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Abstract: The frequency and intensity of hurricanes have increased with climate change, and their
effects on most taxa are not known. We analyzed a species diversity of bats in three locations with
different regimes of anthropic disturbance. We assessed the effect of the season and post-hurricane
time on the abundance of trophic guilds in coastal Jalisco, México, during the two years following
Hurricane Patricia (category 4). During a sampling effort of 15,629.76 m2 of netting, we captured
790 bats of 21 species. The species diversity was higher in the site with the highest proportion of
primary tropical deciduous forest and was higher in 2016 than in 2017; the species composition did
not differ greatly between the two years. The abundance of bats in various trophic guilds varied
relative to the four climatic seasons. The general abundance of bats, frugivores-omnivores, and
insectivores showed a significant increasing trend over time after the hurricane, which may indicate
a recovery of the ecosystem or an abundance of early-successional fruiting plants. The results also
confirm that species diversity recovers faster in a conserved forest. Thus, it is important to conserve
natural areas to mitigate the effects of major disturbances.

Keywords: Chiroptera; climate change; disturbances; diversity; trophic guild; tropical deciduous forest

1. Introduction

Hurricanes are tropical cyclones of great dimensions (300–340 km in diameter and
with a 119 km/h minimum velocity) that occur in the North Atlantic Ocean, the Caribbean,
and the Northeast Pacific Ocean. They contribute to the transport of the warm air mass of
the tropics from low to high latitudes and change the “nutrients transport” [1]. Based on
their intensity, hurricanes can influence in diverse ways the biodiversity and functioning of
ecosystems [2–4]. In addition, the frequency and intensity of major hurricanes has increased
in the last decades due to global climate change [5–7].

Several studies have focused on evaluating the direct and indirect effects of hurricanes
on ecological and biological traits [8]. The direct effects are mostly due to the direct
exposure to winds and rain, and can result in mortality or displacement of individuals and
propagules [1]. The indirect effects are induced by changes in the physical environment,
ecosystem productivity, and availability of resources, which can result in effects such as
increased vulnerability due to the scarcity of resources or a high predation risk. These
effects can occur during or immediately after the hurricane; for example, the change in
the availability of resources can force changes in the diet, foraging, day-roosting habitat,
or reproductive patterns. Meanwhile, the long-term effects can last from few years to
centuries [8,9] and influence the recovery and ecological succession of ecosystems which
include changes in the species composition, species diversity, and population sizes [10].
The level of the effect and recovery time vary in accordance with intensity, dimension,
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and time when hurricanes occur; the traits of the landscape; the structure of vegetation;
topography; land use and management; and the natural susceptibility of species of plants
and animals present to these events [4,9,11].

For terrestrial mammals, the exposure to extreme climate events, such as hurricanes
and fires, has received some attention [12], as has their susceptibility as a result of their
sensibility (vagility and territoriality) and their adaptive capacity (diet and habitat special-
ization) [13]. Previous studies indicate that Primates, Rodentia, and Chiroptera have the
highest proportion of species affected by cyclones and fires worldwide [12].

Bats are an important group in ecosystems due to their wide ecological diversity and
ecosystem services [14,15]. Their dispersion capacity provides a degree of resistance and
resilience to disturbances in comparison with other terrestrial mammals [16,17]; however,
some bat species have life-history traits or behaviors that make them vulnerable [18,19].
The effects of hurricanes on bats are multi-faceted and depend on habitat traits and their
foraging, feeding, and roosting habits [20].

In October 2015, Hurricane Patricia (category 4, Saffir–Simpson scale) made landfall on
the coast of Jalisco, Mexico, and affected the structure and phenology of vegetation [21–24],
as well as the local distribution patterns, species diversity, and richness of various taxa
(e.g., rodents and birds) [25,26]. In bats, an immediate effect was the decrease in the
diversity of species and abundance of some functional groups, such as nectar-feeding bats.
The effects were different among locations with distinct anthropogenic disturbance and
hurricane impact regimes [20]. Understanding these assemblages is necessary to estimate
the consequences of major natural events on the biodiversity and their interaction with
anthropogenic disturbance in the longer term.

Land use can influence the effects, responses, and rate of recovery of ecosystems after
hurricanes [8]. We evaluated the hurricane effects on bat assemblages in three locations
with distinct vegetation traits, anthropogenic disturbance, and land use. Our purposes
were: (1) to evaluate species diversity among locations and between two post-hurricane
years; (2) to identify differences in seasonal abundance patterns among trophic guilds;
and (3) to evaluate trends in abundance of each trophic guild during two years after
Hurricane Patricia.

We expected to find a higher diversity in the second year after the hurricane in the
most conserved areas and in locations less impacted by the hurricane. We also expected
variation in bat abundance across seasons and an increasing trend of abundance of bats
in general and in each trophic guild during the period after the hurricane. These changes
would reflect the recovery in flowering and fructification phenology and in ecosystem
functioning in general.

2. Materials and Methods
2.1. Study Sites

Our study was conducted in three locations in the coast of Jalisco, Mexico, in a het-
erogenous landscape conformed mainly by primary and secondary tropical deciduous
forest, primary sub-deciduous forest, farming and grazing areas, and underdeveloped hu-
man settlements [27]. The region includes a Natural Protected Area, the Chamela-Cuixmala
Biosphere Reserve, that subsumes 131,142 ha, mainly of tropical deciduous forest [28]. A
pristine study location (Chamela) was found within this area. A moderately disturbed
location (La Fortuna), 15 km N of Chamela, contained primary and secondary tropical de-
ciduous forest in addition to farming and grazing areas. The most anthropically disturbed
location (Zapata) is 15 km S of Chamela and included secondary tropical deciduous forest
along with farming and grazing areas. More information about the study areas can be
found in Bullock [20]. The eye of Hurricane Patricia passed through Chamela and Zapata,
but not through La Fortuna.

Traditionally, two climatic seasons are considered for this region: a rainy (July–October)
and a dry season (November–June) [29]. However, based on the availability of bat resources
and precipitation level, Stoner [30] proposed four climate seasons: (1) an early dry season
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from January to March, with some precipitation events [31] and when chiropterophilic
flowering and canopy fruiting season is at their peak; (2) a late dry season from April to
June, with few chiropterophilic flowering and fruits, but by the end of this season the first
rains of the year start; (3) an early rainy season from July to September, when the peak of
rainfall and chiropterophilic flowering occurs, but during which in general there are few
fruits; (4) a late rainy season from October to December, with the last rains of the year, with
some chiropterophilic flowering, and with a greater number of trees having fruits.

2.2. Bat Sampling

We sampled bats with mist-nets (Avinet, Inc., Portland, ME, USA; 75 denier, 2 ply,
38-mm mesh) set in three sampling stations in each location. Sampling occurred ev-
ery three months during 2016 and 2017, covering the four seasons of the Chamela re-
gion [30]. In each sampling period, we placed eight mist-nets, five at ground level (three of
9 [height] × 2.68 m [length] and two of 12 × 2.68 m) and three at 3.0–5.68 m height (two of
9 × 2.68 m and one of 12 × 2.68 m). The distance between the adjacent nets varied from
20 to 50 m, and the nets remained open during five hours after sunset. The sampling effort
of each sampling period was 217.08 m2 net-nights (i.e., number of square meters of net set
on a given night) with a total of 15,629.76 m2 for the study.

We determined the identity of the bats using identification keys [32,33], following the
classification proposed by Pavan and Marroig [34,35] for Pteronotus, by Baird et al. [36]
for Lasiurini, and by Calahorra-Oliart et al. [37] for Glossophaga. We recorded biolog-
ical and reproductive data, including forearm length (Truper® ± 0.05 mm) and mass
(Pesola® ± 0.05 g). To avoid measuring the same individual twice and in case we had
across-year recaptures, we marked small bats with numbered metal rings (Alloy Split
Rings 2.9 mm, Porzana Ltd., East Sussex, UK) and the largest ones with plastic collars with
colored beads. The bats were released at their capture sites.

2.3. Data Analysis

To compare the species diversity between years and locations, we built individual-
based and sampled-coverage rarefaction curves in iNext [38]. The species diversity (or-
der q = 0, 1, and 2) among locations was compared with the same number of individuals
(n = 182) and the same coverage (0.98) throughout 1000 Bootstrap iterations and 95% CI.

To compare species composition between years and locations, we calculated similarity
indices in SpadeR [39] with 1000 iterations in all cases. For comparison among locations in
two years, we computed Bray–Curtis indices. This index is reliable when absolute abun-
dances are compared under standardized sampling efforts across all of the communities.
Additionally, we performed a paired comparison with Sørensen and Jaccard indices. For
the comparison between years by location, we used the Chao–Jaccard and Chao–Sørensen
indices. These indices consider the relative abundance of the species and are recommended
when under-sampling is suspected and when it is likely that samples have many rare
species [40], as occurs with bat assemblages.

To identify the drivers of differences in species diversity, we built rank-abundance
curves for each location. We performed a Wilcoxon matched-pairs signed rank test on the
number of individuals captured by species and by location, to identify the species with
more changes in their abundance between years.

Bat species were classified into five trophic guilds: frugivore-omnivore, frugivore,
nectarivore, insectivore, and hematophagous, according to relevant literature [33]. To
evaluate the effect of the season and post-hurricane time on the abundance of bats by
trophic guild, we used generalized linear models (GLM) with Poisson distribution. We
performed two tests in each case: one with two classical seasons, dry and rainy (season1),
and the other with the four seasons as described by Stoner [30] (season2). We evaluated
four models that were compared with a null model with the anova function in R [41]:

Model 1: captures~season1 + post-hurricane time
Model 2: captures~season1
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Model 3: captures~season2 + post-hurricane time
Model 4: captures~season2
Null model: captures~1
We selected the model with the lowest Akaike Information Criterion (AIC) and highest

explained deviance that was significantly distinct from the null model.
Finally, to identify the trend direction in the abundance of bats, we transformed the

data with
√

(x + 1) to diminish the influence of extreme data due to seasonality. With these
data, we performed Mann–Kendall trend tests [42–44] with all the data and by trophic guild
in XLSTAT [45], and with the temporal series softened with the moving average model.
The Mann–Kendall trend test or Kendall’s τ (tau) is a non-parametric test that has been
used to identify trends considering randomness and seasonality, mainly in climatological
and hydrological analyzes (e.g., [46]).

3. Results
3.1. Species Diversity and Composition

We captured 790 bats from 21 species, 15 genera, and 6 families. The most frequently
encountered species were the Jamaican fruit-eating bat, Artibeus jamaicensis (n = 190),
common vampire bat, Desmodus rotundus (n = 167), Mexican mustached bat, Pteronotus
mexicanus (n = 131), and great fruit-eating bat, A. lituratus (n = 122). The location with
the most captures and the greatest number of species was Chamela (n = 316, 18 species),
followed by La Fortuna (n = 292, 15 species) and finally Zapata (n = 182, 12 species; Table 1).

Table 1. Number of individuals captured at each study location.

Family/Species Trophic Guild a Chamela La Fortuna Zapata Total

Mormoopidae
Pteronotus mexicanus IN 40 76 15 131

Pteronotus psilotis IN 1 3 4
Mormoops megalophylla IN 1 1

Pteronotus davyi IN 1 1
Natalidae

Natalus mexicanus IN 1 1
Noctilionidae

Noctilio leporinus PI 1 1
Phyllostomidae

Artibeus jamaicensis FO 111 52 27 190
Desmodus rotundus HE 89 50 28 167
Artibeus lituratus FO 25 52 45 122
Sturnira parvidens FO 1 10 41 52

Glossophaga soricina NE 14 10 15 39
Dermanura phaeotis FO 19 8 1 28
Dermanura tolteca FR 2 13 4 19

Leptoncteris yerbabuenae NE 4 12 16
Centurio senex FR 1 2 3 6

Glossophaga commissarisi NE 2 1 3
Glossophaga morenoi NE 1 1 1 3

Vespertilionidae
Rhogeessa parvula IN 2 1 3
Lasiurus frantzii IN 1 1

Dasypterus intermedius IN 1 1
Molossidae

Nyctinomops aurispinosus IN 1 1
Total species 18 15 12 21

Total individuals 316 292 182 790
a FO, frugivore-omnivore; FR, frugivore; NE, nectarivore; IN, insectivore; HE, hematophage; PI, piscivore.

Individual-based rarefaction analyses did not show significant differences in species
richness (q = 0) among locations (Figure 1a). However, coverage-based rarefaction (Figure 1d)
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indicated a higher richness in Chamela than in other locations. In contrast, order 2 diver-
sity showed that the number of effective species was lower in Chamela (Figure 1c,f); the
abundance among the most frequently encountered species was more uneven in Chamela.
In the comparison between years, no significant difference was demonstrated in overall
species diversity. By location, diversity was higher in 2016 than 2017 only in Chamela for
order 0 and 1 species diversity (Figure 2).

The similarity of species composition among locations varied from 0.60 to 0.68 (Bray–
Curtis index). In paired comparisons, the similarity was highest between Chamela and
Zapata and lowest between La Fortuna and Zapata. However, the differences were not
significant (95% CI; Table 2), and high values in the indices reflect the few changes in
species compositions between years for the three locations (Table 3).

The rank–abundance curve for Chamela showed a higher richness in 2016 than 2017,
with the abundance distribution for 2016 being more homogeneous among species and
there being a greater number of rare species. The most frequently netted species in 2016
were A. jamaicensis, D. rotundus, and A. lituratus, while in 2017 they were A. jamaicensis, D.
rotundus, and P. mexicanus (Figure 3). The Wilcoxon pair tests were not significant when
considering the number of individuals (p = 0.88) or relative abundance (p = 0.14), which
indicated that there were differences between the two years in the abundance rank of the
species, showing an increase in 2017 of D. rotundus and P. mexicanus, and a decrease of
A. lituratus (Figure 4).
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Table 2. Bat species composition similarity among locations after two years of Hurricane Patricia and
CI (95%).

Locations Jaccard’s Index Sørensen’s Index

Fortuna-Chamela 0.429 (0.214–0.644) 0.600 (0.361–0.840)
Fortuna-Zapata 0.367 (0.171–0.564) 0.537 (0.323–0.751)
Chamela-Zapata 0.474 (0.222–0.725) 0.643 (0.376–0.910)

Table 3. Bat species composition similarity by location between two post-hurricane years (2016 vs.
2017) and CI (95%).

Location Chao-Jaccard’s Index Chao-Sørensen’s Index

Fortuna 0.968 (0.899–1.040) 0.983 (0.957–1.010)
Chamela 0.875 (0.869–0.881) 0.933 (0.930–0.936)
Zapata 0.957 (0.765–1.150) 0.978 (0.847–1.110)
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Figure 3. Rank-abundance curves of bat species captured in 2016 and 2017 in Chamela, Jalisco.
1: Artibeus jamaicensis, 2: Desmodus rotundus, 3: A. lituratus, 4: Dermanura phaeotis, 5: Pteronotus
mexicanus, 6: Glossophaga mutica, 7: Leptonycteris yerbabuenae, 8: G. commissarisi, 9: D. tolteca,
10: Mormoops megalophylla, 11: P. psilotis, 12: P. fulvus, 13: G. morenoi, 14: Sturnira parvidens,
15: Rhogeessa parvula, 16: Natalus mexicanus, 17: Centurio senex, 18: Lasiurus frantzii.

Diversity 2022, 14, x FOR PEER REVIEW 7 of 16 
 

 

Table 3. Bat species composition similarity by location between two post-hurricane years (2016 vs. 
2017) and CI (95%). 

Location Chao-Jaccard’s Index Chao-Sørensen’s Index 
Fortuna 0.968 (0.899–1.040) 0.983 (0.957–1.010) 
Chamela 0.875 (0.869–0.881) 0.933 (0.930–0.936) 
Zapata 0.957 (0.765–1.150) 0.978 (0.847–1.110) 

The rank–abundance curve for Chamela showed a higher richness in 2016 than 2017, 
with the abundance distribution for 2016 being more homogeneous among species and 
there being a greater number of rare species. The most frequently netted species in 2016 
were A. jamaicensis, D. rotundus, and A. lituratus, while in 2017 they were A. jamaicensis, D. 
rotundus, and P. mexicanus (Figure 3). The Wilcoxon pair tests were not significant when 
considering the number of individuals (p = 0.88) or relative abundance (p = 0.14), which 
indicated that there were differences between the two years in the abundance rank of the 
species, showing an increase in 2017 of D. rotundus and P. mexicanus, and a decrease of A. 
lituratus (Figure 4). 

 
Figure 3. Rank-abundance curves of bat species captured in 2016 and 2017 in Chamela, Jalisco. 1: 
Artibeus jamaicensis, 2: Desmodus rotundus, 3: A. lituratus, 4: Dermanura phaeotis, 5: Pteronotus mexi-
canus, 6: Glossophaga mutica, 7: Leptonycteris yerbabuenae, 8: G. commissarisi, 9: D. tolteca, 10: Mormoops 
megalophylla, 11: P. psilotis, 12: P. fulvus, 13: G. morenoi, 14: Sturnira parvidens, 15: Rhogeessa parvula, 
16: Natalus mexicanus, 17: Centurio senex, 18: Lasiurus frantzii. 

 
Figure 4. Differences in number of captures and relative abundance between 2016 and 2017 of cap-
tured species in Chamela. Only names of species with the greatest changes are included. Some of 
the dots in the cluster of points around zero represent multiple species. 

Figure 4. Differences in number of captures and relative abundance between 2016 and 2017 of
captured species in Chamela. Only names of species with the greatest changes are included. Some of
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3.2. Seasonal and Post-Hurricane Abundance Trends

GLM analyses considering the three locations showed that the number of bats captured
was influenced by the season and the post-hurricane time. All evaluated models showed
significant differences among the seasons. The best model was model 3, which included
the four seasons and the post-hurricane time. This indicated that in the early rainy season
more bats were captured, and in the early dry and late rainy seasons fewer bats were
caught (Figure 5a).
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guilds (b–f), in accordance with selected models throughout GLMs. E-R: Early rainy, L-R: Late rainy,
E-D: Early dry, L-D: Late dry. Details are shown in Table S1 of Supplementary Materials.

For the frugivore-omnivore and frugivore bats, models 3 and 4 were the best. Accord-
ing to these models, more frugivore-omnivore and frugivore bats were captured in the
early rainy season, fewer frugivore-omnivore bats in the late rainy and late dry seasons,
and fewer frugivore bats in the early and late dry seasons (Figure 5b,c).

For the nectarivore guild, the differences among models were minimal and there
was no post-hurricane effect. According to model 4, which is the simplest with a higher
explained deviance and a lower AIC, more nectivore bats were captured in the early rainy
and late dry seasons and fewer in the late rainy season (Figure 5d). For hematophage bats,
the explained deviance in all models was low. Model 3 showed an effect of the season, with
fewer captures in the late rainy season and the post-hurricane time (Figure 5e).

For the insectivore guild, the explained deviance did not exceed 31% in all the models.
Model 3 showed the highest deviance (31%) and the lowest AIC (274.2). This model showed
that more insectivore bats were captured in the late dry and early rainy seasons (p = 0.71),
and there was a post-hurricane effect (Figure 5f).

The Mann–Kendall trend test showed that the number of captures of all bats increased
after the hurricane (Figure 6). By guilds, the abundance of frugivore-omnivore and insecti-
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vore guilds increased (p < 0.01). Nectivore bats showed a decrease, but it was not significant
(p = 0.07). Frugivore and hematophage bats did not show any trend (Figure 6).
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4. Discussion

As expected, two years after Hurricane Patricia, bat species richness was higher
in Chamela than in the other locations, but it had a lower evenness among the most
common species (lower diversity order 2). Previous reports indicated that eight months
after Hurricane Patricia, the dominance and evenness were lower in Chamela and Zapata
compared with pre-hurricane samplings, and the species richness was not different among
locations [20]. These results suggest that areas with a high quantity and diversity of native
vegetation such as Chamela, which contains primary deciduous and semideciduous forest,
are more resilient when facing natural disturbances. This may indicate that there was a
greater availability of resources, despite the disturbance, in a shorter amount of time with
the end result being a higher bat species richness.

Previous research has indicated that the dry forest in Chamela has low resistance
to hurricanes, but is highly resilient due to the quantity of moisture left. The recovery
rate depends on wind magnitude, post-disturbance climate variations, and vegetation
traits [22,47]. These factors, in addition to landscape traits and anthropic degradation regi-
men, may influence the recovery of populations and bat assemblages after hurricanes [48].
Hurricane Patricia caused more damage to tree structure in primary vegetation than in
secondary vegetation, but primary vegetation was more resilient in terms of lower mor-
tality and higher density of leaf outbreaks [22]. This may have been the result because
primary vegetation has a greater height, diameter, and age [22], which in turn provide
a greater ability for vegetation to obtain resources, and leads to a faster recovery of the
bat assemblages in the most conserved locations such as Chamela. Previous reports have
documented changes in the roosting habits after hurricanes, such as there being more
roosts inside reserves than outside, and displacement to more permanent roosts such as
caves [48]. Though tree damage can create new roosts in broken tops and cavities, usually
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bats are more often found in older trees where they find an optimal microclimate [49]. Also,
changes in the diet of frugivorous species occurred in that they consumed more leaves
than fruits after hurricanes [48]. Leaf outbreaks and roosts in primary vegetation after the
hurricane could have provided resources exploited by frugivorous bats in Chamela.

Lower order-2 diversity in Chamela suggests a low evenness in the abundance of
the most frequently encountered species, Artibeus jamaicensis and D. rotundus. The re-
covery of resources may have been exploited mainly by frugivorous-omnivorous species,
or by those that do not rely heavily on vegetation. Similarly, in avian assemblages, an
increase in the capture rates of omnivores and open-area foragers has been documented
after hurricanes [50].

Chamela also had the greatest differences in diversity and species composition between
years. Contrary to expectation, diversity was higher in 2016 than in 2017 (n = 14 vs. 10 in
species richness and n = 5 vs. 3 in rare species) in Chamela. Additionally, there was a greater
evenness in the abundance among species in 2016, and the species-composition similarity
decreased to a greater extent between years in comparison with the other locations. These
changes could have been the result of several factors. First, the higher vegetation cover
in Chamela compared with other locations may have functioned as a shelter area for
generalists (e.g., A. lituratus and the pygmy fruit-eating bat, Dermanura phaeotis), specialists
(e.g., the Commissaris’s long-tongued bat, Glossophaga commissarisi, and the Toltec fruit-
eating bat, Dermanura tolteca), common species (e.g., A. jamaicensis and D. rotundus), and
rare species (e.g., the Thomas’s naked-backed bat, Peronotus fulvus, and the western long-
tongued bat, Glossophaga morenoi) in 2016 immediately after the hurricane. According to the
intermediate-disturbance hypothesis and the recovery process, the most resistant species
and those not so resistant that colonize new niches after disturbances were able to share
the same area, thus increasing diversity.

Second, climate variation between years can influence diversity. The Chamela Weather
Station, UNAM, indicated that 2016 was drier than 2017, which would possibly result in
lower diversity in 2016. However, humidity favors the vegetation of the entire region and
due to a more humid condition in 2017, some species of bats may have dispersed to other
areas searching for food or habitat (e.g., A. lituratus), thus reducing the local diversity in
this year. The greater difference in species composition between years was the result of
an increase in 2017 in the abundance of A. jamaicensis and D. rotundus, and a decrease of
A. lituratus; the number of the rare species also was lower in 2017. Although A. jamaicensis
and A. lituratus are related species and have similar diets [51], A. lituratus feeds on a higher
quantity of pioneer plants [52,53] (which should be more abundant after a storm), it has a
larger body size and a larger home range, and forages in canopy and understory, as well as
different successional stages [54]. Consequently, in 2017, A. lituratus could have extended
its home range or moved to other locations with earlier successional stages.

The fact that the species composition between La Fortuna and Zapata was less sim-
ilar than between Chamela and Zapata may be an effect of the decline in similarity by
distance [55]. La Fortuna and Zapata are the furthest apart, and greater differences in
composition could be expected with respect to the impact of Hurricane Patricia.

Despite the negative effects of the hurricane on the abundance of some bat functional
groups [20], there was a seasonal variation in the abundance of trophic guilds, as suggested
by Stoner [30]. This abundance was higher during the early rainy season (July to September)
and lower in the late rainy season (October to December) and early dry season (January to
March). During the early rainy season, there is a higher precipitation, greater abundance
of chiropterophilic flowers (e.g., the orange flame vine, Combretum fruticosum, the morrito,
Crescentia alata, the pochote, Ceiba aesculifolia, columnar cactus, Stenocereus chrysocarpus),
and some fruits are more readily available, which benefits all trophic guilds. The decrease
in abundance of bats in the late rainy season may result from a decrease in the rains and
in chiropterophilic flowering (although many trees would still have fruits), which would
explain the smaller decrease in the abundance of frugivore guilds. In the early dry season,
the second peak of chiropterophilic flowering (e.g., C. fruticosum, Ceiba aesculifolia, the
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morning glories, Ipomoea ampullacea, the orchidtree, Bauhinia ungulata, the agave, Agave
ortgiesiana) and canopy fruiting occur [30,56]. The increase in the abundance of members of
the nectarivore guild coincides with that, but not with the decrease in the abundance of
species in the frugivore-omnivore guild. This could be the result of the impact of Hurricane
Patricia on the phenology of plants [57], but more information is needed.

The representative species of the frugivore-omnivore guild were A. jamaicensis, A.
lituratus, and D. phaeotis, so it would be important to research the response to disturbances
of some plants that are an important part of their diet, such as figs (Ficus ssp.), mombins
(Spondias ssp.), columnar cactus (Stenocereus ssp.), guava (Psidium ssp.), cecropias (Cecropia
ssp.), and nightshade (Solanum ssp.) [33,51,58–61]. For example, it has been reported that
some Ficus species are medium-low resistant to winds by hurricanes [62] which in Chamela
is one of the genus with more resprouting capacity [22]; in contrast, columnar cactus are
more vulnerable to these winds for their trunk shape and structure [63].

Another factor influencing variation in abundance of bats is reproduction patterns.
The greater abundance of frugivore bats in the early wet season may be associated with our
high capture rates of juvenile individuals (n = 67 for A. jamaicensis and n = 26 for A. lituratus)
compared to other seasons all together (n = 5 for A. jamaicensis and n = 0 for A. lituratus).
This may indicate that, although these bats have a continuous polyestrous reproductive
pattern, they have a birth peak that coincides with the beginning of the fruiting peak.
This may reflect a strategy to ensure the survival success of future adults, in which the
fruiting peak (October to December) concurs with the time when the young reach postnatal
development. Additionally, foraging time or distance also may change in accordance with
the availability of resources or reproduction conditions [64–66], modifying the capture
rate in mist-nets.

Nectarivorous and insectivorous bats have two peaks of abundance during the early
rainy and late dry seasons. In contrast, Stoner [30] reported a higher abundance of nectariv-
orous bats in the early rainy and early dry seasons at Chamela. It could be that the peak
abundance of chiropterophilic flowers during the early dry season (January to March) in
2016 was affected by Hurricane Patricia, which would have resulted in a delay in the peak
abundance of nectarivorous bats. Other probable causes may be related with interannual
climatic variation, for example winter rains influenced by El Niño Southern Oscillation
(ENSO) [67], that could promote changes in the abundance pattern of bats.

The beginning of chiropterophilic flowering can occur during the late dry season,
continuing until the early rainy season [30]. Important plants for the most frequently
encountered nectarivore species (Merriam’s long-tongued bat, Glossophaga mutica, and
lesser long-nosed bat, Leptonycteris yerbabuenae) are manjack (Cordia alliodora), white silk-
cotton tree (Ceiba pentandra), C. alata, shavingbrush tree (Pseudobombax ellipticum), morning
glory (Ipomoea sp.), and columnar cactus (Stenocereus sp.) [33,56,68]. For the genus Cordia,
the main damages resulting from Hurricane Patricia were broken and inclined trunks.
For Crescentia, it was secondary broken branches. Damages for Ipomoea wolcottiana were
the most severe, with uprooted trees [22]. As mentioned earlier, columnar cacti were
severely damaged [63].

The greater abundance of insectivorous bats during the late dry and early rainy
seasons can be explained by the timing of the first rains, which increases the abundance
and diversity of insects. The most abundant insectivore was P. mexicanus, a generalist
species in terms of diet and habitat. The variation in its abundance paralleled insect
availability [69,70]. In Chamela, P. mexicanus feeds mainly on Lepidoptera and Diptera.
It does not show changes in dietary breadth with the season, and their diet overlaps
with that of Dobson’s lesser mustached bat, P. psilotis [71], although this latter species is
scarce in the region.

Vampire bats were less abundant in the late rainy season. Temporal variations in
Desmodus rotundus are mainly related to livestock management practices [72] and, to a
lesser extent, to variation in the abundance of other prey [73] and to temperature varia-
tion due to seasonality [74,75]. The management of cattle by villagers varied seasonally
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and with respect to the availability of resources. When resources are limited, villagers
confine cattle or let them graze in smaller areas, which can influence the capture rate of
hematophagous bats. In Chamela, the nights are colder from December to February than
during the rest of the year [76], which may influence the activity of vampire bats. Variation
in abundance of vampire bats is also related to reproduction. Although they exhibit a con-
tinuous asynchronous polyestrous reproduction pattern, births have been reported to peak
in the rainy season [77–79]. More detailed studies could provide additional information on
local variation in activity, local movements, foraging patterns, and population dynamics,
as well as the association of these with climatic seasonality.

The increasing trend in abundance of bats may indicate recovery of the forest and
ecosystem in general two years after the hurricane. However, by trophic guilds, this trend
was found only in the frugivore-omnivore and insectivore bats. In addition, an analysis
of both before and after the hurricane indicated that the abundance of nectarivore bats
decreased after this event [20]. Altogether, results may indicate that this guild had not
recovered by the end of our sampling in December 2017. This agrees with findings by
Renton et al. [57], who reported that phenological patterns of flowering and fructification
in general had not recovered from the impact of Hurricane Patricia a year later, but specific
studies on chiropterofilic plants are needed. Similarly, in avian assemblages, frugivore
and nectarivore guilds were the most affected two years after Hurricane Iris (category
4) in Belize [50]. Glossophaga mutica appears to be one of the most affected bats in that
region. This bat was consistently the most frequently captured species in samplings prior
to Hurricanes Jova (category 2; October 2011) and Patricia [30,61,80–82]. However, it was
not in the most recent studies [26] and not even in our study, in which it represented only
6% of the abundance of all phyllostomid bats.

Among the recommendations for future studies, we urge that long-term data be gath-
ered so that it would be possible to analyze the relationship among interannual climate
variations and the effects of hurricanes and bat diversity. This would also allow analysis of
long-term data to predict population-size changes and to distinguish variation in popula-
tions, due to the effects of hurricanes from natural patterns as a result of to stochastic events
or natural population dynamics. These studies are particularly needed for vulnerable
species such as nectarivores, in order to decipher their ecological interactions and discover
what factors are affecting the populations of these species.

5. Conclusions

Based on our findings, we conclude that: (1) the species diversity of bats recovered
faster in areas with more primary forest; (2) despite the impact of the hurricane on forest
phenology, the abundance of trophic guilds maintained seasonality, mainly for frugivore
and nectarivore guilds; (3) an increasing trend in the abundance of frugivore-omnivore
and insectivore bats may indicate a recovery of their resources; and (4) nectarivore bats
were the most severely impacted by Hurricane Patricia, and it is likely that their resources
had not yet recovered two years after the impact. The resilience of tropical deciduous and
semideciduous forests facing extreme climate events such as hurricanes, promotes recovery
of biodiversity at a higher rate. The high vagility of bats compared to other taxa may confer
advantages after certain disturbances, allowing faster recovery of assemblages; however,
basic resources required by bats must be available. Hence, it is important to conserve
natural protected areas for their function as shelter areas and to increase the complexity
in agricultural or abandoned areas, in order to mitigate the effects of extreme events such
as hurricanes. Understanding the effects of seasons and storms on local assemblages may
serve as a place-holder for making inferences about climate change as we accumulate more
years and more data.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/d14100818/s1. Table S1: Models (GLM’s with Poisson distribution)
to assess the effect of seasonality and post-hurricane time on the number of bats captured from March
2016 to December 2017.
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