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Abstract: The abundances of 17 cytometric groups encompassing four groups of bacteria, three
groups of cyanobacteria, six groups of eukaryotic picophytoplankton (<2–3 µm), and four groups
of small eukaryotic nanophytoplankton (between 3 and 6 µm) were studied in the Thau Lagoon
across different seasonal conditions. Among them, the growth (µ) and mortality rates due to grazing
(g) of 12 groups of bacteria, cyanobacteria, and eukaryotic pico- and nanophytoplankton were
simultaneously studied in the Thau Lagoon via four dilution experiments across different seasonal
conditions. The abundances of heterotrophic flagellates and ciliates and their potential predators were
studied and linked to prey mortality. Bacteria were more active than phytoplankton and displayed
the highest growth and grazing mortality rates. Most studied groups had g:µ ratios > 1, suggesting
that predators efficiently grazed and transferred these preys. Surprisingly, the observed variations in
predator abundance across seasons did not necessarily correspond with changes in grazing pressure.
The significant positive relationship found between water temperature and bacterial grazing mortality
rates and the reverse trend observed for larger eukaryotic prey suggested that warmer water increases
small prokaryote transfer to higher trophic levels but disadvantages larger eukaryotic prey transfer.

Keywords: bacteria; dilution; food web; growth; grazing; Mediterranean coastal lagoon; phytoplankton

1. Introduction

Bacteria (including archaea, hereafter referred to simply as bacteria) and phytoplank-
ton are major components of the plankton food web and play a fundamental role in the
functioning of marine ecosystems and in biogeochemical cycles [1,2]. Growth and grazing
on bacteria and picophytoplankton are the major processes that define the structure of the
microbial food web (MFW) in terms of biomass accumulation and the transfer of biomass
to higher trophic levels. It is well known that bacterial and phytoplankton growth is
mostly controlled by the availability of resources such as light and nutrients [3], while their
metabolism is influenced by temperature [4,5]. Moreover, microzooplankton grazing is
responsible for a major part of the transfer of bacterial and small phytoplanktonic biomass
to upper trophic levels [6,7]. The failure to take into account microzooplankton grazing
could be a source of error when estimating carbon cycling [7].

Several methods have been used to assess the microzooplankton grazing rate of
bacteria or phytoplankton, such as (1) the use of fluorescent tracers [8]; (2) dilution reducing
the rates of encounters between prey and predators [9]; (3) measurements of the activities
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of the digestive enzymes of grazers [10]; (4) selective filtration [11]; and (5) the addition
of eukaryotic inhibitors [12]. Among these methods, the dilution technique is used to
estimate not only nano- and microzooplankton grazing mortality rates of prey but also,
simultaneously, their growth rates [9]. This technique consists of the dilution a whole sea
water sample with different amounts of filtered sea water from the same source. This creates
a gradient of predator abundances and, thus, grazing pressures along the various degrees
of dilution. This technique has several advantages: First, it is not intrusive, involving few
manipulations, and second, it provides simultaneously the growth rates of prey and the
related grazing mortality rates. This method is based on three main assumptions: (1) The
prey growth rate is not affected by dilution, (2) the grazing mortality is linearly proportional
to the prey concentration, and (3) the prey growth rate is exponential. However, the first two
assumptions may be problematic [13]. Notably, the first assumption implies the addition of
nutrients to avoid the nutrient limitation of the communities studied during the incubation
time in closed bags. However, if the aim of the study is to assess the growth and mortality
rates of organisms in a potentially nutrient-limited environment, nutrient addition would
alter these rates, and all measured rates would be higher than the natural rates. The second
assumption implies that grazing mortality rates vary in direct proportion to dilution. In
fact, the differences in the relative densities of grazers established in initial dilutions are
unlikely to be maintained throughout the experiment, and the clearance rate of grazers is
not constant [13]. Although this technique has some limitations, it is still the only method
providing simultaneous estimations of growth and grazing mortality rates. It has been used
for approximately 40 years and is still being used for a wide variety of ecosystems [7,14–16].

However, few studies estimating the growth (µ) and grazing (g) mortality rates of the
different components of microbial communities have been carried out in the Mediterranean
Sea [17–20], and a lack of knowledge still exists for a large number of specific ecosystems,
such as coastal lagoons. The objectives of the present study were to characterize the
growth (µ) and grazing (g) mortality rates of the microbial food web components of a
coastal lagoon in various seasonal conditions and to assess their g:µ ratios, reflecting their
transfer:production efficiencies. Therefore, this study presents the results of four series
of dilution experiments carried out in the atmospheric seasons of autumn 2008 (October)
and spring and summer 2009 (May, June, and July) in the surface waters of a productive
Mediterranean lagoon (Thau, South of France). This is the first investigation detecting
and studying 17 cytometric groups, encompassing four groups of bacteria, three groups
of cyanobacteria, six groups of eukaryotic picophytoplankton (<2–3 µm), and four groups
of small eukaryotic nanophytoplankton (between 3 and 6 µm). Among these groups, the
significant µ and g values of 12 cytometric microbial groups were simultaneously estimated.
In addition, the potential predators of these groups, such as heterotrophic flagellates and
ciliates, were identified and enumerated to evaluate their relationships with the estimated
µ and g values of the microbial groups.

2. Material and Methods
2.1. Dilution Experiments and Seawater Sampling

Four dilution experiments were carried out in the Thau Lagoon on 7 October 2008
(autumn), 20 May 2009 (spring), 18 June 2009 (spring), and 21 July 2009 (summer). Please
note that no dilution experiment was carried out in the winter season. The Thau Lagoon
covers 75 km2 and is located on the French coast in the northwestern Mediterranean region
(43◦24′ N, 3◦36′ E, Figure 1). Seawater was collected from the surface of the lagoon (0.1 m)
by immersing pre-washed (10% HCl) polyethylene carboys. Samples were taken from a
shallow creek called “Crique de l’Angle”, to the northeast of the lagoon, in October 2008,
and near the MEDIMEER (Mediterranean platform for Marine Ecosystem Experimental
Research, 43◦24′53′′ N, 3◦41′16′′ E) pontoon, located near the “Crique de l’Angle” site and
in the eastern part of the lagoon, for the other three experiments (May, June and July).
The seawater was immediately carried to nearby laboratories and gravimetrically filtered
through 200-µm nylon mesh. A portion of each water sample was then gravimetrically
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filtered through an in-line 0.2–0.8-µm cartridge that had been rinsed with 1 L of Milli-Q
water and 1 L of seawater. Different fractions of 200-µm filtered sea water were mixed
with 0.2–0.8-µm-filtered sea water to obtain five dilution series (0.10, 0.25, 0.50, 0.75, and
1.00 whole water), except for the samples collected in the 7 October 2008 experiment, for
which the 0.10 dilution was omitted. Each 1-L dilution was carried out in triplicate using
sterile, transparent polyethylene bags (Whirl-Pak®Sample Bag, Sigma-Aldrich, St. Louis,
MO, USA). Care was taken to prevent air from being trapped when closing the bags. The
Whirl-Pak bags were incubated immediately in the surface water of the lagoon near the
MEDIMEER pontoon for 24 h under natural light, agitation, and temperature conditions [9].
Samples were taken only from the 200-µm filtered 1.00 water triplicates at the beginning of
the experiment (T0) to measure the nutrients and abundances of the microorganisms, as
described below. The microorganism abundances in the diluted fractions at T0 were calcu-
lated in proportion to those determined in the 1.00 triplicates. After the 24-h incubations
(T24), the samples were taken from all Whirl-Pak bags to measure their microorganism
abundances, with the exception of ciliates, for which samples were taken only from the 0.50
and 1.00 triplicates, and nutrients, for which samples were taken only from the 1.00 whole
water triplicates.
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Figure 1. Area of sampling and experiment in Thau Lagoon Observatory (France) in the northwestern
Mediterranean Sea.

2.2. Chemical Sampling and Analysis

The nutrient concentrations were analyzed using samples (100 mL) filtered through
pre-combusted (450 ◦C for 6 h Whatman®, Maidstone, UK) GF/F 0.7-µm glass fiber filters
and then frozen (−20 ◦C) in acid-cleaned polyethylene bottles until analysis. The concen-
trations of nitrates (NO3 + NO2), soluble reactive phosphorus (SRP), and silicates (SiO4)
were then analyzed using an automatic analyzer (Skalar, Breda, The Netherlands) with
standard nutrient analysis methods [21]. Temperature and salinity were measured using a
multi-parameter sensor (EC300, VWR International, Radnor, PA, USA).

2.3. Bacteria, Cyanobacteria, and Eukaryotic Picophytoplankton and Nanophytoplankton Sampling
and Analyses

Two 1.6-mL sample aliquots were fixed with 2% pre-filtered formaldehyde (using a
0.02-µm Swinnex filter) for the analyses of bacteria, cyanobacteria, and small phytoplankton.
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The samples were frozen in liquid nitrogen (−196 ◦C) and then stored at −80 ◦C until
analysis. Three separate analyses were performed to count (1) bacteria, (2) cyanobacteria
and eukaryotic picophytoplankton (<2–3 µm), and (3) nanophytoplankton (3–10 µm) using
a FACSCalibur flow cytometer (Becton Dickinson, Franklin Lakes, NJ, USA) equipped
with an air-cooled laser providing 15 mW at 488 nm with a standard filter setup. Becton
Dickinson TrucountTM beads (Figure 2) were used to calculate the abundances of the
various cells, as described by Pecqueur et al. [22]. For the bacteria counts, the samples were
stained with SYBR Green I (S7563, Invitrogen; 2% final concentration) and incubated at
room temperature in the dark for 20 min.
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Figure 2. (Color). Examples of cytograms showing the main studied groups of bacteria (A), cyanobac-
teria (B), eukaryotic pico- (C), and nanophytoplankton (D). TC indicates TruCountTM, and beads
are mentioned by their size in µm. For each of the cytograms, fluorescence is shown on the y-axis
and SSC on the x-axis: green for bacteria, orange for cyanobacteria, and red for eukaryotic pico- and
nanophytoplankton. Note that some studied groups are not shown in this figure (LNA2, PicoEuk1
and 2, NanoEuk2 and 3).

For the analyses of cyanobacteria and eukaryotic pico-and nanophytoplankton, aut-
ofluorescence of photosynthetic pigments was used. Every microbial population was
studied, as described in Marie et al. [23,24], Gasol et al. [25], Jochem [26], and Morán
et al. [27]. Cells were excited at 488 nm and detected and enumerated according to their
specific side scattering (SSC) properties and fluorescence (natural or induced). Artificially
induced green fluorescence (FL1 530/30 nm) was used for the bacterial analysis. The
natural orange fluorescence of phycoerythrin (FL2 585/42 nm BP) was used to detect
cyanobacteria. Eukaryotic pico- and nanophytoplankton (<2–3 and 3–20 µm, respectively)
were detected and analyzed using natural red chlorophyll fluorescence (chl FL3 670 nm
LP). The flow rate of the cytometer was set to low (15 µL mn−1) for the bacteria analysis
(acquisition time: 2 min) and high (60 µL mn−1) for the nanophytoplankton (acquisition
time: 5 min), eukaryotic picophytoplankton (acquisition time: 3 min), and cyanobacteria
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(acquisition time: 3 min) analyses. The flow cytometer data were analyzed using CellQuest
Pro (Becton Dickinson, Franklin Lakes, NJ, USA).

2.4. Heterotrophic Flagellate and Ciliate Sampling and Analyses

For the analysis of heterotrophic flagellates (HFlag), 40-mL samples were preserved
in a 6% formaldehyde solution and stored in a cold (4 ◦C) room in the dark until analysis.
Subsamples of 10 mL were stained using 4′,6-diamidino-2-phenylindole (DAPI) at a final
concentration of 2.5 µg mL−1. The HFlag counts and size measurements were performed
using an epifluorescence microscope (Olympus AX70, London, UK) with UV illumina-
tion [28]. HFlags were assigned to four size classes according to their cell size diameter:
<3 µm, 3–5 µm, 5–10 µm, and 10–15 µm.

For the aloricate ciliates (naked ciliates) and tintinnid counts and analyses, 125 mL
of each water sample was preserved using 6% Lugol’s iodine solution and kept in a cold
(4 ◦C) room in the dark until analysis. After allowing each sample (100 mL) to settle in
an Utermöhl chamber for 24 h, the aloricate ciliates and tintinnids were identified and
enumerated using an inverted microscope (Olympus IX70). Several taxonomic guides and
references were used for the identification [29–37].

2.5. Data Processing and Statistical Analysis

The apparent growth rates (µapp, day−1) of the prey were determined from the initial
(Ni, cell·mL−1) and final (Nf, cell·mL−1) abundance estimates assuming an exponential
model, as described in Equation (1) [9]:

µapp = ln (Nf /Ni) × (1/t) (1)

where t (days) is the duration of the incubation time (in this study, 24 h). The maximum
growth rate (hereafter simply called growth and noted µ) was estimated from the intercept
of the linear regression analysis of the relationship between µapp and the dilution factor
(x: proportion of whole sea water in filtered water), when the probability of an encounter
between prey and predators was hypothetically zero. Please note that viruses were not
filtered during the dilution experiments; therefore, mortality induced by viruses was not
encompassed in this study. The grazing mortality rate (g, day−1) was estimated from the
slope of the linear regression [9]:

µapp = g x + µ (2)

Model I regression theory [38] was applied to calculate the growth and grazing mor-
tality rates from the apparent growth rates and dilution factors. Only significant linear
regressions (p < 0.05) are presented and discussed hereafter. On rare occasions (less than
5%), the significant linear regressions resulted in negative growth rates or positive grazing
mortality rates; thus, these results were set to 0.01 and 0.00 day−1, respectively, following
the correction method of Landry and Calbet [39]. Moreover, when the boundary of popula-
tions was not very clear through dilution series and, therefore, very low abundances were
found, the growth and grazing mortality rates were not calculated and only abundances of
populations were presented and discussed.

To assess the impact of diversity on the grazing pressure, the diversity of alori-
cate ciliates was estimated using Shannon diversity’s index (H, no unit), as described
in Equation (2):

H = −
S

∑
i=1

pi ln pi (3)

where S is the total number of species or groups in the aloricate ciliate community and pi is
the proportion of S made up of the ith species.

The relationships between growth and grazing mortality rates, abundances, temper-
ature, and nutrient concentrations were determined using Spearman correlation (Rho).
Similarly, correlations between grazing mortality rates of phytoplankton, bacteria, or their
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respective abundances and flagellates’ and ciliates’ abundances, as well as correlations be-
tween groups’ abundances, were tested. Correlations with a p-value < 0.05 were considered
significant. The data analysis was performed using R software (R-project), version R3.6.1.

2.6. Calculation of g:µ Ratio

This ratio was calculated by dividing g by µ (no unit). If g:µ = 1, this result underlines
that the cell production (growth rate) and transfer (grazing mortality rate) to a higher
trophic level by grazing are in balance. If the ratio of g:µ is greater than 1, the transfer to
higher trophic levels is greater than the cell production. In contrast, if this ratio is less than
1, fewer cells are transferred to higher trophic levels and, therefore, cells accumulate at the
bottom of the MFW [7].

3. Results
3.1. Physical and Chemical Conditions for the Dilution Experiments

The surface temperatures of the lagoon water ranged between 16.3 and 25.3 ◦C during
our experiments (Table 1). The surface water salinity was stable in all the seasons studied.
The initial concentrations of nitrates were the lowest in May (0.22 µmol L−1) and highest
in July (0.60 µmol L−1), and the same trend was observed for the silicate concentrations
(1.24 µmol L−1 and 17.83 µmol L−1, respectively). The October and June concentrations
were within these ranges. In contrast, the phosphorous concentrations were the highest
in May (0.12 µmol L−1) and the lowest in July (0.02 µmol L−1), leading to contrasted N:P
ratio conditions being between 1.83 and 3.71 in October, May, and June, while reaching 30
in July (Table 1).

Table 1. Initial temperatures, salinity and nitrate levels, and phosphorus and silicate concentrations
(±SD) for each of the four dilution experiments carried out in October 2008, May 2009, June 2009,
and July 2009. N.A indicates that the data are not available.

Physical and
Chemical Parameters

October
2008

May
2009

June
2009

July
2009

Temperature (◦C) 16.3 20.4 25.0 23.3
Salinity 36.6 N.A 35.6 37.1

Nitrates (µmol L−1) 0.24 ± 0.05 0.22 ± 0.04 0.26 ± 0.04 0.60 ± 0.01
Phosphorus (µmol L−1) 0.09 ± 0.02 0.12 ± 0.04 0.07 ± 0.01 0.02 ± 0.00

Silicate (µmol L−1) 10.26 ± 0.21 1.24 ± 0.25 7.51 ± 0.13 17.83 ± 0.07
N:P ratio 2.66 1.83 3.71 30.00

3.2. Abundances of the MFW Components

Four distinct groups of bacteria were observed [23,40–43]. These groups included
two low-fluorescence (LNA1 and LNA2) and two high-fluorescence (HNA1 and HNA2)
nucleic acid groups (see examples of cytograms in Figure 2). The total bacterial abundance
ranged from 2.75 to 5.30 × 106 cells mL−1, with the lowest abundance observed in October
and the highest abundance observed in July (Figure 3A). HNA1 was the most abundant
bacterial group and was observed in every experiment, as was the LNA1 group. The
HNA2 and LNA2 groups were observed only sporadically (Figure 3A). Three cyanobacte-
ria groups (Figure 2B) sharing similar side scatter (SSC) and phycoerythrin fluorescence
(FL2) intensities with the Synechococcus sp. genus were distinguished and called Syne1
and Syne3. The Syne1 and Syne3 groups were observed in all four experiments, whereas
the Syne2 group was sporadic. Syne1, which also reached its maximal abundance in
July, was the dominant cyanobacteria group, except in May (Figure 3B). However, com-
pared to the other picophytoplankton groups (i.e., eukaryotic groups), the cyanobacteria
abundances were relatively low throughout the study. Six groups of eukaryotic picophyto-
plankton (see examples of the main groups in Figure 2C) were observed. Two eukaryotic
picophytoplankton groups with SSCs < 1 µm were depicted: one with low fluorescence,
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identified as Ostreococcus tauri-like (referred to as O. tauri-like in the figure), and another
with high fluorescence (referred to as PicoEuk1). Four other eukaryotic picophytoplankton
groups were highlighted and characterized by their relative diameter size determined by
their SSC intensities: PicoEuk2 (0.5–1.5 µm), PicoEuk3 (1–2 µm), PicoEuk4 (1.5–2 µm),
and PicoEuk5 (2–3 µm). Eukaryotic picophytoplankton were, numerically, the dominant
group in the picophytoplankton community in the four experiments, with an average of
4.04 × 104 cells mL−1 (Figure 3C). Since the mid-1990s, it has been known that a major part
of the pico-eukaryotic community of the Thau Lagoon is composed of O. tauri [44–46]. In-
deed, the most abundant phytoplankton group encountered during these experiments was
O. tauri-like. The abundance of this group increased threefold from May to July (Figure 3C),
while most of the five other picophytoplankton groups (1–3 µm, mentioned as PicoEuk1
to PicoEuk5) were observed sporadically. Four groups of nanophytoplankton were dis-
tinguished (Figure 2D) and called NanoEuk1 (2–4 µm), NanoEuk2 (2–6 µm), NanoEuk3
(4–6 µm), and NanoEuk4 (4–8 µm). The NanoEuk1, NanoEuk3, and NanoEuk4 groups
had low abundances (below 103 cells mL−1), while the NanoEuk2 group had the highest
abundance during October (Figure 3D). The abundance of the total HFlag community
ranged between 79 and 1754 cells mL−1 (Figure 3E). Four size classes of HFlag, hereafter
referred as Hflag1 (<3 µm), HFlag2 (~4 µm), HFlag3 (~7 µm), and HFlag4 (~12 µm), were
found in July, while only HFlag1 and HFlag 2 were observed in October, May, and June.
The abundances and species’ diversities of the aloricate ciliates and tintinnids studied
during the four experiments highlighted that the aloricate ciliate abundances were higher
in October and May than in June and July. In addition, four species of aloricate ciliates that
ranged between 10 and 90 µm were found to be generally dominant during these experi-
ments. M. rubrum dominated the community in October, showing the highest abundance,
reaching 1955 cells L−1, while Uronema sp. dominated in May, reaching 1268 cells L−1

(Figure 3F). Strombidinopsis sp. and Strombidium sp. were observed mostly during June
and July. The tintinnid community was mainly represented by Tintinnopsis sp., Eutintin-
nus sp., and Helicostomella sp., with sizes ranging between 60 and 200 µm, and the total
tintinnid community reached its maximum abundance in October (Figure 3F). Correlations
tests performed revealed a significant negative correlation between nanophytoplankton
abundances and temperature (Rho = −0.97, p value < 0.02, n = 6) and a significant posi-
tive relationship between nanophytoplanktons’ and tintinnids’ abundances (Rho = 0.97,
p value < 0.02, n = 6). No other significant correlation between organisms’ abundances and
physico-chemical variables was found.
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Figure 3. Abundances (cell mL−1) of different bacterial (LNA1, LNA2, HNA1, and HNA2) (A),
cyanobacterial (Syne1, 2, and 3) (B), and eukaryotic pico- and nanophytoplankton groups (C,D),
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3.3. Growth and Grazing Mortality Rates of MFW Components

The growth rates of the HNA groups ranged between 1.63± 0.15 and 2.43± 0.11 day−1

from October to July, reaching a minimum in May and a maximum in June. LNA1 and
LNA2 had relatively constant growth rates, always above 1.16 ± 0.13 day−1 (July), and
reached maximal rates of 1.74 ± 0.10 day−1 in June (Figure 4A). The growth rates of
cyanobacteria ranged from 0.30 ± 0.08 to 1.09 ± 0.07 day−1, showing the highest rates
in June when the water temperature was the highest (Figure 4C). However, despite its
very high abundance, the O. tauri-like group showed relatively weak growth rates, reach-
ing a maximum at 0.36 ± 0.06 day−1 in July (Figure 4E). Maximum growth rates among
eukaryotic picophytoplankton groups were observed in May within the PicoEuk3 group,
reaching 1.05 ± 0.05 day−1. In this study, the highest growth rate among nanophytoplank-
ton was found within the NanoEuk4 group in May (0.98 ± 0.09 day−1), while the growth
rates of the “other” nanophytoplankton groups reached a maximum of 0.32 ± 0.17 day−1

(Figure 4G). Regarding each of the studied prokaryotic and eukaryotic phytoplankton
groups independently, a positive trend was observed between their growth rates and water
temperature; however, the trend was not significant, probably due to the reduced number
of observations. In addition, no clear trends and no significant correlation were found
between phytoplankton growth rates and nutrient concentration.
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and gray columns help to distinguish different months in the figures.

The grazing mortality rates of the total bacterial community were almost twice as
high in the warmer months (2.28 ± 0.17 and 2.20 ± 0.22 day−1 in June and July, respec-
tively) than in the colder months (1.33 ± 0.12 and 1.35 ± 0.23 day−1 in October and May,
respectively; Figure 4B). Additionally, the HNA1 grazing mortality rates were almost twice
those of the LNA1 group, reaching 2.62 ± 0.18 day−1 in the warmer months. Within the
cyanobacterial groups, the grazing mortality rates increased from October to July, reaching
1.06 ± 0.16 day−1 for the Syne1 group (Figure 4D). Among eukaryotic picophytoplankton
prey, O. tauri-like was grazed at the highest rates, at 0.69 ± 0.28 and 0.62 ± 0.08 day−1 in
October and June, respectively (Figure 4F). However, other eukaryotic picophytoplankton
groups were also grazed at fairly high rates at the lowest water temperatures in October and
May. A few significant grazing mortality rates were observed for the nanophytoplankton
communities but did not show any particular pattern (Figure 4H). There was a positive
significant relationship (p-value < 0.02) between grazing mortality rates of bacterial groups
and water temperature (Rho = 0.72, n = 10, Figure 5), and a positive but not significant
relationship between cyanobacterial groups and water temperature. On the other hand, a
reverse negative trend was observed for the relationships between the grazing mortality
rates of eukaryotic pico- and nanophytoplankton and water temperature (Figure 5). The
results of correlation analysis showed also negative correlations (r = −0.69, p-value < 0.03)
between grazing mortality rates of bacteria and abundances of (1) Mesodinium rubrum, (2)
an undefined group of ciliates called “other naked ciliate”, and (3) the whole tintinnids’
community. No other significant correlation was found between other biological variables
(abundances and/or rates). In addition, to determine whether there was any relationship
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between ciliate species’ diversity and grazer activity, Shannon’s diversity index was calcu-
lated for each of the experiments. Here, the objective was to assess the potential influence
of the number of ciliate species on the grazing pressure. The relationships between the
aloricate ciliate’s Shannon diversity index and the grazing mortality rates of preys in the
four dilution experiments did not show statistically significant differences, as the diversity
indices were similar among the experiments (average H of 1.36 ± 0.05).
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3.4. Cell Transfer through the MFW

In the present study, 13 different bacterial and eukaryotic pico- and nanophytoplankton
groups presented statistically significant growth and grazing mortality rates, allowing us to
compute the g:µ ratios of these groups. The trend of the g:µ ratio for bacterial groups (1.0
on average) contrasted with that of other microorganisms, as that of bacteria remained close
to a 1:1 ratio. Cyanobacteria showed the greatest g:µ ratio, reaching 2.32 in July for Syne2.
The O. tauri-like group also showed high ratios during all experiments, reaching 1.93 in May.
Regarding the g:µ ratio of each group obtained within the four experiments, the number of
cells that were grazed and transferred to higher trophic levels was greater than the number
of cells accumulated (g:µ > 1) for 60% of the cases (Figure 6). However, phytoplanktonic
groups that were found more sporadically, such as eukaryotic pico- and nanophytoplankton
groups that showed g:µ ratios below 1, could accumulate in the lagoon, with the exception
of a 1.99 ratio observed for NanoEuk2 in October (cf. Table S1; Supplementary Materials).
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4. Discussion

The present study relates a broad assemblage of microorganisms, from bacteria to
pico- and nanophytoplankton groups and protists grazers such as heterotrophic flagellates
and ciliates. The main objective of the present investigation was to assess changes in the
functioning of the MFW components through estimations of their growth and grazing
mortality rates in the Mediterranean coastal water of the Thau Lagoon encompassing
different atmospheric seasonal conditions.

4.1. Abundances of the MFW Components

The bacterial abundances measured during this study were 5–10 times higher than
those found previously in other studies in the northwestern Mediterranean open coastal wa-
ters or estuaries of the Adriatic Sea [17,47–49] but were similar to the abundances observed
in mesocosm experiments in the Thau Lagoon [50–52]. The cyanobacterial abundances were
generally quite low in the first three dilution experiments but strongly increased in July,
in accordance with the positive relationship highlighted between cyanobacteria and the
water temperature reported in the Thau Lagoon in studies of the MFW components [53–56].
Derolez et al. [56] underlined the relationships between the recent appearances (late 1990s)
of the Synechococcus genus in the Thau Lagoon, especially in summer, and the trends of
decreasing nutrients and increasing water temperature in the lagoon. In particular, the
authors reported that the appearance of cyanobacteria could be linked to lagoon oligotroph-
ication due to the reduction in the phosphorous supply from rivers combined with an
increase in the mean water temperature of the lagoon over the last two decades. In the
coastal Mediterranean Thau Lagoon, the picoeukaryote community comprises various
species belonging to the order Mamiellales [57], the most abundant throughout the year
being O. tauri, which was first discovered in the Thau Lagoon and is widely distributed in
various oceanic and coastal environments [58]. In the present study, the O. tauri-like group
was also detected, showing the highest observed abundances in the four experiments.
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Eukaryotic nanophytoplankton showed low abundances in almost every experiment, with
the lowest abundance being in the warmer months when no significant rates were found.
Indeed, nanophytoplankton were negatively correlated to water temperature, suggesting
that they do not thrive in summer. However, there were low nutrient concentrations in all
four dilution experiments, particularly concerning nitrogen and phosphorus. It could have
limited Thau Lagoon nanophytoplankton growth during the incubation [52]. Moreover, a
significant positive relationship between nanophytoplankton and tintinnids’ abundances
(Rho = 0.97, p value < 0.02, n = 6) was found and can explain the highest grazing mortality
rate of the nanophytoplankton community observed in October, when tintinnids were
the most abundant. The abundances of HFlag and ciliates determined in this study were
comparable with those found by Vidussi et al. [50] and Mostajir et al. [51] in two mesocosm
experiments carried out in the same lagoon in 2005 and 2006. However, lower abundances
of HFlag and comparable abundances of ciliates were found in oligotrophic estuaries of the
Adriatic Sea [49].

4.2. Growth and Grazing Mortality Rates of MFW Components

High bacterial growth rates were observed during the present study; notably, the
highest growth rate of HNA1 (2.43 ± 0.11 day−1) was up to 10 times higher than those
reported in some Mediterranean areas [17,47]. However, these high bacterial growth
rates were in the same range as those reported recently in a mesocosm study carried out
in the same lagoon [52] or in a dilution experiment realized in estuarine water of the
Adriatic Sea [19]. As reported by Pomeroy and Wiebe [3], both substrate availability and
temperature control bacterial growth and bacterial abundances and nutrient concentrations
were low in our four dilution experiments. The water temperatures recorded during this
study, up to 25 ◦C, in conjunction with the low nutrient concentrations (especially N and
P) and enough organic matter availabilities could potentially support the high bacterial
growth rates and abundances observed in this study, especially in June. In accordance with
this, Šolić et al. [49] also pointed out the capacity of bacteria to reach high abundances in
nutrient-limited conditions, notably phosphorus, in an estuary of the Adriatic Sea. It should
be noted that in the present study, LNA had a relatively high growth rate, in agreement
with that reported by Morán et al. [59], suggesting that LNA represents an active group of
prokaryotes in the Thau Lagoon, especially during the warmer month as it was described
for the Adriatic Sea by Šantić et al. [60]. As shown by Servais et al. [61], the HNA and LNA
groups constituted an assemblage of several bacterial phylogenetic groups. Therefore, most
of the high growth rates obtained in the present study could be those of dominant bacterial
groups within the HNA and LNA groups, but further investigations are needed to identify
the bacterial phylogenetic groups in the Thau Lagoon.

The cyanobacteria growth rates observed in this study (0.30–1.09 day−1) were within
the range reported during dilution experiments made by Šolić et al. [19] with estuarine
Mediterranean waters of the Adriatic Sea. The growth rates of eukaryotic pico- and
nanophytoplankton measured in this study (from 0.21 day−1 to 1.05 ± 0.05 day−1) were
in the same range as those reported by Courboulès et al. [52] in a mesocosm experiment
in the same area but lower than those observed by Bec et al. [57] in situ, who reported
rates of 2.6 day−1 for pico- and 2.9 day−1 for nanophytoplankton. The higher growth rates
reported in Bec et al. [57] were certainly due to the addition of nutrients in their dilution
experiments relative to the present study, in which, deliberately, no nutrients were added.
In fact, as explained above, one of the objectives of the present study was to determine
more realistic growth rates of microorganisms under natural nutrient conditions. The high
number of significant growth rates found in this study (more than 60% of the regressions)
and the fact that Courboulès et al. [52] found that only the growth rate of one group
of nanophytoplankton (large nanophytoplankton) among 10 studied microbial groups
was significantly enhanced by the addition of nutrients suggests that, during the present
experiment, there was a sufficient amount of nutrients and organic matter to support
phytoplankton and bacterial growth. However, it cannot be excluded that, as nutrients



Diversity 2022, 14, 186 13 of 18

were not added, growth rates of certain groups could be underestimated compared to those
of large nanophytoplankton as reported by Courboulès et al. [52]. In this case, as it was
shown by Calbet and Saiz [62], respective grazing mortality rates could be overestimated.

The grazing mortality rates presented here include the grazing activities due to all
microzooplankton ≤ 200 µm, including not only heterotrophic flagellates and ciliates but
also the phagotrophic activity of mixotrophs as well as those of other microzooplankton
(e.g., copepod nauplii, rotifers, mollusk larvae). In the present study, mortality due to viral
lysis was not studied as viruses were not removed in the dilutions’ series. Therefore, only
the nano- and micrograzing mortality rates of the prey were studied without considering
the mortality due to viral lysis. Nevertheless, it is well known that viruses can cause up to
50% of bacterial mortality in the surface water [63–65] as bacteria are the most important
host for viruses. In the Mediterranean coastal waters (Adriatic Sea), according to Šolić
et al. [19], it seems that picoplankton mortality is of lesser extent, representing between 9 to
25%. However, the last author underlined that, in some period of the year, during the warm
months for example, a virus can also affect autotrophic picoplankton groups in the Adriatic
Sea. In any case, the mortality rates presented in the present study indicate only those due
to undistinguished nano- and microzooplankton grazers and do not include the mortality
due to viruses. The most significant prey losses due to grazers in this study concerned
bacterial groups. In general, grazing on the smallest prey, such as cyanobacteria and O.
tauri-like prey, was quite high in every experiment, while we found almost no significant
grazing mortality rates of larger prey, such as larger eukaryotic pico- or nanophytoplankton
cells. This result suggested that in the Thau Lagoon small prey are of greater importance
in the transfer of biomass by microzooplankton and the overall functioning of the MFW.
Moreover, a significant positive relationship was found between bacteria grazing mortality
rates and water temperature (p-value < 0.02).

The main predators of bacteria could be HFlag [1,19,51], which showed the highest
abundance in May, and small ciliates, which can ingest bacteria directly or indirectly
through an intermediate grazer such as HFlag. The significant negative correlations found
between the grazing mortality rates of bacteria and the abundances of Mesodinium rubrum,
undefined group of ciliates, and the whole tintinnids’ community could suggest a trophic
cascade between the groups of ciliates predating on HFlag and, in this way, release the
predation of HFlag on bacteria, thereby decreasing the bacterial grazing mortality. This
trophic cascade was demonstrated in the same lagoon by Vidussi et al. [50].

The abundances of heterotrophic flagellates and the diversities and abundances of
ciliates changed throughout the four experiments. The grazing mortality rates of eukaryotic
prey remained stable, while those exerted on prokaryotic prey increased with increasing
water temperature. These results are consistent with the experiments of Šolić et al. [19]
showing an increase in the grazing mortality rates of prokaryotic preys in the warmer
month. An ecological explanation for this result could be, for example, the recognized
ability of ciliates to switch from one prey to another when several types of prey are available
and when the abundance of one type of prey decreases [66]. Indeed, in the present study, the
ciliate community was dominated by Mesodinium rubrum, Strombidinopsis sp., Strombidium
sp., and Uronema sp. Uronema sp. is known to be a non-selective predator, selecting
neither for size nor for cell surface properties, while Strombidium sp. is slightly more
selective [67]. Moreover, Mesodinium rubrum, a mixotrophic organism [68,69], showed high
abundances, especially in October and July. Among mixotrophs, small mixotrophic algae
(i.e., small eukaryotic phytoflagellates) may also be responsible for a significant portion of
grazing on bacteria in marine systems [70–72], as well as mixotrophic and heterotrophic
dinoflagellates [73,74]. Additionally, some of the observed predators could graze upon
many more types of prey than others during an experiment relative to other predators.
Surprisingly, in June, the most important bacterial grazing mortality rate was observed
despite minimum abundances of studied predators, such as aloricate ciliates, tintinnids,
and heterotrophic flagellates. It could suggest that some of them, such as Strombidinopsis,
which was observed at its maximum abundance in June, could have exerted high predation
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rates on the prey, including bacteria, either directly or indirectly. The maximum tintinnid
abundances during this study were observed in May and were concomitant with the
maximum abundances of the small HFlag1, suggesting predation by tintinnids on the
predators of HFlag, resulting in high HF abundances.

Although the main objective of the present study was not to find the environmental
variables that may influence grazing mortality or growth rates of microorganisms, it is,
however, worth reporting interesting results highlighting (1) positive relationships between
the water temperature and the grazing mortality rates of the bacterial groups and (2) a non-
significant positive trend for cyanobacterial groups in the four experiments. The highest
grazing mortality rates, specifically of prokaryotic prey, were observed during the warmer
months in June and July, suggesting a positive relationship among grazing activity, water
temperature, and low nutrient concentrations (especially phosphorus) in accordance with
the previous studies [5,19,75]. In contrast, regarding eukaryotic picophytoplankton and
especially nanophytoplankton, a reverse trend was observed, with rather lower grazing
mortality rates observed in warmer waters. This result is consistent with the review
by Rose and Caron [75], which suggested that phytoplankton blooms occurred in cold
water worldwide because protozoan grazers are unable to grow correctly at these lower
temperatures, resulting in low grazing pressures on phytoplankton. These authors observed
that the difference in growth rates between phytoplankton prey and protozoan predators
decreased when the temperature increased, allowing the efficient grazing on phytoplankton
by predators. The relationships between the prokaryotic grazing mortality rates and water
temperature found in this study also seem to indicate that grazing processes in the Thau
Lagoon were more strongly temperature dependent than growth processes, as has been
suggested in other studies [76,77]. Other studies have also reported that temperature shows
no linear relationship with grazing mortality rates but also depends on the behaviors of
individual predators [78,79]. Finally, according to recent studies, temperature appeared to
be a key parameter in structuring the plankton community in the Thau Lagoon [53,55].

4.3. The Fate of the MFW Components: Accumulation or Transfer?

The simultaneous study of the majority of the MFW components makes it possible to
compare the growth and grazing mortality rates of these components, providing useful
information on their fate throughout the food web by studying the ratio between the
grazing mortality and growth rates of each microorganism. These comparative results
clearly show that, among all studied microorganisms, bacterial groups are distinguishable
from phytoplankton groups, as their growth and grazing mortality rates in all seasons are
higher than those of phytoplankton. This fact led to the efficient and strong transfer of
bacterial groups to the microzooplankton compartment (up to 2.43 day−1 and 2.62 day−1 for
HNA1 in June for µ and g, respectively). All bacterial groups seem to be actively controlled
by their predators, as their grazing mortality rates are always higher than their growth
rates except in October, when the water temperature is lower than in other months. In fact,
the ratios increased with temperature during these experiments, indicating the top-down
control of the bacterial population dynamics linked to temperature. In all experiments,
a g:µ ratio near 1 indicated a close coupling between bacteria and predators in the Thau
Lagoon, as reported in previous studies for other ecosystems [80]. In comparison with the
bacterial (HNA and LNA) growth and grazing mortality rates measured by Scharek and
Latasa [17] in the northwestern Mediterranean Sea, our results showed an opposite trend
for the closest comparable stations. In the open sea, for both the LNA and HNA groups,
these authors found ratios that ranged between 0.41 and 0.70 at the nearest site to the Thau
Lagoon. These < 1 ratios indicated an accumulation of bacterial cells, which was not the
case in the results of the present study, as detailed before. Additionally, the ranges of the
growth rates of phytoplankton groups in each month and during the seasons observed in
the present study were generally higher than those of their grazing mortality rates, which
underlines that phytoplankton groups were less controlled by predators than were bacterial
groups. Agusti et al. [81] studied phytoplankton growth and grazing mortality rates in open
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waters of the Mediterranean Sea using bulk chlorophyll a, and, unlike bacteria, obtained
g:µ ratios > 1 (g:µ = 1.23), indicating the active control of bulk phytoplankton by predators.
Obviously, bulk phytoplankton measurements indicate the growth and grazing mortality
rates of the whole phytoplankton community, and further comparisons with specific rates
as observed in the present study should be considered carefully. However, this inversion
of the patterns observed between bacteria and phytoplankton, as observed between the
present study and previous open-sea observations, could indicate an effect of the ecosystem
richness, reflecting oligotrophic conditions in open sea and mesotrophic conditions in the
lagoon, on the efficiency and nature of the cell transfer through the MFW. Finally, there
was a positive relationship observed between water temperature and the in situ growth
rates of all studied groups encompassing bacteria and pico- and nanophytoplankton. This
result is in agreement with the results of several studies reporting positive correlations
between temperature and phytoplankton or bacterial growth rates [3,5,82–84]. This positive
relationship was also found between the in situ grazing mortality rates of prokaryotic
microorganisms and water temperature. These later observations underlined that in
summer, when the water temperature was high and the nutrient concentration was low,
the MFW of the Thau Lagoon was turned towards the transfer of small prokaryotic cell
production rather than larger eukaryotic prey throughout microzooplankton predators.

In conclusion, this study reported poorly documented estimates of fundamental bi-
ological processes such as growth and mortality by predation of 12 cytometric groups of
planktonic microorganisms measured in situ in a Mediterranean coastal lagoon in different
atmospheric seasons encompassing various environmental conditions. Additionally, this
study demonstrated that the simultaneous studies of the growth and grazing mortality
rates of all microbial components together at the single-cell scale provide useful information
about the fate of each specific microbial group throughout the MFW. This kind of infor-
mation cannot be obtained by bulk measurements, such as chlorophyll a concentration or
total bacterial abundance measurements, which estimate the average growth and grazing
mortality rates of several groups. This degree of functional resolution allows a better
understanding of the MFW structure and functioning.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/d14030186/s1, Table S1: Significant growth (µ, day−1 ± S. D)
and grazing mortality rates (g, day−1 ± S. D) of microbial components observed during the four
dilution experiments in October 2008 and May, June and July 2009 in the Thau Lagoon. The g:µ ratio
is also noted if available. N.A indicates that the data are not available.

Author Contributions: D.P.: conceptualization, methodology, validation, formal analysis, investi-
gation, writing—original draft, and writing—review and editing. J.C.: software, formal analysis,
writing—review and editing, and visualization. C.R.: investigation. S.M.: data curation and in-
vestigation. R.P.: investigation. F.V.: conceptualization, methodology, validation, writing—review
and editing, supervision, project administration, and funding acquisition. B.M.: conceptualization,
methodology, validation, writing—review and editing, supervision, project administration, and
funding acquisition. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: All data are available in the text.

Acknowledgments: D.P. was supported by a national scientific Ph.D. fellowship provided by the
French Ministry of Education and Research. We are grateful to Camille Albouy for his advice on
statistical analyses and Christophe Vasseur, Emilie Le Floc’h, and Eric Fouilland for their assistance
with the experiments.

Conflicts of Interest: The authors declare that they have no known competing financial interest or
personal relationships that could have appeared to influence the work reported in this paper.

https://www.mdpi.com/article/10.3390/d14030186/s1
https://www.mdpi.com/article/10.3390/d14030186/s1


Diversity 2022, 14, 186 16 of 18

References
1. Azam, F.; Fenchel, T.; Field, J.G.; Gray, J.S.; Meyer-Reil, L.A.; Thingstad, F. The Ecological Role of Water-Column Microbes in the

Sea. Mar. Ecol. Prog. Ser. 1983, 10, 257–263. [CrossRef]
2. Sherr, B.F.; Sherr, E.B. Marine microbes: An overview. In Microbial Ecology of the Oceans; Kirchman, D., Ed.; Wiley-Liss: New York,

NY, USA, 2000; pp. 13–46.
3. Pomeroy, L.R.; Wiebe, W.J. Temperature and substrates as interactive limiting factors for marine heterotrophic bacteria. Aquat.

Microb. Ecol. 2001, 23, 187–204. [CrossRef]
4. Brown, J.H.; Gillooly, J.F.; Allen, A.P.; Savage, V.M.; West, G.B. Toward a metabolic theory of ecology. Ecology 2004, 85, 1771–1789.

[CrossRef]
5. Chen, B.; Laws, E.A. Is there a difference of temperature sensitivity between marine phytoplankton and heterotrophs? Limnol.

Oceanogr. 2017, 62, 806–817. [CrossRef]
6. Sherr, E.B.; Sherr, B.F. Significance of predation by protists in aquatic microbial food webs. Antonie Van Leeuwenhoek 2002, 81,

293–308. [CrossRef]
7. Calbet, A.; Landry, M.R. Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnol.

Oceanogr. 2004, 49, 51–57. [CrossRef]
8. Rublee, P.; Gallegos, C. Use of fluorescently labelled algae (FLA) to estimate microzooplankton grazing. Mar. Ecol. Prog. Ser. 1989,

51, 221–227. [CrossRef]
9. Landry, M.R.; Hassett, R.P. Estimating the grazing impact of marine micro-zooplankton. Mar. Biol. 1982, 67, 283–288. [CrossRef]
10. Vrba, J.; Simek, K.; Nedoma, J.; Hartman, P. MUF-P-N-acetylglucosaminide hydrolysis by a high affinity enzyme, a putative

marker of protozoan bacterivory. Appl. Environ. Microbiol. 1993, 59, 3091–3101. [CrossRef]
11. Fuhrman, J.A.; McManus, G.B. Do Bacteria-Sized Marine Eukaryotes Consume Significant Bacterial Production? Science 1984, 224,

1257–1260. [CrossRef]
12. Sherr, B.F.; Sherr, E.B.; Andrew, T.L.; Fallon, R.D.; Newell, S.Y. Trophic interactions between protozoa and bacterioplankton in

estuarine water analyzed with selective metabolic inhibitors. Mar. Ecol.-Prog. Ser. 1986, 32, 169–180. [CrossRef]
13. Landry, M.R.; Kirshtein, J.; Constantinou, J. A refined dilution technique for measuring the community grazing impact of

microzooplankton, with experimental tests in the central equatorial Pacific. Mar. Ecol. Prog. Ser. 1995, 120, 53–63. [CrossRef]
14. Tsai, A.-Y.; Gong, G.-C.; Sanders, R.; Chiang, K.-P.; Chao, C.-F. Heterotrophic bacterial and Synechococcus spp. Growth and

mortality along the inshore-offshore in the East China Sea in summer. J. Oceanogr. 2012, 68, 151–162. [CrossRef]
15. Staniewski, M.A.; Short, C.M.; Short, S.M. Contrasting Community versus Population-Based Estimates of Grazing and Virus-

Induced Mortality of Phytoplankton. Microb. Ecol. 2012, 64, 25–38. [CrossRef] [PubMed]
16. Chen, B.; Landry, M.R.; Huang, B.; Liu, H. Does warming enhance the effect of microzooplankton grazing on marine phytoplank-

ton in the ocean? Limnol. Oceanogr. 2012, 57, 519–526. [CrossRef]
17. Scharek, R.; Latasa, M. Growth, grazing and carbon flux of high and low nucleic acid bacteria differ in surface and deep

chlorophyll maximum layers in the NW Mediterranean Sea. Aquat. Microb. Ecol. 2007, 46, 153–161. [CrossRef]
18. Ferrera, I.; Gasol, J.M.; Marta, S.; Hojerova, E.; Koblizek, M. Comparison of growth rates of aerobic anoxygenic phototrophic

bacteria and other bacterioplankton groups in coastal Mediterranean waters. Appl. Environ. Microbiol. 2011, 77, 7451–7458.
[CrossRef]
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