankton samples were
preserved at room temperature and the phytoplankton and heterotrophic protist samples
were preserved at 4 ◦C until analysis.

2.3. Phytoplankton Density

The carbon density of the phytoplankton before and after the grazing incubations was
estimated using FlowCAM® (Yokogawa Fluid Imaging Technologies, Scarborough, Maine,
USA), which automatically captures images of particles and is suitable for zooplankton
grazing experiments [39]. Based on the abundance of phytoplankton in each sample, a
subsample of 1~5 mL was examined by the FlowCAM® with a 10x magnification objec-
tive and 100 µm flowcells in autoimage mode. Due to the limitations in precision, only
particles ranging from 5 to 50 µm were classified. Images of the particles were classified
into phytoplankton cells and detritus. Phytoplankton cells were not further classified to
taxonomic groups such as cyanobacteria and small diatoms, due to the limitations of the
image resolution. After the classification, the phytoplankton carbon biomass density was
calculated based on the biovolume using the carbon conversion factor [40] (Table S2) and
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the water volume of the sample. Heterotrophic protists were fragile to paraformaldehyde
fixation and thus could not be quantified in this research.
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Figure 2. Flowchart of shipboard grazing experiments. Plankton samples preserved for each experiment included (1)
heterotrophic protists and phytoplankton at the beginning of incubation (T0 Protists, Cp,0); (2) heterotrophic protists
and phytoplankton after 24 h of incubation without copepod addition (T24 Protists, Cp,24); (3) heterotrophic protists and
phytoplankton after 24 h of incubation with copepod addition (T24 Protists + Copepods, Cp+z,24); (4) copepods added into
the experimental bottles. The incubations with and without copepods were conducted in three replicates (×3) of 500 mL
bottles. The density of heterotrophic protists and phytoplankton at the beginning Cp,0, the density of heterotrophic protists
and phytoplankton without and with the addition of copepods after 24 h of incubation with Cp,24 and Cp+z,24, and the
copepod community were collected from the three replicates (×3) of incubated bottles (100 mL from each bottle).

2.4. Copepod Composition

The number of individuals of dominant copepod groups, including the copepodites
of calanoids, oithonids (Order: Cyclopoida; Family: Oithonidae), harpacticoids, oncaeids
(Suborder: Poecilostomatoida; Family: Oncaeidae), and corycaeids (Suborder: Poecilostom-
atoida; Family: Corycaeidae), as well as the nauplii of calanoids, cyclopoids, and harpacti-
coids, were enumerated using a dissecting microscope. Zooplankton other than copepods
were found in our incubations, but the abundance of these animals was low (Table S3) and
may not contribute to significant grazing effects on phytoplankton.

2.5. Intensity of Trophic Cascade

Trophic cascade (TC) was defined as the difference in the specific elimination rate
between bottles with and without copepod grazing (G and G′ in Figure 3):

G = − ln
(

Cp,24

Cp,0

)
× T−1,

G′ = − ln
(

Cp+z,24

Cp,0

)
× T−1,

where Cp,0 is the initial phytoplankton carbon biomass density. Cp,24 and Cp+z,24 represent
the phytoplankton carbon biomass density in the control group (without copepods) and
the experimental group (with copepods) after T = 24 h of incubation, respectively.
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Figure 3. Definition of the intensity of trophic cascades (TC). Concentrations of phytoplankton at the
beginning of incubation are shown by Cp,0. Concentrations of phytoplankton in the bottles without
and with copepod grazers after 24 h of incubation are Cp,24 and Cp+z,24, respectively. Copepods ingest
protists, thus the grazing from protists on phytoplankton is reduced in the bottles containing cope-
pods. As a consequence, the phytoplankton concentrations in the experimental bottles with copepods
and heterotrophic protists are higher than those in the control bottles with only heterotrophic protists.
The elimination rate in the experimental bottles (G′) is lower than the elimination rate in the control
bottles (G) by trophic cascade.

The intensity of the trophic cascade in each experimental bottle was calculated as:

TCi =
G− Gi′

Ni
,

where G is the mean specific elimination rate of the three replicates of the control group.
Gi′ and Ni are the specific elimination rate and number of zooplankton in replicate i of the
experimental group, respectively. If TC > 0, this incubation exhibited a trophic cascade;
otherwise, no trophic cascade was observed.

2.6. Size Structure of Phytoplankton Community

To quantify the variation in the phytoplankton community size structure, the slope
of the normalized biomass size spectrum (NBSS) was used as an indicator of the relative
abundance of small versus large cells in a community [41]. If the relative density of large
cells in one community is higher, then the NBSS slope is shallower (less negative). For
each experiment, the phytoplankton body size distribution of three replicates before the
incubation was combined and fitted to the normalized biovolume size spectrum:

Bs/∆s = aSb,

where BS is the total biovolume (µm3) of size class S and ∆s is the bin width of the body
size class. On a log2-log2 scale, log2(a) is the intercept and b is the slope of the NBSS fitted
to the linear regression.

2.7. Stoichiometric Quality of Phytoplankton

The C:N ratio of particulate organic matter (POM) was used as the index of phyto-
plankton stoichiometric quality. POM < 50 µm was collected from 4 depths spanning the
euphotic zone. From each depth, 5 L of water collected by 20 L Go-Flo bottles was filtered
through 50 µm mesh, and particles < 50 µm were filtered onto GF/F papers. The samples
were frozen at−20 ◦C until analysis. Before measuring the C and N contents, POM samples
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were acidified by 1N HCl and dried to eliminate inorganic C. The C and N contents of
POM were measured by an elemental analyzer (EA1108, Fisons, Italy, and FLASH 2000,
Thermo SCIENTIFIC, Waltham, MA, USA) and the molar C:N ratio was calculated from
the C and N contents.

2.8. Temperature

The temperature (◦C) in the incubator was measured at day and night during the
incubation in each cruise station.

2.9. Data Analyses

A linear model was fitted to the relationships between the intensity of the trophic
cascade (TC) versus the phytoplankton NBSS slope, the C: N ratio of POM, and the
temperature. For TC, the negative values were not included in the analysis, since there
were no trophic cascades in the bottles. In addition, multiple linear regression was also
conducted to find the combination of variables best explaining the variation in TC, with TC
as the response variable and the NBSS slopes, the C:N ratio of POM, and temperature as
the explanatory variables. All analyses were conducted using R version 4.0.4.

3. Results

Among the 15 experiments we conducted, trophic cascades (TC) were detected in
11 experiments (Table S4). In seven incubations with TC, phytoplankton growth was found;
that is, a higher phytoplankton carbon density was found in the incubation bottles than
in the initial phytoplankton community, indicating a negative elimination rate (Tables S5
and S6). Even though the elimination rate is negative, the intensity of TC can still be
calculated if the increase in phytoplankton carbon density in bottles with copepods (G′)
is larger than in bottles without copepods (G) (see Figure S2). The larger the increase in
phytoplankton after incubation, the more negative the elimination rate. TC calculated from
negative elimination rates are presented as triangular points in Figures 4–6.
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Figure 6. Relationship between the intensities of trophic cascades (TC) and the incubation tempera-
tures. All values are shown as the mean ± 1 standard error. Negative values of TC were removed,
as these experiments exhibited no trophic cascade. Triangular points indicate the TC calculated
from the incubations with phytoplankton growth (Figure S2). The dash line indicates the best-fit
regression line.

NBSS slopes exhibited a weak positive relationship with TC (Figure 4, p = 0.5926), but
the regression was not statistically significant. The TC was the highest when the NBSS
slope was −0.566 (Table S8, cruise 2016_May_st09). The variation in TC was large when the
NBSS slope was least negative due to the negative TC in one replicate (Figure 4; Table S6,
elimination rate G′ > G in replicate 1 of cruise 2014_Oct_st09).

The C: N ratio of POM did not exhibit a clear relationship with TC (Figure 5, p = 0.9895).
Moreover, the variation in TC was large when the C:N of POM was low (ln(C:N) < 1.9,
Figure 5).

Temperature exhibited a weak positive relationship with TC; nevertheless, the positive
relationship was not statistically significant (Figure 6, p = 0.613). High TC (>0.005) could
occur in both low- and high-temperature conditions (Figure 6).

The best fitting linear model selected by AIC did not include any of the above factors
(Table S7), indicating that the three factors we proposed could not explain the variation in
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TC well. The values of the NBSS slopes, temperature, and the C:N ratio of POM in each
cruise station are shown in Table S8.

4. Discussion
4.1. Relationships between Intensity of Trophic Cascade versus Phytoplankton Size Distribution,
Stoichiometric Composition and Temperature Are Not Clearly Identified

Our first hypothesis proposed that a higher proportion of large phytoplankton re-
duces the intensity of trophic cascades by shifting the copepod prey preference toward
phytoplankton. However, we did not find a clear relationship between the size spectrum
slope of the phytoplankton community and the trophic cascade. Previous studies have
suggested that, instead of the proportion of large phytoplankton in prey communities, the
density of phytoplankton that fall in the range of optimal prey size range of copepods
(1/18 of copepod body size in equivalent spherical diameter [42]) more critically regulates
copepod-phytoplankton trophic interactions [43–45]. Considering our incubations, the
body lengths of copepod grazers ranged from 104 to 202 µm; as such, the optimal prey
size of these copepods was between 5.8 and 11.2 µm. Thus, the intensity of a trophic
cascade is expected to decrease when the density of phytoplankton within this size range
increases. In our study, although the intensity of the trophic cascade exhibited a weak
negative relationship with the density of phytoplankton within the optimal prey size range,
the relationship was not statistically significant (p = 0.6088, Figure S3). Thus, the intensity of
trophic cascades seems to be determined by other critical factors rather than phytoplankton
size structure. One possibility is that diatom bloom lowers copepod ingestion and trophic
cascades on phytoplankton, since feeding on bloom-forming diatoms inhibits development
and causes the malformation of copepods [46]. However, in this study, we did not discuss
the effect of diatoms on the ingestion and growth of copepods, due to limitations in the
FlowCAM analysis. In addition to phytoplankton size and composition, the size structure
of heterotrophic protists, which are also important prey of copepods, may also alter the
intensity of trophic cascades [23,47]. Yet, in this study, the size distribution and density
of heterotrophic protists could not be investigated, since heterotrophic protists preserved
in paraformaldehyde solution in our samples had degraded before analysis. To better
assess the effects of prey size, taxonomic composition and trophic structure on trophic
cascades, phytoplankton and protists falling in the optimal prey size range should be better
preserved and analyzed through flow cytometry and microscopy, instead of only studying
the relative dominance of large phytoplankton cells by FlowCAM when estimating trophic
cascades. Trophic cascades are expected to be stronger in phytoplankton size classes that
are grazed by heterotrophic flagellates (smaller than 5 µm, considering the predator-prey
length ratio of 1.3–1.4 [42]), but at the same time not by copepods (optimal prey range of
5.8–11.2 µm in this experiment [42]). However, in our results, the size-specific trophic cas-
cade did not exhibit a clear pattern with phytoplankton cell size as the effects of the trophic
cascade were detected in the phytoplankton community (Figures S4–S6). The size-specific
elimination rates and trophic cascades in small size classes were reasonable, showing a
clearer cascading effect. On the contrary, the cascading effect on large phytoplankton that
were intensely grazed by copepods and/or heterotrophic protists could not be estimated;
in these cases, phytoplankton were completely removed by copepods and/or protists,
resulting in the unrealistic infinite elimination rates in large size classes (shaded positive
bars in Figures S7–S9). Nevertheless, it is still difficult to identify the size classes in which
size-specific trophic cascades regularly occur. To estimate trophic cascades, not only the
prey preferences of copepods, but also prey preferences and the density of heterotrophic
protists should be considered.

Higher phytoplankton stoichiometric quality (low C:N ratio) is expected to increase the
prey preference of copepods for phytoplankton and reduce the intensity of trophic cascades.
However, we did not find a positive relationship between the trophic cascades and the POM
C:N ratio. One possible explanation is that the POM collected in the eutrophic zone may
have contained particles other than phytoplankton, such as detritus with low nutritious
values. Therefore, the C:N ratio of eutrophic POM may not have fully represented the C:N
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ratio of phytoplankton. Another explanation is that the phytoplankton stoichiometry is
not the main factor that drives copepod prey selection in oceans [48]. Other prey traits—
such as the prey’s resistance to ingestion—that may affect predator preference or prey
mortality [49,50] are proposed to further influence the intensity of trophic cascades [51,52].

We hypothesized that higher temperatures enhance copepod metabolism, and thus
shift the copepods’ prey preference toward phytoplankton that are rich in carbon and
reduce trophic cascades. However, our results did not support this hypothesis. In natural
environments, copepods are usually adapted to the seasonal variation of ambient tem-
perature, and thus the effect of in situ temperature variation on copepod metabolism is
relatively minor [53,54]. In order to observe the shift of copepod prey preference driven by
temperature, incubation experiments with the gradient of temperature exceeding the range
of temperature in their natural habitat is necessary [53].

The intensity of copepod-induced trophic cascades may be determined by critical factors
other than our proposed hypotheses. One important piece of missing information is the
dynamics and composition of heterotrophic protists. Heterotrophic protists are preferred by
copepods and contribute to a considerable portion in copepod diets [11,17,20,55,56]; moreover,
they are predators of phytoplankton [57–61]. The grazing impact from heterotrophic protists
on phytoplankton is suggested to mediate the trophic cascade [62,63]. Our experiments
considered only the prey preference of copepods on phytoplankton and the variation in phy-
toplankton composition and assumed that the abundance and composition of heterotrophic
protists does not change in different environments and that the contribution of these pro-
tists to a copepod’s diet is constant, which may not be true [64]. Measuring the abundance
and composition of heterotrophic protists and their influence on trophic cascades should be
considered in in situ experiments.

4.2. Perspective of Experimental Design of Shipboard Incubation

For shipboard incubation, due to the difficulty of experimental manipulation in dynam-
ical environments, confounding factors are much more than the well-controlled incubation
conducted in the laboratory. If we aim to investigate plankton trophic dynamics, the condi-
tions of both predator and prey in the incubation should be as natural as possible, so that
the results can represent a realistic energy transfer in the plankton food web. According to
our experience, certain issues must be considered in this kind of shipboard incubation.

To estimate the in situ grazing impact of predators, the density of a predator should
be similar to natural conditions. In our grazing experiments, because the copepods in
the experimental bottles were randomly picked by a dropper from a condensed copepod
community collected by net tow, more than one hundred copepods could be incubated in
some experimental bottles (Table S3). Such an unrealistically high copepod density may
cause an extremely high grazing pressure on phytoplankton, which does not correspond to
copepod grazing pressure under natural conditions. Furthermore, the large variation of
copepod numbers in the replicates may bias the intensity of a trophic cascade (Table S3),
since the number of copepods was used for standardization in the calculation of the
intensity of the trophic cascade.

Optimal copepod density in the incubating containers could be determined according
to the expected per capita clearance rates [65]. For example, the copepods should not
clear more than 30–40% of the volume in the containers [66]. Thus, the grazing pressure
from copepods to their preys would remain at a reasonable level. In addition to the initial
predator density, predator mortality should also be considered, since it determines the
actual grazing pressure the predators impose on prey. While collecting the copepods, the
status of each copepod should be checked and only living individuals should be picked
for the incubation. After incubation, the status of each copepod can be identified using
neutral red staining [67]. Thus, to secure the realistic predator density and that only living
individuals are included in the experiment, copepods are recommended to be individually
picked [65,68] or filtered [69] into the incubating containers while setting up the incubation.



Diversity 2021, 13, 299 10 of 13

Changes to phytoplankton abundance and community structure by growth during
incubation may cause biases in the estimation of grazing impact. Thus, dark incubation
is applied to prevent photosynthesis and inhibit phytoplankton growth, so that the phy-
toplankton community structure and abundance are stable. However, we found that
phytoplankton grew in many size classes in several experiments, leading to a higher
phytoplankton carbon density in the bottles after dark incubation than that in the ini-
tial phytoplankton communities (Figure S2 and Table S5). This caused the unrealistic
negative infinite size-specific elimination rate and trophic cascade (shaded negative bars
in Figures S4–S9). In our study, dark incubation proved unable to completely inhibit
phytoplankton growth and create a stable phytoplankton structure. Although most phy-
toplankton growth would be suppressed in the dark, some species can still increase their
cell number even after several days of dark incubation [70,71]. Since the incubation in our
study was conducted for only 24 h, phytoplankton metabolism and growth might have
been reduced but not fully inhibited during the incubation.

5. Conclusions

In conclusion, although our study did not identify the factors influencing the intensity
of trophic cascades on the phytoplankton community, it still provides a possible framework
to investigate copepod-induced trophic cascades by in situ incubation. Our current experi-
mental design cannot measure the density and composition of protists, and the control of
copepod density incubated is not good enough. In addition, the growth of phytoplankton
in dark incubation interrupts the estimation of trophic cascades. Critical factors such as
protist abundance, phytoplankton community structure, and improved manipulation of
copepod density during the experiment should be considered in future research.
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