Fine-Tuned Ecological Niche Models Unveil Climatic Suitability and Association with Vegetation Groups for Selected Chaetocnema Species in South Africa (Coleoptera: Chrysomelidae)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Target Species and Study Area
2.2. Bioclimatic Variables and Vegetation Formations
2.3. Model Fitting, Validation and Projection
2.4. Associations between Climatic Suitability and Vegetation Formations
2.5. Niche Overlap
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cardoso, P.; Leather, S.R. Predicting a global insect apocalypse. Insect Conserv. Divers. 2019, 12, 263–267. [Google Scholar] [CrossRef]
- Iannella, M.; De Simone, W.; D’Alessandro, P.; Console, G.; Biondi, M. Investigating the current and future co-occurrence of Ambrosia artemisiifolia and Ophraella communa in Europe through ecological modelling and remote sensing data analysis. Int. J. Environ. Res. Public Health 2019, 16, 3416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mantoni, C.; Di Musciano, M.; Fattorini, S. Use of microarthropods to evaluate the impact of fire on soil biological quality. J. Environ. Manag. 2020, 266, 110624. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, P.; Erwin, T.L.; Borges, P.A.; New, T.R. The seven impediments in invertebrate conservation and how to overcome them. Biol. Conserv. 2011, 144, 2647–2655. [Google Scholar] [CrossRef] [Green Version]
- Diniz-Filho, J.A.F.; De Marco Júnior, P.; Hawkins, B.A. Defying the curse of ignorance: Perspectives in insect macroecology and conservation biogeography. Insect Conserv Diver. 2010, 3, 172–179. [Google Scholar] [CrossRef]
- Graham, C.H.; Ferrier, S.; Huettman, F.; Moritz, C.; Peterson, A.T. New developments in museum-based informatics and applications in biodiversity analysis. Trends Ecol. Evol. 2004, 19, 497–503. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Karger, D.N.; Conrad, O.; Böhner, J.; Kawohl, T.; Kreft, H.; Soria-Auza, R.W.; Zimmermann, N.E.; Linder, H.P.; Kessler, M. Climatologies at high resolution for the earth’s land surface areas. Sci. Data. 2017, 4, 170122. [Google Scholar] [CrossRef] [Green Version]
- Peterson, A.T.; Soberón, J. Species distribution modeling and ecological niche modeling: Getting the concepts right. Nat. Conserv. 2012, 10, 102–107. [Google Scholar] [CrossRef]
- Elith, J.; Leathwick, J.R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 677–697. [Google Scholar] [CrossRef]
- Guisan, A.; Thuiller, W.; Zimmermann, N.E. Habitat Suitability and Distribution Models: With Applications in R; Cambridge University Press, University Printing House: Cambridge, UK, 2017. [Google Scholar]
- Newbold, T. Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios. Proc. R. Soc. B-Biol. Sci. 2018, 285, 20180792. [Google Scholar] [CrossRef]
- Hortal, J.; Roura-Pascual, N.; Sanders, N.J.; Rahbek, C. Understanding (insect) species distributions across spatial scales. Ecography 2010, 33, 51–53. [Google Scholar] [CrossRef]
- Warren, R.; Price, J.; Graham, E.; Forstenhaeusler, N.; VanDerWal, J. The projected effect on insects, vertebrates, and plants of limiting global warming to 1.5 C rather than 2 C. Science 2018, 360, 791–795. [Google Scholar] [CrossRef] [Green Version]
- Cerasoli, F.; Thuiller, W.; Guéguen, M.; Renaud, J.; d’Alessandro, P.; Biondi, M. The role of climate and biotic factors in shaping current distributions and potential future shifts of European Neocrepidodera (Coleoptera, Chrysomelidae). Insect Conserv. Diver. 2020, 13, 47–62. [Google Scholar] [CrossRef]
- Sistri, G.; Menchetti, M.; Santini, L.; Pasquali, L.; Sapienti, S.; Cini, A.; Platania, L.; Balletto, E.; Barbero, F.; Bonelli, S.; et al. The isolated Erebia pandrose Apennine population is genetically unique and endangered by climate change. Insect Conserv. Diver. 2022, 15, 136–148. [Google Scholar] [CrossRef]
- Urbani, F.; D’Alessandro, P.; Biondi, M. Using Maximum Entropy Modeling (MaxEnt) to predict future trends in the distribution of high altitude endemic insects in response to climate change. Bull. Insectol. 2017, 70, 189–200. [Google Scholar]
- Iannella, M.; D’Alessandro, P.; Longo, S.; Biondi, M. New records and potential distribution by Ecological Niche Modeling of Monoxia obesula in the Mediterranean area. Bull Insectol. 2019, 72, 135–142. [Google Scholar]
- Roura-Pascual, N.; Brotons, L.; Peterson, A.T.; Thuiller, W. Consensual predictions of potential distributional areas for invasive species: A case study of Argentine ants in the Iberian Peninsula. Biol. Invasions 2009, 11, 1017–1031. [Google Scholar] [CrossRef]
- De Simone, W.; Iannella, M.; D’Alessandro, P.; Biondi, M. Assessing influence in biofuel production and ecosystem services when environmental changes affect plant–pest relationships. GCB Bioenergy 2020, 12, 864–877. [Google Scholar] [CrossRef]
- Iannella, M.; De Simone, W.; Cerasoli, F.; D’Alessandro, P.; Biondi, M. A Continental-Scale Connectivity Analysis to Predict Current and Future Colonization Trends of Biofuel Plant’s Pests for Sub-Saharan African Countries. Land 2021, 10, 1276. [Google Scholar] [CrossRef]
- Iannella, M.; De Simone, W.; D’Alessandro, P.; Biondi, M. Climate change favours connectivity between virus-bearing pest and rice cultivations in sub-Saharan Africa, depressing local economies. PeerJ 2021, 9, e12387. [Google Scholar] [CrossRef] [PubMed]
- Biondi, M.; D’Alessandro, P. Afrotropical flea beetle genera: A key to their identification, updated catalogue and biogeographical analysis (Coleoptera, Chrysomelidae, Galerucinae, Alticini). Zookeys 2012, 253, 1–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biondi, M.; Urbani, F.; D’Alessandro, P. Relationships between the geographic distribution of phytophagous insects and different types of vegetation: A case study of the flea beetle genus Chaetocnema (Coleoptera: Chrysomelidae) in the Afrotropical region. Eur. J. Entomol. 2015, 112, 311–327. [Google Scholar] [CrossRef] [Green Version]
- Biondi, M.; D’Alessandro, P. Two new species of Chaetocnema Stephens from South Africa (Coleoptera: Chrysomelidae, Galerucinae, Alticini). Fragm. Entomol. 2018, 50, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Davis, A.L.; Scholtz, C.H. Dung beetle conservation biogeography in southern Africa: Current challenges and potential effects of climatic change. Biodivers. Conserv. 2020, 29, 667–693. [Google Scholar] [CrossRef]
- Iannella, M.; D’Alessandro, P.; De Simone, W.; Biondi, M. Habitat specificity, host plants and areas of endemism for the genera-group Blepharida sl in the afrotropical region (Coleoptera, Chrysomelidae, Galerucinae, Alticini). Insects 2021, 12, 299. [Google Scholar] [CrossRef]
- Swart, R.C.; Samways, M.J.; Roets, F. Latitude, paleo-history and forest size matter for Afromontane canopy beetle diversity in a world context. Biodivers. Conserv. 2021, 30, 659–672. [Google Scholar] [CrossRef]
- Biondi, M.; D’Alessandro, P.; De Simone, W.; Iannella, M. DBSCAN and GIE, Two Density-Based “Grid-Free” Methods for Finding Areas of Endemism: A Case Study of Flea Beetles (Coleoptera, Chrysomelidae) in the Afrotropical Region. Insects 2021, 12, 1115. [Google Scholar] [CrossRef]
- Sayre, R.; Comer, P.; Hak, J.; Josse, C.; Bow, J.; Warner, H.; Kelbessa, L.E.; Kehl, B.H.; Andriamasimanana, R.A.R.; Benson, L.B.L.; et al. A New Map of Standardized Terrestrial Ecosystems of Africa; Association of American Geographers: Washington, DC, USA, 2013. [Google Scholar]
- Olivero, J.; Real, R.; Márquez, A.L. Fuzzy chorotypes as a conceptual tool to improve insight into biogeographic patterns. Syst. Biol. 2011, 60, 645–660. [Google Scholar] [CrossRef] [Green Version]
- Biondi, M.; D’Alessandro, P. Biogeographical analysis of the flea beetle genus Chaetocnema in the Afrotropical Region: Distribution patterns and areas of endemism. J. Biogeog. 2006, 33, 720–730. [Google Scholar] [CrossRef]
- Biondi, M.; D’Alessandro, P. (Eds.) A revision of the South African Chaetocnema gahani speciesgroup, with descriptions of four new flea beetle species (Coleoptera: Chrysomelidae). In Annales de la Société Entomologique de France; Taylor & Francis Group: Abingdon, UK, 2006; Volume 42, pp. 183–196. [Google Scholar] [CrossRef] [Green Version]
- Pateiro-Lopez, B.; Rodriguez-Casal, A. alphahull: Generalization of the Convex Hull of a Sample of Points in the Plane. R Package Version 2.2. Available online: https://rdrr.io/cran/alphahull/ (accessed on 7 January 2022).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- IUCN Standards and Petitions Committee. Guidelines for Using the IUCN Red List Categories and Criteria. Version 15. Available online: http://www.iucnredlist.org/documents/RedListGuidelines.pdf (accessed on 7 January 2022).
- Burgman, M.; Fox, J. Bias in species range estimates from minimum convex polygons: Implications for conservation and options for improved planning. Anim. Conserv. 2003, 6, 19–28. [Google Scholar] [CrossRef] [Green Version]
- Hijmans, R.J. Raster: Geographic Data Analysis and Modeling. R Package Version 3.4-13. Available online: https://rdrr.io/cran/raster/ (accessed on 7 January 2022).
- Hijmans, R.J. Terra: Spatial Data Analysis. R package version 1.3-22. Available online: https://rdrr.io/cran/terra/ (accessed on 7 January 2022).
- Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carré, G.; Gruber, B.; Lafourcade, B.; Leitão, P.J.; Münkemüller, T.; et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 2013, 36, 27–46. [Google Scholar] [CrossRef]
- Naimi, B.; Hamm, N.A.; Groen, T.A.; Skidmore, A.K.; Toxopeus, A.G. Where is positional uncertainty a problem for species distribution modelling? Ecography 2014, 37, 191–203. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model 2006, 190, 231–259. [Google Scholar] [CrossRef] [Green Version]
- Valavi, R.; Elith, J.; Lahoz-Monfort, J.J.; Guillera-Arroita, G. Modelling species presence-only data with random forests. Ecography 2021, 44, 1731–1742. [Google Scholar] [CrossRef]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Duque-Lazo, J.; Van Gils, H.; Groen, T.; Navarro-Cerrillo, R. Transferability of species distribution models: The case of Phytophthora cinnamomi in Southwest Spain and Southwest Australia. Ecol. Model 2016, 320, 62–70. [Google Scholar] [CrossRef]
- Jamwal, P.S.; Di Febbraro, M.; Carranza, M.L.; Savage, M.; Loy, A. Global change on the roof of the world: Vulnerability of Himalayan otter species to land use and climate alterations. Divers. Distrib. 2021. [Google Scholar] [CrossRef]
- Mi, C.; Huettmann, F.; Guo, Y.; Han, X.; Wen, L. Why choose Random Forest to predict rare species distribution with few samples in large undersampled areas? Three Asian crane species models provide supporting evidence. PeerJ 2017, 5, e2849. [Google Scholar] [CrossRef] [Green Version]
- Urbani, F.; D’Alessandro, P.; Frasca, R.; Biondi, M. Maximum entropy modeling of geographic distributions of the flea beetle species endemic in Italy (Coleoptera: Chrysomelidae: Galerucinae: Alticini). Zool. Anz. 2015, 258, 99–109. [Google Scholar] [CrossRef]
- Heikkinen, R.K.; Marmion, M.; Luoto, M. Does the interpolation accuracy of species distribution models come at the expense of transferability? Ecography 2012, 35, 276–288. [Google Scholar] [CrossRef]
- Qiao, H.; Feng, X.; Escobar, L.E.; Peterson, A.T.; Soberón, J.; Zhu, G.; Papeş, M. An evaluation of transferability of ecological niche models. Ecography 2019, 42, 521–534. [Google Scholar] [CrossRef] [Green Version]
- Valavi, R.; Guillera-Arroita, G.; Lahoz-Monfort, J.J.; Elith, J. Predictive performance of presence-only species distribution models: A benchmark study with reproducible code. Ecol. Monogr. 2021, 1, e01486. [Google Scholar] [CrossRef]
- Radosavljevic, A.; Anderson, R.P. Making better Maxent models of species distributions: Complexity, overfitting and evaluation. J. Biogeog. 2014, 41, 629–643. [Google Scholar] [CrossRef]
- Muscarella, R.; Galante, P.J.; Soley-Guardia, M.; Boria, R.A.; Kass, J.M.; Uriarte, M.; Anderson, R.P. ENM eval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evol. 2014, 5, 1198–1205. [Google Scholar] [CrossRef]
- Kass, J.M.; Muscarella, R.; Galante, P.J.; Bohl, C.L.; Pinilla-Buitrago, G.E.; Boria, R.A.; Soley-Guardia, M.; Anderson, R.P. ENMeval 2.0: Redesigned for customizable and reproducible modeling of species’ niches and distributions. Methods Ecol. Evol. 2021, 12, 1602–1608. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Roberts, D.R.; Bahn, V.; Ciuti, S.; Boyce, M.S.; Elith, J.; Guillera-Arroita, G.; Hauenstein, S.; Lahoz-Monfort, J.J.; Schröder, B.; Thuiller, W.; et al. Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography 2017, 40, 913–929. [Google Scholar] [CrossRef]
- Dormann, C.F. Effects of incorporating spatial autocorrelation into the analysis of species distribution data. Glob. Ecol. Biogeogr. 2007, 16, 129–138. [Google Scholar] [CrossRef]
- Valavi, R.; Elith, J.; Lahoz-Monfort, J.J.; Guillera-Arroita, G. blockCV: An r package for generating spatially or environmentally separated folds for k-fold cross-validation of species distribution models. Methods Ecol. Evol. 2019, 10, 225–232. [Google Scholar] [CrossRef] [Green Version]
- Hijmans, R.J.; Phillips, S.; Leathwick, J.; Elith, J. Dismo: Species Distribution Modeling. R Package Version 1.3-3. Available online: https://rdrr.io/cran/dismo/ (accessed on 7 January 2022).
- Barbet-Massin, M.; Jiguet, F.; Albert, C.H.; Thuiller, W. Selecting pseudo-absences for species distribution models: How, where and how many? Methods Ecol. Evol. 2012, 3, 327–338. [Google Scholar] [CrossRef]
- VanDerWal, J.; Shoo, L.P.; Graham, C.; Williams, S.E. Selecting pseudo-absence data for presence-only distribution modeling: How far should you stray from what you know? Ecol. Model. 2009, 220, 589–594. [Google Scholar] [CrossRef]
- Bjornstad, O.N. ncf: Spatial Covariance Functions. R Package Version 1.2-9. Available online: https://rdrr.io/cran/ncf/ (accessed on 7 January 2022).
- Araújo, M.B.; Pearson, R.G.; Thuiller, W.; Erhard, M. Validation of species–climate impact models under climate change. Glob. Change Biol. 2005, 11, 1504–1513. [Google Scholar] [CrossRef] [Green Version]
- Wilson, P.D. fitMaxnet: Fit MaxEnt Niche Models Using Maxnet. R Package Version 0.4.3. Available online: https://github.com/peterbat1/fitMaxnet/ (accessed on 7 January 2022).
- Marmion, M.; Parviainen, M.; Luoto, M.; Heikkinen, R.K.; Thuiller, W. Evaluation of consensus methods in predictive species distribution modelling. Divers. Distrib. 2009, 15, 59–69. [Google Scholar] [CrossRef]
- Cerasoli, F.; Besnard, A.; Marchand, M.A.; D’Alessandro, P.; Iannella, M.; Biondi, M. Determinants of habitat suitability models transferability across geographically disjunct populations: Insights from Vipera ursinii ursinii. Ecol. Evol. 2021, 11, 3991–4011. [Google Scholar] [CrossRef]
- Elith, J.; Ferrier, S.; Huettmann, F.; Leathwick, J. The evaluation strip: A new and robust method for plotting predicted responses from species distribution models. Ecol. Model 2005, 186, 280–289. [Google Scholar] [CrossRef]
- Bosso, L.; Rebelo, H.; Garonna, A.P.; Russo, D. Modelling geographic distribution and detecting conservation gaps in Italy for the threatened beetle Rosalia alpina. J. Nat. Conserv. 2013, 21, 72–80. [Google Scholar] [CrossRef]
- Rebelo, H.; Jones, G. Ground validation of presence-only modelling with rare species: A case study on barbastelles Barbastella barbastellus (Chiroptera: Vespertilionidae). J. Appl. Ecol. 2010, 47, 410–420. [Google Scholar] [CrossRef]
- Broennimann, O.; Fitzpatrick, M.C.; Pearman, P.B.; Petitpierre, B.; Pellissier, L.; Yoccoz, N.G.; Thuiller, W.; Fortin, M.-J.; Randin, C.; Zimmermann, N.E.; et al. Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Ecol. Biogeogr. 2012, 21, 481–497. [Google Scholar] [CrossRef] [Green Version]
- Di Cola, V.; Broennimann, O.; Petitpierre, B.; Breiner, F.T.; D’Amen, M.; Randin, C.; Engler, R.; Pottier, J.; Pio, D.; Dubuis, A.; et al. ecospat: An R package to support spatial analyses and modeling of species niches and distributions. Ecography 2017, 40, 774–787. [Google Scholar] [CrossRef]
- Schoener, T.W. Nonsynchronous spatial overlap of lizards in patchy habitats. Ecology 1970, 51, 408–418. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Valverde, A. Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling. Glob. Ecol. Biogeogr. 2012, 21, 498–507. [Google Scholar] [CrossRef]
- Mucina, L.; Rutherford, M. The Vegetation of South Africa, Lesotho and Swaziland; South African National Biodiversity Institute: Pretoria, South Africa, 2006. [Google Scholar]
- Jolivet, P.; Hawkeswood, T.J. Host-Plants of Chrysomelidae of the World. An Essay about the Relationships between theLeaf-Beetles and their Food-Plants; Backhuys: Leiden, The Netherlands, 1995. [Google Scholar]
Formation Name | Formation Code |
---|---|
Tropical Seasonally Dry Forest | 1.A.1 |
Tropical Lowland Humid Forest | 1.A.2 |
Tropical Montane Humid Forest | 1.A.3 |
Tropical Flooded & Swamp Forest | 1.A.4 |
Mangrove | 1.A.5 |
Warm Temperate Forest | 1.B.1 |
Temperate Flooded & Swamp Forest | 1.B.3 |
Tropical Lowland Grassland, Savanna & Shrubland | 2.A.1 |
Tropical Montane Grassland & Shrubland | 2.A.2 |
Tropical Freshwater Marsh, Wet Meadow & Shrubland | 2.A.5 |
Mediterranean Scrub & Grassland | 2.B.1 |
Temperate Grassland, Meadow & Shrubland | 2.B.2 |
Temperate & Boreal Freshwater Marsh, Wet Meadow & Shrubland | 2.B.6 |
Salt Marsh | 2.B.7 |
Warm Desert & Semi-Desert Scrub & Grassland | 3.A.2 |
Tropical Cliff, Scree & Other Rock Vegetation | 6.A.1 |
Temperate & Boreal Cliff, Scree & Other Rock Vegetation | 6.B.2 |
Species | CV Strategy | Maxent Tuning | RF Tuning |
---|---|---|---|
C. brincki C. danielssoni C. gahani | buffered LOO | FC: linear, quadratic, hinge RM:1, 1.5, 2, 2.5, 3 | Number of trees: 500, 1000, 2000 Size of terminal nodes: 1, 5, 0.25 × n training occur. |
C. darwini C. natalensis | Checkerboard blocking | FC: linear, quadratic, hinge, product, threshold RM:1, 1.5, 2, 2.5, 3 | Number of trees: 500, 1000, 2000 Size of terminal nodes: 1, 5, 0.25 × n training occur. |
Species’ Pair | Schoener’s D | SimTest_Divergence | SimTest_Conservatism |
---|---|---|---|
C. darwini–C. danielssoni | 0.7 | 1 | 0.01 |
C. natalensis–C. darwini | 0.36 | 0.822 | 0.149 |
C. natalensis–C. danielssoni | 0.31 | 0.98 | 0.059 |
C. natalensis–C. gahani | 0.2 | 0.624 | 0.465 |
C. gahani–C. darwini | 0.14 | 0.604 | 0.327 |
C. gahani–C. brincki | 0.12 | 0.911 | 0.228 |
C. gahani–C. danielssoni | 0.12 | 0.683 | 0.257 |
C. natalensis–C. brincki | 0.04 | 0.693 | 0.317 |
C. darwini–C. brincki | 0.02 | 0.703 | 0.287 |
C. danielssoni–C. brincki | 0.01 | 0.723 | 0.307 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerasoli, F.; D’Alessandro, P.; Biondi, M. Fine-Tuned Ecological Niche Models Unveil Climatic Suitability and Association with Vegetation Groups for Selected Chaetocnema Species in South Africa (Coleoptera: Chrysomelidae). Diversity 2022, 14, 100. https://doi.org/10.3390/d14020100
Cerasoli F, D’Alessandro P, Biondi M. Fine-Tuned Ecological Niche Models Unveil Climatic Suitability and Association with Vegetation Groups for Selected Chaetocnema Species in South Africa (Coleoptera: Chrysomelidae). Diversity. 2022; 14(2):100. https://doi.org/10.3390/d14020100
Chicago/Turabian StyleCerasoli, Francesco, Paola D’Alessandro, and Maurizio Biondi. 2022. "Fine-Tuned Ecological Niche Models Unveil Climatic Suitability and Association with Vegetation Groups for Selected Chaetocnema Species in South Africa (Coleoptera: Chrysomelidae)" Diversity 14, no. 2: 100. https://doi.org/10.3390/d14020100
APA StyleCerasoli, F., D’Alessandro, P., & Biondi, M. (2022). Fine-Tuned Ecological Niche Models Unveil Climatic Suitability and Association with Vegetation Groups for Selected Chaetocnema Species in South Africa (Coleoptera: Chrysomelidae). Diversity, 14(2), 100. https://doi.org/10.3390/d14020100