Spatio-Temporal Distribution Patterns and Determinant Factors of Wintering Hooded Cranes (Grus monacha) Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Bird Survey
2.3. Food Biomass and Availability
2.4. Patch Size Delineation
2.5. Human Disturbance
2.6. Data Analysis
3. Results
3.1. Spatial and Temporal Distribution of Wintering Hooded Crane Population
3.2. Model Selection and Model Averaging
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Wintering Period | Grid Code | Food Biomass | Food Item | Sample | Number of Cranes |
---|---|---|---|---|---|
Early wintering period | G1 | 1.2 ± 0.22 | Oryza sativa | N = 10 | 233 |
G2 | 4.8 ± 1.3 | Polygonum criopolitanum | N = 10 | 59 | |
G3 | 0.34 ± 0.09 | Polygonum criopolitanum | N = 10 | 4 | |
G4 | 0.41 ± 0.10 | Polygonum criopolitanum | N = 10 | 4 | |
G5 | 1.05 ± 0.12 | Polygonum criopolitanum | N = 2 | 8 | |
G6 | 1.23 ± 0.15 | Polygonum criopolitanum | N = 6 | 80 | |
G7 | 1.32 ± 0.18 | Polygonum criopolitanum | N = 2 | 8 | |
Middle wintering period | G8 | 0.75 ± 0.35 | Oryza sativa | N = 30 | 242 |
G9 | 0.25 ± 0.07 | Oryza sativa | N = 20 | 4 | |
G10 | 3.29 ± 0.26 | Potentilla supina Polygonum criopolitanum | N = 6 | 180 | |
G11 | 3.05 ± 0.32 | Potentilla supina Polygonum criopolitanum | N = 4 | 15 | |
G12 | 2.67 ± 0.52 | Potentilla supina Polygonum criopolitanum | N = 20 | 13 | |
Late wintering period | G13 | 0.85 ± 0.19 | Oryza sativa | N = 10 | 3 |
G14 | 1.45 ± 0.18 | Ranunculus polii Potentilla supina | N = 10 | 28 | |
G15 | 2.7 ± 0.58 | Ranunculus polii Potentilla supina | N = 10 | 41 | |
G16 | 0.31 ± 0.12 | Ranunculus polii Potentilla supina | N = 10 | 5 | |
G17 | 0.22 ± 0.05 | Ranunculus polii Potentilla supina | N = 10 | 9 | |
G18 | 0.27 ± 0.07 | Ranunculus polii Potentilla supina | N = 10 | 8 |
Wintering Period | Grid Code | Food Biomass | Food Item | Sample | Number of Cranes |
---|---|---|---|---|---|
Early wintering period | G1 | 2.1 ± 0.26 | Oryza sativa | N = 10 | 110 |
G2 | 0.26 ± 0.07 | Polygonum criopolitanum | N = 10 | 2 | |
G3 | 0.28 ± 0.07 | Polygonum criopolitanum | N = 10 | 3 | |
G4 | 0.21 ± 0.06 | Polygonum criopolitanum | N = 10 | 2 | |
Middle wintering period | G5 | 0.81 ± 0.29 | Oryza sativa | N = 10 | 5 |
G6 | 0.87 ± 0.26 | Oryza sativa | N = 20 | 64 | |
G7 | 1.15 ± 0.18 | Oryza sativa | N = 10 | 76 | |
G8 | 1.12 ± 0.37 | Oryza sativa | N = 10 | 161 | |
Late wintering period | G9 | 0.78 ± 0.26 | Oryza sativa | N = 10 | 31 |
G10 | 0.19 ± 0.06 | Potentilla supina | N = 10 | 3 |
Appendix B
Month | Patch Code | Hardness (N∙cm−2) N = 380 | Food | Distance to the Road (m) | Distance to the Village (m) | Patch Size (ha) | Depth (cm) N = 190 | Relative Abundance of Cranes | |
---|---|---|---|---|---|---|---|---|---|
Biomass (g) N = 190 | Food Item | ||||||||
November | 1 | 31.36 ± 10.2 | 4.8 ± 1.13 | Polygonum criopolitanum | 416 | 442 | 0.073 | 10.9 ± 1.9 | 0.347 |
2 | 51.06 ± 10.54 | 1.2 ± 0.27 | Polygonum criopolitanum | 1578 | 1501 | 0.435 | 6.8 ± 2.4 | 0.576 | |
3 | 69.51 ± 12.76 | 0.41 ± 0.10 | Polygonum criopolitanum | 508 | 495 | 0.264 | 7.29 ± 1.2 | 0.024 | |
4 | 68.31 ± 14.68 | 0.34 ± 0.09 | Polygonum criopolitanum | 912 | 1350 | 0.086 | 6.75 ± 1.16 | 0.024 | |
December | 5 | 112.93 ± 20.38 | 1.85 ± 0.23 | Oryza sativa | 299 | 486 | 0.570 | 9.2 ± 2.38 | 0.675 |
January | 6 | 90.88 ± 25.04 | 1.65 ± 0.22 | Oryza sativa | 251 | 513 | 0.182 | 9.67 ± 2.13 | 0.557 |
7 | 118.41 ± 23.61 | 0.19 ± 0.06 | Polygonum criopolitanum | 623 | 750 | 0.047 | 9.6 ± 1.66 | 0.005 | |
8 | 125.23 ± 30.00 | 0.18 ± 0.05 | Polygonum criopolitanum | 1153 | 1184 | 0.320 | 9.1 ± 1.36 | 0.010 | |
9 | 87.05 ± 18.71 | 0.28 ± 0.05 | Oryza sativa | 573 | 583 | 0.254 | 8.9 ± 1.73 | 0.012 | |
February | 10 | 98.51 ± 15.93 | 0.24 ± 0.09 | Oryza sativa | 358 | 587 | 0.135 | 9.7 ± 2.01 | 0.012 |
11 | 88.68 ± 10.67 | 3.28 ± 0.26 | Potentilla supina Polygonum criopolitanum | 1126 | 1149 | 0.288 | 6.5 ± 1.47 | 0.564 | |
12 | 85.43 ± 9.67 | 2.67 ± 0.52 | Potentilla supina Polygonum criopolitanum | 552 | 625 | 0.027 | 6.1 ± 1.33 | 0.032 | |
13 | 90.46 ± 25.04 | 0.22 ± 0.07 | Oryza sativa | 305 | 231 | 0.112 | 8.3 ± 2.05 | 0.012 | |
March | 14 | 100.28 ± 16.48 | 0.85 ± 0.19 | Oryza sativa | 289 | 196 | 0.135 | 8.7 ± 2.01 | 0.023 |
15 | 85.43 ± 9.67 | 1.45 ± 0.18 | Ranunculus polii Potentilla supina | 408 | 742 | 0.036 | 6.4 ± 1.32 | 0.219 | |
16 | 88.45 ± 10.67 | 2.7 ± 0.58 | Ranunculus polii Potentilla supina | 849 | 539 | 0.288 | 7 ± 1.55 | 0.320 | |
17 | 88.12 ± 11.20 | 0.31 ± 0.12 | Ranunculus polii Potentilla supina | 852 | 535 | 0.195 | 6.5 ± 1.15 | 0.039 | |
18 | 72.05 ± 9.80 | 0.22 ± 0.05 | Ranunculus polii Potentilla supina | 853 | 816 | 0.240 | 5.9 ± 1.10 | 0.070 | |
19 | 70.19 ± 9.72 | 0.27 ± 0.07 | Ranunculus polii Potentilla supina | 486 | 473 | 0.110 | 6.8 ± 1.23 | 0.063 |
Month | Patch Code | Hardness (N∙cm−2) N = 220 | Food | Distance to the Road (m) | Distance to the Village (m) | Patch Size (ha) | Depth (cm) N = 110 | Relative Abundance of Cranes | |
---|---|---|---|---|---|---|---|---|---|
Biomass (g) N = 110 | Food Item | ||||||||
November | 1 | 115.67 ± 11.69 | 0.26 ± 0.07 | Polygonum criopolitanum | 204 | 250 | 0.091 | 6.13 ± 0.75 | 0.012 |
2 | 110.42 ± 10.63 | 0.28 ± 0.07 | Polygonum criopolitanum | 357 | 373 | 0.144 | 6.2 ± 0.65 | 0.018 | |
December | 3 | 122.78 ± 28.45 | 2.1 ± 0.26 | Oryza sativa | 133 | 902 | 0.228 | 10.7 ± 2.8 | 0.319 |
4 | 108.81 ± 10.10 | 0.21 ± 0.06 | Polygonum criopolitanum | 296 | 573 | 0.089 | 5.7 ± 1.29 | 0.006 | |
January | 5 | 111.78 ± 21.60 | 1.35 ± 0.27 | Oryza sativa | 78 | 1544 | 0.227 | 10.8 ± 1.66 | 0.234 |
6 | 108.38 ± 19.23 | 1.15 ± 0.18 | Oryza sativa | 420 | 941 | 0.413 | 9.9 ± 1.37 | 0.182 | |
February | 7 | 97.65 ± 25.37 | 0.81 ± 0.29 | Oryza sativa | 89 | 1460 | 0.409 | 10.4 ± 2.78 | 0.182 |
8 | 96.64 ± 22.68 | 0.87 ± 0.26 | Oryza sativa | 127 | 1442 | 0.166 | 10.8 ± 2.83 | 0.185 | |
9 | 96.05 ± 21.42 | 0.79 ± 0.31 | Oryza sativa | 89 | 1067 | 0.156 | 10.5 ± 2.86 | 0.014 | |
March | 10 | 85.05 ± 10.19 | 0.19 ± 0.06 | Potentilla supina | 146 | 302 | 0.082 | 7.9 ± 1.70 | 0.023 |
11 | 93.88 ± 21.88 | 0.78 ± 0.26 | Oryza sativa | 91 | 974 | 0.161 | 9.5 ± 1.22 | 0.242 |
References
- Dias, R.A.; Bastazini, V.A.G.; de Castro Knopp, B.; Bonow, F.C.; Gonçalves, M.S.S.; Gianuca, A.T. Species richness and patterns of overdispersion, clustering and randomness shape phylogenetic and functional diversity–area relationships in habitat islands. J. Biogeogr. 2020, 47, 1638–1648. [Google Scholar] [CrossRef]
- Liu, W.; Jin, Y.Y.; Wu, Y.J.; Zhao, C.H.; He, X.C.; Wang, B.; Ran, J.H. Home range and habitat use of breeding Black-necked Cranes. Animals 2020, 10, 1975. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Q.; Zhou, L.Z.; Cheng, L.; Song, Y.W. Water level management plan based on the ecological demands of wintering waterbirds at Shengjin Lake. Glob. Ecol. Conserv. 2021, 27, e1567. [Google Scholar] [CrossRef]
- Li, C.L.; Li, H.F.; Zhang, Y.; Zha, D.D.; Zhao, B.B.; Yang, S.; Zhang, B.W.; de Boer, W.F. Predicting hydrological impacts of the Yangtze-to-Huaihe Water Diversion Project on habitat availability for wintering waterbirds at Caizi Lake. J. Environ. Manag. 2019, 249, 109251. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.J.; Li, B.; Jing, K.; Zhao, B.; Tang, S.M.; Chen, J.K. Effects of tidewater on the feeding ecology of Hooded Crane (Grus monacha) and conservation of their wintering habitats at Chongming Dongtan, China. Ecol. Res. 2003, 18, 321–329. [Google Scholar] [CrossRef]
- Harris, J.; Su, L.Y.; Higuchi, H.; Ueta, M.; Zhang, Z.W.; Zhang, Y.Y.; Ni, X.J. Migratory stopover and wintering locations in eastern China used by White-naped Cranes Grus vipio and Hooded Cranes G. monacha as determined by satellite tracking. Forktail 2000, 16, 93–99. [Google Scholar]
- Gunaratne, A.M.; Jayakody, S.; Bambaradeniya, C.N.B. Spatial distribution of aquatic birds in Anavilundawa Ramsar wetland sanctuary in Sri Lanka. Biol. Invasions 2009, 11, 951–958. [Google Scholar] [CrossRef]
- Yuan, Y.J.; Zeng, G.M.; Liang, J.; Li, X.D.; Li, Z.W.; Zhang, C.; Huang, L.; Lai, X.; Lu, L.H.; Wu, H.P.; et al. Effects of landscape structure, habitat and human disturbance on birds: A case study in East Dongting Lake wetland. Ecol. Eng. 2014, 67, 67–75. [Google Scholar] [CrossRef]
- Zhang, Y.; Fox, A.D.; Cao, L.; Jia, Q.; Lu, C.H.; Prins, H.H.T.; de Boer, W.F. Effects of ecological and anthropogenic factors on waterbird abundance at a Ramsar Site in the Yangtze River Floodplain. Ambio 2019, 48, 293–303. [Google Scholar] [CrossRef]
- Zhang, P.Y.; Zou, Y.A.; Xie, Y.H.; Zhang, H.; Liu, X.K.; Gao, D.L.; Yi, F.Y. Shifts in distribution of herbivorous geese relative to hydrological variation in East Dongting Lake wetland, China. Sci. Total Environ. 2018, 636, 30–38. [Google Scholar] [CrossRef]
- Jayalaxshmi, M.; Andrea, B.; Matthew, S. Birds as indicators of wetland status and change in the North Rupununi, Guyana. Biodivers. Conserv. 2008, 17, 2383–2409. [Google Scholar] [CrossRef]
- Reid, J.R.W.; Colloff, M.J.; Arthur, A.D.; Mcginness, H.M. Influence of catchment condition and water resource development on waterbird assemblages in the Murray-Darling Basin, Australia. Biol. Conserv. 2013, 165, 25–34. [Google Scholar] [CrossRef]
- Zheng, M.; Zhou, L.Z.; Zhao, N.N.; Xu, W.B. Effects of variation in food resources on foraging habitat use by wintering Hooded Cranes (Grus monacha). Avian Res 2015, 6, 11. [Google Scholar] [CrossRef] [Green Version]
- Rosin, Z.M.; Skorka, P.; Wylegala, P.; Krakowski, B.; Tobolka, M.; Myczko, L.; Sparks, T.H.; Tryjanowski, P. Landscape structure, human disturbance and crop management affect foraging ground selection by migrating geese. J. Ornithol. 2012, 153, 747–759. [Google Scholar] [CrossRef] [Green Version]
- Guldemond, R.A.R.; van Aarde, R.J. Forest patch size and isolation as drivers of bird species richness in Maputaland, Mozambique. J. Biogeogr. 2010, 37, 1884–1893. [Google Scholar] [CrossRef]
- Wilson, T.L.; Johnson, E.J.; Bissonette, J.A. Relative importance of habitat area and isolation for bird occurrence patterns in a naturally patchy landscape. Landsc. Ecol. 2009, 24, 351–360. [Google Scholar] [CrossRef]
- Mckay, H.; Watola, G.V.; Langton, S.D.; Langton, S.A. The use of agricultural fields by re-established Greylag Geese (Anser anser) in England: A risk assessment. Crop Prot. 2006, 25, 996–1003. [Google Scholar] [CrossRef]
- Fox, A.D.; Madsen, J.; Boyd, H.; Kuijken, E.; Norriss, D.W.; Tombre, I.M.; Stroud, D.A. Effects of agricultural change on abundance, fitness components and distribution of two arctic-nesting goose populations. Glob. Chang. Biol. 2005, 11, 881–893. [Google Scholar] [CrossRef]
- Ackerman, J.T.; Takekawa, J.Y.; Orthmeyer, D.L.; Fleskes, J.P.; Yee, J.L.; Kruse, K.L. Spatial use by wintering greater White-fronted Geese relative to a decade of habitat change in California’s central valley. J. Wildl. Manag. 2006, 70, 965–976. [Google Scholar] [CrossRef]
- Zhao, F.T.; Zhou, L.Z.; Xu, W.B. Habitat utilization and resource partitioning of wintering Hooded Cranes and three goose species at Shengjin Lake. Chin. Birds 2013, 4, 281–290. [Google Scholar] [CrossRef]
- Wang, X.; Fox, A.D.; Cong, P.H.; Cao, L. Food constraints explain the restricted distribution of wintering Lesser White-fronted Geese Anser erythropus in China. Ibis 2013, 155, 576–592. [Google Scholar] [CrossRef]
- Burger, J.; Gochfeld, M. Wood Storks (Mycteria americana) Prey on eggs and hatchlings of Olive Ridley Sea Turtles (Lepidochelys olivacea) at Ostional, Costa Rica. Waterbirds 2013, 36, 358–363. [Google Scholar] [CrossRef]
- Dalby, L.; Mcgill, B.J.; Fox, A.D.; Svenning, J.C. Seasonality drives global-scale diversity patterns in waterfowl (Anseriformes) via temporal niche exploitation. Glob. Ecol. Biogeogr. 2014, 23, 550–562. [Google Scholar] [CrossRef]
- Zhang, Y.; Prins, H.H.T.; Versluijs, M.; Wessels, R.; Cao, L.; de Boer, W.F. Experimental evidence shows the importance of behavioural plasticity and body size under competition in waterfowl. PLoS ONE 2016, 11, e164606. [Google Scholar] [CrossRef] [Green Version]
- Lepczyk, C.A.; Flather, C.H.; Radeloff, V.C.; Pidgeon, A.M.; Hammer, R.B.; Liu, J.G. Human impacts on regional avian diversity and abundance. Conserv. Biol. 2008, 22, 405–416. [Google Scholar] [CrossRef]
- de Boer, W.F.; Cao, L.; Barter, M.; Wang, X.; Sun, M.; van Oeveren, H.; de Leeuw, J.; Barzen, J.; Prins, H.H.T. Comparing the community composition of European and eastern Chinese waterbirds and the influence of human factors on the China waterbird community. Ambio 2011, 40, 68–77. [Google Scholar] [CrossRef] [Green Version]
- Fox, A.D.; Madsen, J. Threatened species to super-abundance: The unexpected international implications of successful goose conservation. Ambio 2017, 46, 179–187. [Google Scholar] [CrossRef] [Green Version]
- Summers, P.D.; Cunnington, G.M.; Fahrig, L. Are the negative effects of roads on breeding birds caused by traffic noise? J. Appl. Ecol. 2011, 48, 1527–1534. [Google Scholar] [CrossRef]
- Butler, L.K.; Ries, L.; Bisson, I.A.; Hayden, T.J.; Wikelski, M.M.; Romero, L.M. Opposite but analogous effects of road density on songbirds with contrasting habitat preferences. Anim. Conserv. 2013, 16, 77–85. [Google Scholar] [CrossRef] [Green Version]
- Martin, B.; Delgado, S.; de la Cruz, A.; Tirado, S.; Ferrer, M. Effects of human presence on the long-term trends of migrant and resident shorebirds: Evidence of local population declines. Anim. Conserv. 2015, 18, 73–81. [Google Scholar] [CrossRef] [Green Version]
- Kong, D.J.; Luo, W.X.; Liu, Q.; Li, Z.Q.; Huan, G.Y.; Zhang, J.J.; Yang, X.J. Habitat use, preference, and utilization distribution of two crane species (Genus: Grus) in Huize National Nature Reserve, Yunnan-Guizhou Plateau, China. PeerJ 2018, 6, e5105. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.M.; Zhou, L.Z.; Song, Y.W. Effect of water level fluctuations on temporal-spatial patterns of foraging activities by the wintering Hooded Crane (Grus monacha). Avian Res. 2015, 6, 16. [Google Scholar] [CrossRef] [Green Version]
- Wan, W.J.; Zhou, L.Z.; Song, Y.W. Shifts in foraging behavior of wintering Hooded Cranes (Grus monacha) in three different habitats at Shengjin Lake, China. Avian Res. 2016, 7, 13. [Google Scholar] [CrossRef] [Green Version]
- Li, C.L.; Zhou, L.Z.; Xu, L.; Zhao, N.N.; Beauchamp, G.; Carere, C. Vigilance and activity time-budget adjustments of wintering Hooded Cranes, Grus monacha, in human-dominated foraging habitats. PLoS ONE 2015, 10, e118928. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Zhou, L.Z.; Chen, J.Y.; Cheng, Y.Q.; Xu, W.B. Diurnal time-activity budgets of wintering Hooded Cranes (Grus monacha) in Shengjin Lake, China. Waterbirds 2010, 33, 110–115. [Google Scholar] [CrossRef]
- Cai, T.L.; Huettmann, F.; Guo, Y.M. Using stochastic gradient boosting to infer stopover habitat selection and distribution of Hooded Cranes Grus monacha during spring migration in Lindian, Northeast China. PLoS ONE 2014, 9, e97372. [Google Scholar] [CrossRef]
- Yang, L.; Zhou, L.Z.; Song, Y.W. The effects of food abundance and disturbance on foraging flock patterns of the wintering Hooded Crane (Grus monacha). Avian Res. 2015, 6, 15. [Google Scholar] [CrossRef] [Green Version]
- Barter, M.; Cao, L.; Chen, L.; Lei, G. Results of a survey for waterbirds in the lower Yangtze floodplain, China, in January–February 2004. Forktail 2005, 21, 1–7. [Google Scholar]
- Jia, Y.F.; Jiao, S.W.; Zhang, Y.M.; Zhou, Y.; Lei, G.C.; Liu, G.H. Diet shift and its impact on foraging behavior of Siberian Crane (Grus leucogeranus) in Poyang Lake. PLoS ONE 2013, 8, e65843. [Google Scholar] [CrossRef]
- Davis, S.K. Area sensitivity in grassland passerines: Effects of patch size, patch shape, and vegetation structure on bird abundance and occurrence in southern Saskatchewan. Auk 2004, 121, 1130–1145. [Google Scholar] [CrossRef]
- Fan, Y.G.; Zhou, L.Z.; Cheng, L.; Song, Y.W.; Xu, W.B. Foraging behavior of the Greater White-fronted Goose (Anser albifrons) wintering at Shengjin Lake: Diet shifts and habitat use. Avian Res. 2020, 11, 3. [Google Scholar] [CrossRef] [Green Version]
- Xie, S.L.; Wang, X.K.; Ren, Y.F.; Su, Z.M.; Su, Y.B.; Wang, S.Q.; Zhou, W.Q.; Lu, F.; Qian, Y.G.; Gong, C.; et al. Factors responsible for forest and water bird distributions in rivers and lakes along an urban gradient in Beijing. Sci. Total Environ. 2020, 735, 139308. [Google Scholar] [CrossRef]
- Symonds, M.R.E.; Moussalli, A. A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behav. Ecol. Sociobiol. 2011, 65, 13–21. [Google Scholar] [CrossRef]
- Zhang, C.; Yuan, Y.J.; Zeng, G.M.; Liang, J.; Guo, S.L.; Huang, L.; Hua, S.S.; Wu, H.P.; Zhu, Y.; An, H.X.; et al. Influence of hydrological regime and climatic factor on waterbird abundance in Dongting Lake Wetland, China: Implications for biological conservation. Ecol. Eng. 2016, 90, 473–481. [Google Scholar] [CrossRef]
- Wei, Z.H.; Zheng, M.; Zhou, L.Z.; Xu, W.B. Flexible foraging response of wintering Hooded Cranes (Grus monacha) to food availability in the lakes of the Yangtze River floodplain, China. Animals 2020, 10, 568. [Google Scholar] [CrossRef] [Green Version]
- Zhou, D.Q.; Chu, L.M. How would size, age, human disturbance, and vegetation structure affect bird communities of urban parks in different seasons? J. Ornithol. 2012, 153, 1101–1112. [Google Scholar] [CrossRef]
- Oliver, A.J.; Hong-Wa, C.; Devonshire, J.; Olea, K.R.; Rivas, G.F.; Gahl, M.K. Avifauna richness enhanced in large, isolated urban parks. Landsc. Urban Plan. 2011, 102, 215–225. [Google Scholar] [CrossRef]
- Evans, K.L.; Newson, S.E.; Gaston, K.J. Habitat influences on urban avian assemblages. Ibis 2009, 151, 19–39. [Google Scholar] [CrossRef]
- Zhu, Z.R.; Zhou, L.Z.; Yu, C.; Cheng, L.; Xu, W.B.; Song, Y.W. Do geese facilitate or compete with wintering Hooded Cranes (Grus monacha) for forage resources? Diversity 2020, 12, 105. [Google Scholar] [CrossRef] [Green Version]
- Xu, P.; Zhang, Y.L.; Zhang, X.R.; Chen, H.; Lu, C.H. Red-crowned Crane (Grus japonensis) prefers postharvest reed beds during winter period in Yancheng National Nature Reserve. PeerJ 2019, 7, e7682. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Wu, Y.J.; Dubay, S.G.; Zhao, C.H.; Wang, B.; Ran, J.H. Dung-associated arthropods influence foraging ecology and habitat selection in Black-necked Cranes (Grus nigricollis) on the Qinghai-Tibet Plateau. Ecol. Evol. 2019, 9, 2096–2105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sung, C.Y. Simulation of crane habitat fragmentation in the North and South Korean border region after Korean reunification. Landsc. Urban Plan. 2015, 134, 10–18. [Google Scholar] [CrossRef]
- Cahill, J.R.A.; Merckx, T.; van Dyck, H.; Fernández, M.; Matthysen, E. Lower density of arthropod biomass in small high-Andes Polylepis fragments affects habitat use in insectivorous birds. Ecosphere 2021, 12, e3401. [Google Scholar] [CrossRef]
- Kilgo, J.C. Harvest-related edge effects on prey availability and foraging of hooded warblers in a bottomland hardwood forest. Ornithol. Appl. 2005, 107, 627–636. [Google Scholar] [CrossRef]
- Lantz, S.M.; Gawlik, D.E.; Cook, M.I. The effects of water depth and emergent vegetation on foraging success and habitat selection of wading birds in the everglades. Waterbirds 2011, 34, 439–447. [Google Scholar] [CrossRef]
- Beerens, J.M.; Gawlik, D.E.; Herring, G.; Cook, M.I. Dynamic habitat selection by two wading bird species with divergent foraging strategies in a seasonally fluctuating wetland. Auk 2011, 128, 651–662. [Google Scholar] [CrossRef]
- Baschuk, M.S.; Koper, N.; Wrubleski, D.A.; Goldsborough, G. Effects of water depth, cover and food resources on habitat use of marsh birds and waterfowl in boreal wetlands of Manitoba, Canada. Waterbirds 2012, 35, 44–55. [Google Scholar] [CrossRef]
- Clausen, K.K.; Clausen, P.; Faelled, C.C.; Mouritsen, K.N. Energetic consequences of a major change in habitat use: Endangered Brent Geese Branta bernicla hrota losing their main food resource. Ibis 2012, 154, 803–841. [Google Scholar] [CrossRef] [Green Version]
- Pease, M.L.; Rose, R.K.; Butler, M.J. Effects of human disturbances on the behavior of wintering ducks. Wildl. Soc. B 2005, 33, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Liu, H.Y.; Li, Y.F.; Dong, B.; Qiu, C.Q.; Yang, J.L.; Zong, Y.; Chen, H.; Zhao, Y.Q.; Zhang, Y.N. Study on habitat suitability and environmental variable thresholds of rare waterbirds. Sci. Total Environ. 2021, 785, 147316. [Google Scholar] [CrossRef]
- Li, D.L.; Liu, Y.; Sun, X.H.; Lloyd, H.; Zhu, S.Y.; Zhang, S.Y.; Wan, D.M.; Zhang, Z.W. Habitat-dependent changes in vigilance behaviour of Red-crowned Crane influenced by wildlife tourism. Sci. Rep. 2017, 7, 16614. [Google Scholar] [CrossRef] [Green Version]
- Beauchamp, G. How does food density influence vigilance in birds and mammals? Anim. Behav. 2009, 78, 223–231. [Google Scholar] [CrossRef]
Model | AICc | ΔAICc | wi |
---|---|---|---|
Patch size + food biomass | −34.7 | 0 | 0.418 |
Patch size + food biomass + depth | −32.1 | 2.6 | 0.111 |
Patch size + food biomass + distance to village | −32.0 | 2.7 | 0.108 |
Patch size + food biomass + hardness | −31.9 | 2.8 | 0.102 |
Environment Factors | Estimate | Standard Error | wi |
---|---|---|---|
Patch size | 0.79 | 0.07 | 1 |
Food biomass | 0.11 | 0.18 | 0.998 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, X.; Zhou, L.; Zhang, Z.; Meng, L. Spatio-Temporal Distribution Patterns and Determinant Factors of Wintering Hooded Cranes (Grus monacha) Population. Diversity 2022, 14, 1091. https://doi.org/10.3390/d14121091
Sun X, Zhou L, Zhang Z, Meng L. Spatio-Temporal Distribution Patterns and Determinant Factors of Wintering Hooded Cranes (Grus monacha) Population. Diversity. 2022; 14(12):1091. https://doi.org/10.3390/d14121091
Chicago/Turabian StyleSun, Xuetao, Lizhi Zhou, Zhongfang Zhang, and Lei Meng. 2022. "Spatio-Temporal Distribution Patterns and Determinant Factors of Wintering Hooded Cranes (Grus monacha) Population" Diversity 14, no. 12: 1091. https://doi.org/10.3390/d14121091
APA StyleSun, X., Zhou, L., Zhang, Z., & Meng, L. (2022). Spatio-Temporal Distribution Patterns and Determinant Factors of Wintering Hooded Cranes (Grus monacha) Population. Diversity, 14(12), 1091. https://doi.org/10.3390/d14121091