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Abstract: Colomerus vitis is a pest of grapevine worldwide that includes three strains recognised by
plant symptoms (bud, erineum, and leaf curl), which could represent cryptic species. We approached
this long-standing question by integrating genetic and morphological methods. COI sequences
of mites from South Africa and other countries showed five phylogenetic groups (G1 to G5) with
intergroup p-distances up to 23% and intragroup divergence lower than 2%. The three groups
found in South Africa (G1, G2, and G3) were screened from a variety of grapevine samples using
a novel multiplex PCR method. Only G1 and G3 were significantly associated with erinea and
buds, respectively, and the three groups were frequently co-present in the same plant sample. Cryo-
SEM showed adults with five- and six-rayed empodia, variable microtubercle shape, and prodorsal
shield patterns. Specimens with six-rayed empodia and a smooth prodorsal shield were more often
associated with buds, while specimens from erinea were variable. These results support the genetic
evidence in that particular groups or morphotypes are not associated exclusively with specific plant
niches. We propose that C. vitis is a complex of at least five genetically distinct but morphologically
similar species, and that no one species can be assigned to a particular grapevine symptom.

Keywords: cryo-SEM; Eriophyidae; genetic divergence; grapevine; phylogenetics

1. Introduction

Colomerus vitis (Pagenstecher) (Trombidiformes: Eriophyidae) is found on the culti-
vated grapevine, Vitis vinifera L., worldwide [1]. Colomerus vitis is generally hypothesised
to comprise three strains recognised by the three symptoms exhibited by the host plant,
namely, bud, erineum, and leaf curl [2]. No morphological differences between the strains
have been identified; therefore, according to traditional taxonomy, they are considered
conspecific [3]. However, there has long been debate as to whether the three strains may
represent three symptom-specific species, especially since Smith and Stafford [2] asserted
that each strain is only able to produce that particular symptom.

The current taxonomic literature recognises two species of Colomerus on grapevine,
namely, C. vitis and C. oculivitis (Attiah) [4–7]. Colomerus vitis descriptions vary in the
depiction and description of microtubercle shape, prodorsal shield pattern, and ridges
on the female genital coverflap, while they remain consistent in recording the number of
empodial rays as five [3–6,8]. Although a number of characteristics have been described
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as different between C. vitis and C. oculivitis, the only unambiguous one is the five-rayed
empodia in C. vitis, while C. oculivitis has six-rayed empodia [4,6,7]. Given the multiple
strains of C. vitis and the overlap in descriptions of C. vitis and C. oculivitis, Craemer
and Saccaggi [4] hypothesised that C. oculivitis may represent the bud form of C. vitis.
Differentiation of C. vitis strains has been unsuccessful to date, due partially to their small
size and lack of phylogenetically informative features.

The debate as to the species status of C. vitis has intensified in recent years, as genetic
studies have provided varying results. Carew et al. [9] found sufficient genetic variation in
the internal transcribed spacer I (ITS-1) region and microsatellites to consider the bud and
erineum strains of C. vitis to be separate species. In contrast, Valenzano et al. [10] found no
differences in the ITS-1 sequences of C. vitis collected from buds and erinea from a single
vineyard in Apulia, Italy.

Delineation of species is challenging when the organisms in question are small, have
similar morphology, and are characteristic-poor [11–14]. Such is the case within the super-
family Eriophyoidea, where species complexes often exist without clear morphological
differentiation [12,15–22]. Differentiation of such species benefits greatly from employ-
ing an integrative taxonomic approach, where multiple taxonomic tools can be indepen-
dently and jointly applied to species delineation. This approach has been successfully
applied in a number of eriophyid species complexes to elucidate species status and rela-
tionships [14,18,21–25].

In this study, we adopted an integrative approach to investigate the genetic and
morphological variation present in putative C. vitis mites. The genetic approach included
DNA barcoding and phylogenetic clustering, as well as a novel multiplex PCR for the
survey of a large number of samples. Morphologically, we examined individually collected
mites using cryo-SEM imaging to show features on the mites’ tiny bodies. Integrating these
methods greatly enhanced our understanding of the diversity present in C. vitis.

2. Materials and Methods
2.1. Grapevine Mite Samples

Samples of grapevine eriophyid mites or DNA sequences came from multiple main
sources (Table S1): (1) eriophyoids on imported grapevine material from various countries,
detected and collected upon interception in South Africa by the laboratories of the Depart-
ment of Agriculture, Land Reform, and Rural Development (DALRRD) [26]; (2) eriophyoids
collected from vineyards in South Africa by Dr. Charnie Craemer (Agricultural Research
Council) or by co-authors C.P. and P.M. during this study; (3) COI sequences of C. vitis
deposited in Genbank (accession numbers MN164416 to MN164427; unpublished). In field
collections, symptomatic plant tissues were collected and stored in separate sealed bags
to avoid cross-contamination and kept cool until examination using a stereomicroscope.
Samples were then prepared specifically for genetic and morphological analyses.

Mites for genetic analyses were collected either individually or by excising the infested
plant tissue using sterile implements and transferred to a microtube containing 100 µL
of absolute ethanol. Individually collected mites were used for Sanger sequencing, while
excised plant tissue was used for multiplex PCR analyses. Manual collection of mites
allows for greater assurance of the presence and number of mites in the sample but is
extremely time-consuming and requires skilled labour. Therefore, samples for multiplex
PCR analyses were prepared by vigorous shaking of the microtube to dislodge the mites,
followed by filtration by centrifugation through a 0.95 mm steel mesh that retained most of
the plant material. The filtered ethanol containing the mites was evaporated on a heat block
at 45 ◦C until the pellet was dry for subsequent DNA extraction. This “brute force” method
allowed for screening of a large number of samples, but the number of mites isolated from
the plant sample in this way was not quantified. For cryo-SEM, mites were kept alive on
freshly collected plant tissue until processing.
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2.2. Genetic Analyses
2.2.1. DNA Extraction, PCR Amplification, and DNA Sequencing

DNA was extracted using the Qiagen QIAamp DNA Micro Kit (QIAGEN) following
the Isolation of Genomic DNA from Tissues protocol, with half volumes of all reagents. The
standard COI barcoding region was amplified using the universal primer pair LCO1490
and HC02198 [27]. PCR amplifications were conducted in total volumes of 5 µL, comprising
1× QIAGEN Multiplex PCR kit (QIAGEN), 10 ng/µL of DNA template, and 0.5 µM of
each primer. Thermocycling conditions consisted of 95 ◦C for 15 min, then 35 cycles of
94 ◦C for 30 s, 54 ◦C for 90 s, and 72 ◦C for 90 s, followed by 72 ◦C for 10 min. PCR
products were Sanger-sequenced in the forward direction or bidirectionally (when the
forward direction resulted in poor-quality sequences) with the BigDye Terminator v3.1
Cycle Sequencing Kit (Applied Biosystems) at the Central Analytical Facilities of the
University of Stellenbosch, South Africa. All COI sequences were manually inspected and
curated for ambiguities, and low-quality sequences were excluded from the dataset. All
sequences were translated for the detection of potential premature stop codons and indels
indicative of spurious amplification of nontarget DNA in Geneious Prime 2022.0.2 [28,29]
(accessed in December 2021), using the invertebrate mitochondrial genetic code. The
sequences generated in this study (n = 31) were deposited on GenBank under the accession
numbers ON060625-ON060655.

2.2.2. Multiplex PCR

The initial Sanger sequencing of COI using universal barcoding primers showed
superimposed peaks at some nucleotide positions indicating that pooled mites from the
same sample contained mixtures of different genetic groups. Nevertheless, it was possible
to clearly distinguish three genetic groups that were designated G1, G2, and G3. This fact,
coupled with the need to screen a large number of samples, led to the design of a multiplex
PCR based on three primer pairs specific to each of the three genetic groups (Table 1). The
group-specific primers were designed to amplify fragments between 162 and 433 bp, with
at least a 100 bp difference in amplicon size (Figure 1).

Table 1. List of primers used for singleplex PCR, Sanger sequencing, and multiplex PCR of the COI
region in eriophyoid grapevine mites. Amplicon size includes the primers.

Primer Name Sequence (5′–3′) Amplicon (bp) Primer Type Reference

LCO1490 GGTCAACAAATCATAAAGATATTGG 710 Universal Folmer et al. [27]
HC02198 TAAACTTCAGGGTGACCAAAAAATCA

G1-F GAATAGAATTATCGCAGACAGG 433 Group-
specific This study

G1-R CTAACACGATCTATACAAGAC

G2-F GCGTCTAGAACTATCTCAAAC 162 Group-
specific This study

G2-R TCATTACAACCAAGCATCAATG

G3-F ACGAATGGAATTGTCTCATAC 252 Group-
specific This study

G3-R CCAGAAGCTAACAAAGAGGA
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Figure 1. (a) Graphic representation of group-specific amplicons for multiplex PCR amplification of
eriophyoid grapevine mites and fragment size detection by capillary electrophoresis. (b) Example of
electropherogram of sample with co-presence of the genetic groups G1, G2, and G3.

All primers were tested for specificity in singleplex and multiplex reactions using
DNA extracts previously identified by Sanger sequencing as belonging to one of the genetic
groups, under the PCR and sequencing conditions described above. Group-specific PCR
amplicons were further Sanger-sequenced for validation of the expected PCR product.
Multiplex PCR amplifications were performed using 6-FAM-labelled forward primers in a
total volume of 5 µL comprising 1× QIAGEN Multiplex PCR kit, 0.5 µM of each primer,
and ~10 ng/µL DNA template. Thermocycling conditions were as follows: 95 ◦C for
15 min; 27 cycles at 94 ◦C for 30 s, 54 ◦C for 90 s, 72 ◦C for 90 s; 72 ◦C for 10 min. Capillary
electrophoresis for fragment size detection was performed with LIZ600 as an internal size
standard at the Central Analytical Facilities of Stellenbosch University. The data were
analysed using GeneMapper Software Version 4.0 (Applied Biosystems), with bins defined
for the expected fragment size of each genetic group. The multiplex PCR was used to screen
274 samples collected from five farms in the Western Cape and one in the Northern Cape
Provinces of South Africa (Table S1) for the presence of G1, G2, and G3, the genetic groups
previously detected in local vineyards by Sanger sequencing.

2.2.3. Phylogenetic Analysis and Genetic Divergence

Phylogenetic analysis for identification of genetic groups was based on the COI se-
quences generated in this study and sequences available on GenBank (accessed in Novem-
ber 2021) (Table S1), with Eriophyes padi Domes (GenBank KT070227) as the outgroup.
Multiple sequence alignments were performed with MAFFT v7.450 [30] in Geneious Prime.
The final alignment was 584 bp long. A maximum likelihood (ML) tree was constructed
in IQ-TREE [31]. The best partitioning scheme was based on the edge-linked greedy strat-
egy [32] using automatic model selection [33,34]. Nodal support was based on ultrafast
bootstrap [35,36]. The final tree was drawn using FigTree v1.4.4 (http://tree.bio.ed.ac.uk/,
accessed on 21 December 2021). Genetic divergence within and between the phylogenetic
clusters identified in the ML tree was estimated as intragroup maximum pairwise dis-
tance (p-distance) and intergroup average p-distances calculated in MEGAX [37] using
the Kimura two-parameter (K2P) model [38] with pairwise deletion of sites and bootstrap
support test of 1000 replicates.

http://tree.bio.ed.ac.uk/
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2.3. Morphological Analyses

A cryo-fixation technique adapted from Rahbani et al. [39] was used to prepare the
mites for imaging. Mites were collected from plant tissue using a stereomicroscope and
transferred to double-sided carbon tape on a specimen carrier. This was frozen by rapidly
plunging it into subcooled liquid nitrogen (−210 ◦C) for a few milliseconds to avoid ice
crystal formation, transferred under vacuum and without warming to the precooled stage
of the cryo-preparation chamber (−140 ◦C), heated to −100 ◦C for 3 to 5 min to sublimate
any water condensed on the surface of the mites, and then cooled again to −140 ◦C before
sputter-coating with platinum for 60 s. Mites were imaged using a Zeiss Supra 55VP
SEM equipped with a Gatan Alto cryo-stage (Gatan, Pleasanton, CA, USA). As SEM is
limited by the orientation of the specimen on the stub, it was not possible to observe all the
characteristics on each specimen. Images were focused on the characteristics recommended
by Amrine and Manson [40] and de Lillo et al. [41] as essential for eriophyoid species
descriptions. Images of the whole body, prodorsal shield, coxal area, and genitalia and
legs were captured, wherever possible. Additionally, images of the empodia of the legs
and the shape of the surface microtubercles were also captured, as these characteristics are
important in the identification of the Colomerus species described on grapevine [4,6].

3. Results
3.1. Genetic Analyses

Sanger sequencing using universal primers resulted in a number of ambiguous nu-
cleotides caused by superimposed peaks indicating the presence of multiple genetic groups
in the same sample. Consequently, group-specific primers were designed on the basis of
the initial sequences obtained with universal primers and optimised to amplify each of the
genetic groups separately for subsequent Sanger sequencing, and for screening of a large
number of samples by multiplex PCR.

3.1.1. Phylogenetics and Genetic Clustering

The phylogenetic tree included the novel COI sequences generated in this study
(n = 31), as well as 11 sequences of C. vitis from Iran available on GenBank (Figure 2). Five
phylogenetic clusters (G1 to G5) were recovered, with nodal support varying between
68% and 100%. Three of the clusters comprised sequences from a single country: G2
(n = 5) from South Africa, G4 (n = 2) from the USA, and G5 (n = 7) from Iran. G1 included
sequences from South Africa (n = 6) and Iran (n = 4), while G3 was the most geograph-
ically diverse group with sequences from South Africa (n = 13), Spain (n = 2), the USA,
Egypt, and Israel (each n = 1) (Figure 3). It is worth mentioning that 12 sequences from
Iran were available on GenBank, but one (MN164425) was excluded from the phyloge-
netic tree because it produced a highly diverged branch that suggested the presence of
artefactual polymorphisms.

Overall, the max p-distance was 24.76%, indicating the presence of non-conspecific
sequences in the total dataset. The max p-distance within each phylogenetic cluster ranged
between 0.00% (G1, G2, and G4) and 1.57% (G3), indicating that the sequences in each
of the five phylogenetic clusters are conspecific (Tables 2 and 3). Average p-distances
between groups ranged between 17.78% for the pair G3/G4 and 23.72% for the pair G2/G3,
indicating that each phylogenetic cluster is a diverged genetic group. This pattern of high
intergroup divergence and low intragroup divergence supports the hypothesis that the
genetic groups/phylogenetic clusters likely represent separate species.
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Table 2. Maximum intragroup p-distances among five genetic groups (G1 to G5) of eriophyoid
grapevine mites based on COI barcoding sequences (584 bp).

Genetic Group Sample Size (n) Max p-Distance (%)

Group 1 10 0.00
Group 2 5 0.00
Group 3 2 1.57
Group 4 18 0.00
Group 5 7 0.86

All sequences 42 24.76

Table 3. Average intergroup p-distances (%) among five genetic groups (G1 to G5) of eriophy-
oid grapevine mites based on COI barcoding sequences (584 bp). Standard errors are shown
above the diagonal.

Group 1 Group 3 Group 4 Group 2 Group 5

Group 1 2.30 1.90 2.28 2.04

Group 3 23.13 1.92 2.40 2.12

Group 4 18.33 17.78 2.26 2.01

Group 2 23.56 23.72 22.04 2.13

Group 5 20.01 20.72 19.41 19.59

3.1.2. Association of Genetic Groups with Plant Symptoms

A total of 274 grapevine samples infested with eriophyoid mites were screened by
multiplex PCR for the presence of the three genetic groups (G1, G2, and G3) identified
from Colomerus mites by Sanger sequencing in samples collected in South Africa (Table S1).
Each sample was collected from a single plant tissue type, namely, buds, erinea, or leaf curl
symptoms. Overall, 195 of these samples (117 from buds, 73 from erinea, and five from
leaf curl) were positive for the presence of mites of G1, G2, or G3, either exclusively or in
mixtures (Figure 4). A total of 79 samples (28.8%) failed to yield amplicons, most likely
due to insufficient number of mites recovered from the plant tissue during the centrifuging
extraction method.

Overall, G2 was the most commonly detected group by multiplex PCR, as it was
present in 62.6% of all samples analysed (49.5% of buds, 82.2% of erinea, and 80% of leaf
curl) (Figure 5). G3 was detected in 55.9% of all samples (78.6% of bud samples, 23.3% of
erinea samples, and none in leaf curl samples), and G1 was the least frequent group (37.4%
overall, 15.4% of bud samples, 72.6% of erinea samples, and 40% of leaf curl samples).
Specific groups were significantly associated with specific plant niches. G1 was significantly
associated with erinea (χ2 = 38.9, df = 2, p = 4.1× 10−9), and G3 was significantly associated
with buds (χ2 = 96.0, df = 2, p = 1.4 × 10−21), while G2 showed no significant association
with plant niche.

More than one genetic group was commonly detected in the same sample, with 48.2%
of samples displaying genetic mixtures. This differed significantly between the different
plant niches, with erinea more likely to have multiple genetic groups present (genetic
mixtures in 64.4% of erinea samples) compared to buds and leaf curl (genetic mixtures in
39.3% and 20% of samples, respectively) (χ2 = 40.9, df = 2, p = 1.3× 10−9). Since not all types
of plant niches could be sampled at each collection site, it was further investigated whether
the different distribution patterns of the genetic groups could be influenced by collection
site (Figure 5). Again, mixtures of groups were common at all collection sites, but only the
presence or absence of specific groups was compared, regardless of whether they were
detected exclusively or in conjunction with other groups. Overall, there were significant
differences in the distribution of genetic groups detected from different collection sites.
These differences were more pronounced between sites from different geographic regions
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within South Africa but were still significant between sites from the same region. Since this
could be due to different plant niches sampled at different collection sites, samples from
buds and erinea were compared between different collection sites (leaf curl was excluded
due to small sample size). Significant differences in genetic groups present persisted, even
when only comparing a specific sample type (buds (G1/G2/G3): χ2 = 95.5/141.2/43.4,
df = 5, p < 0.0001; erinea (G1/G3): χ2 = 80.5/209, df = 3, p < 0.0001). Within sites from
which more than one plant niche was collected, significant differences in the distribution
of genetic groups in mites from buds and erinea remained (again, leaf curl was excluded
due to small sample sizes). G3 was significantly associated with buds at three of the four
collection sites analysed (sites 6/7/8: χ2 = 33.3/20.3/43.2, df = 1, p < 0.0001), G1 was
significantly associated with erinea at site 7 (χ2 = 52.4, df = 1, p = 4.6 × 10−13), and G2 was
significantly associated with erinea at site 5 (χ2 = 68.1, df = 1, p = 1.6 × 10−16).
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3.2. Morphological Analyses

Seventy mite specimens from site 7 were examined using cryo-SEM, 48 of which were
collected from leaf erinea (28 females, one male, 16 adults of unknown sex, and three
immatures) and 22 from buds (12 females, one male, and nine adults of unknown sex)
(Table S1). Differences in characteristics could be observed between specimens (Table S2);
however, because visible characteristics were limited by the orientation of the specimen,
we could not always determine the sex of the specimen nor compare the full suite of
characteristics across the whole dataset.

3.2.1. Whole Body

As is consistent with the description of this genus, all specimens observed were
vermiform, with little dorsoventral differentiation.

3.2.2. Prodorsal Shield

Thirty specimens (21 from erinea and nine from buds) were orientated correctly to
allow imaging of the prodorsal shield (Figure 6). The prodorsal shield pattern varied from
having distinct ridges with at least the median and admedian lines complete, through
various degrees of broken ridges to entirely smooth on the dorsal surface. The lateral
surface to either side of setae was always patterned with ridges forming a distinct eye-like
shape. Part of the prodorsal shield was observed in an immature specimen, which was
pebbled with no clear ridges or eye-like shape visible. Shield pattern was significantly
associated with the plant niche from which the mites were collected (χ2 = 119.9, df = 1,
p = 6.8 × 10−28), with smooth or partially smooth prodorsal shields associated with buds
(100% of bud specimens observed) and strongly patterned prodorsal shields associated
with erinea (80% of erinea specimens observed).Diversity 2022, 13, x FOR PEER REVIEW 11 of 22 
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to ridged. Note the eye-like pattern on the lateral surface of adult specimens. (a) Smooth with
only a few ridges on the lateral edges. (b) Nearly smooth, with a few weak ridges between setae
sc. (c) Smooth anteriorly with strong ridges between sc. (d) Strong ridges with broken median and
admedian lines. (e) Strong ridges with complete median and admedian lines. (f) Immature specimen
showing pebbled appearance and no visible eye-like pattern.

3.2.3. Coxal Area and Genitalia

The coxal area could be observed on 31 females (21 from erinea and 10 from buds), two
males (one each from erinea and buds), and three immature (all from erinea) specimens
(Figure 7). Consistent with the diagnosis of the Colomerus genus, the female genital coverflap
displayed two uneven rows of ridges, while the male genital region had one row of ridges.
The number of ridges on the female genital coverflap could be counted in 23 specimens,
where the anterior row typically had one or two more ridges, varying between 11 and 15,
while the bottom row had 10 to 14 ridges. This did not differ between specimens collected
from buds or erinea.
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3.2.4. Legs

Legs (Figure 8) were of the typical eriophyoid shape, with all segments and leg setae
present. An additional undescribed characteristic was observed, as some specimens had
pointed spikes or protrusions along the distal ventral margin of the genu and/or tibia on
one or both legs. Although the legs could be observed in all specimens, they were either
not always orientated correctly, or the image was not clear enough to determine if these
protrusions were present on all legs. In specimens in which the presence or absence of
these protrusions could be determined with certainty, protrusions were observed more
commonly on leg I (48% of erinea and 50% of bud specimens observed) than on leg II (32%
of erinea and 27% of bud specimens observed). Both males examined had protrusions on
their legs. There was no significant difference in the presence of these protrusions between
mites collected from buds and erinea (χ2 = 0.18, df = 1, p = 0.67).
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Figure 8. Leg ornamentation observed in Colomerus specimens. Note that these are both female
specimens. (a) Pointed spikes or protrusions on the distal ventral margin of the genu and tibia.
(b) Smooth distal ventral margin of the genu and tibia.

3.2.5. Empodia

The empodial (Figure 9) rays on the legs could be observed and counted on leg I in
24 specimens (20 from erinea and four from buds) and on leg II in 28 specimens (25 from
erinea and three from buds). This count included two immature specimens with four-rayed
empodia. In specimens in which both empodia I and II could be observed, there was no
difference in the number of empodial rays (n = 15). Therefore, we assume that the number
of empodial rays counted on any empodium was representative of all empodia of that
specimen and report the results accordingly (Table S2). Empodia of adult mites observed
from erinea showed both five- and six-rayed individuals of which 70% were five-rayed,
while all mites observed from buds had six-rayed empodia. The association of six-rayed
individuals with buds and five-rayed individuals with erinea was significant (χ2 = 106.9,
df = 1, p = 4.6 × 10−25). In some specimens, rays were relatively simple and easy to count,
whereas in others the empodium shape was more complex.Diversity 2022, 13, x FOR PEER REVIEW 14 of 22 
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from erinea. (b) Five-rayed empodium in a specimen from erinea. (c) Six-rayed empodia in a
specimen from buds. (d) Six-rayed empodium in a specimen from erinea.

3.2.6. Microtubercles

The surface microtubercles could clearly be observed in all specimens (Figures 10 and 11).
Dorsal and ventral microtubercle shape did not differ greatly, with the dorsal microtubercles
slightly larger and easier to discern. The shape varied from rounded, through oval to
sharply pointed. Pointed microtubercles were easy to distinguish, as they displayed a
sharp spike that projected over the posterior edge of the annuli. However, round and
oval microtubercles were harder to distinguish, as a gradation of shape could be observed.
Overall, 84% of mites from erinea and 77% of mites from buds had rounded or oval
microtubercles, with no significant difference between the plant niches (χ2 = 2.1, df = 2,
p = 0.36). Microtubercles observed dorsally extended to between the 12th and eighth annuli
from the posterior end, after which 6–8 annuli were bare, followed by 2–4 annuli with small
sharp spikes. Ventral microtubercles were present on all annuli, but faded and covered a
smaller area posteriorly, followed by sharp spikes on the last few annuli from setae f. This
arrangement did not vary on individuals with different microtubercle shapes.
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Figure 11. Ventral microtubercles observed in Colomerus specimens. (a,c) Rounded microtubercles on
the anterior and posterior opisthosoma, respectively. (b,d) Sharply pointed microtubercles on the
anterior and posterior opisthosoma, respectively.

3.2.7. Associations of Characteristics

No two characteristics were exclusively associated, but certain characteristic combi-
nations were found more commonly than others. In specimens where two characteristics
could be observed, a strongly patterned prodorsal shield was significantly, but not exclu-
sively, associated with five-rayed empodia (n = 18, χ2 = 100.0, df = 3, p = 1.6 × 10−21) and
rounded microtubercles (n = 30, χ2 = 52.0, df = 3, p = 3.0 × 10−11). Other characteristic
states did not show significant associations. This variation of characteristic states in both
plant niches is consistent with the genetic results from the same site, where all genetic
groups were present in both buds and erinea (Figure 12).
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individuals observed (c–f).

4. Discussion

The taxonomic status and diversity of C. vitis as a complex of multiple species or a
single species consisting of multiple strains has been debated for decades [2–4]. Craemer
and Saccaggi [4] detailed this confusion and emphasised the need for proper and detailed
description of eriophyoid mites and a revision of grapevine Colomerus species, particularly
that of the mites currently recognised as C. vitis. In this study, integration of advanced
molecular and morphological tools revealed five diverged genetic clusters that likely
represent separate species with no clear morphological differentiation.

4.1. Grapevine Eriophyoid Mites Likely Include Five Distinct Species

The analyses of COI sequences showed the presence of five well-supported phyloge-
netic clusters with low intragroup divergence and high intergroup divergence, estimated
as p-distances. In assessments of conspecificity based on genetic distances, groups of phylo-
genetically similar sequences with intragroup p-distances less than 2–3% are considered
to belong to the same species [42–44]. The intragroup max p-distance of each phyloge-
netic group reported in this study did not exceed 1.57%, which falls below the generally
accepted threshold for species delimitation. Furthermore, the nonoverlap between intra-
and intergroup p-distances supports the hypothesis that each of the five clusters repre-
sents a distinct species. However, previous studies in eriophyoid mites have reported
intraspecific p-distances between 0% and 13%, and interspecific p-distances between 7%
and 26% [16,23,25,45]. These ranges are much wider than those usually found among
conspecific sequences in barcoding studies [44,46], implying either that eriophyoid species
have atypically high intraspecific genetic diversity, or that many currently recognised
species are in fact complexes of morphologically cryptic species.
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4.2. Phylogeography of Grapevine Colomerus Mites

Three of the five groups identified in this study comprised sequences from a single
country. Although the data available for analyses were limited, they suggested that some
of the genetic groups may be geographically separated, while others may be cosmopolitan.
This type of phylogeographic pattern has been observed in other eriophyoid species com-
plexes, where a single lineage is widespread while others are localised [47]. Understanding
whether this is indeed the case for grapevine Colomerus will require analyses of a much
larger and geographically diverse dataset than that included in the present study. An
interesting possibility is that different genetic groups are more frequently found in some
world regions, which could be the case for G4 in the USA and G5 in Iran, because they
evolved on the different wild Vitis species present in those regions. At this point, our small
dataset only allows for speculation, and this hypothesis would have to be investigated by
screening wild and cultivated Vitis worldwide.

4.3. LT-SEM Enhances Observable Morphological Detail

SEM images in the current study showed detailed variation in features of Colomerus
specimens collected from grapevine buds and erinea. Cryo-SEM made it possible to
observe such features without the shrinking artefacts commonly seen following conven-
tional SEM preparation. All characteristics showed variation consistent with the pub-
lished literature and were found in mites from both buds and erinea. Only two char-
acteristics were consistently, but not exclusively, found in mites collected from buds: a
smooth prodorsal shield and six-rayed empodia (Table S2). Selected features are discussed
in more detail below.

4.3.1. Prodorsal Shield

The variability in prodorsal shield ornamentation is consistent with different C. vitis
descriptions [3,5,8,48,49], but the observation of a smooth prodorsal shield in all dorsally-
viewed specimens from buds and 15% from erinea was unexpected. With traditional
slide-mounting techniques, there is a risk of over-clearing the specimen, resulting in less
visible prodorsal shield ornamentation. It may be that, in the past, when specimens with
reduced prodorsal shield ornamentation were observed, it was assumed that this was due
to over-clearing and, thus, was not considered diagnostic. However, cryo-SEM precludes
over-clearing of the mite; thus, this method can confirm that a large percentage of grapevine
Colomerus specimens do, in fact, have smooth prodorsal shields.

It must be noted that the smooth prodorsal shield might indicate the presence of
deutogynes, as they typically have reduced ornamentation compared to protogynes [50]. A
deutogyne of C. vitis was described by Bagdasarian [8], but his depiction of it was not clear
enough for comparison. However, considering that these samples were taken in March
(late summer, and still very hot at the sampling site), if deutogynes were present in the
population, one would expect to see a mixture of both protogynes and deutogynes in the
samples. Thus, it is unlikely that these types represent a deutogyne form.

4.3.2. Coxal Area and Genitalia

Totals of 11–14 and 9–14 ridges were observed in the top and bottom row, respectively,
of the genital coverflap of female specimens observed. This is less than reported by
Keifer [3] for C. vitis (more than 16), but consistent with other descriptions of both C. vitis
and C. oculivitis [4,6,7]. To avoid confusion, it should be noted that in Halawa et al.’s [6]
revision of Colomerus in Egypt, they reported a third type of female genital coverflap: one
with a single row of 16 ridges. This is incorrect, and the specimens depicted for that “type”
are in fact male (See Figures 12 and 13 in Halawa et al. [6]).

4.3.3. Legs and Empodia

Attiah [7] noted that C. oculivitis had shorter legs than C. vitis. We did not measure leg
length in the SEM images, as such measures could easily be inaccurate and, thus, misleading
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due to three-dimensional orientation. However, we did not note visible variation in leg
length other than that associated with immature specimens. In contrast, empodia clearly
varied, with five- and six-rayed forms observed, as well as variation in complexity. The
complex empodia did not prohibit counting the number of rays in the SEM images, but
it may present challenges in the analysis of slide-mounted specimens. Where possible,
fore- and hindleg empodia on both sides of a specimen were observed, and we did not
find variation in empodial rays or shape within a specimen. Empodia observed on mites
from buds all had six-rayed empodia, which appears to lend credence to the hypothesis of
Craemer and Saccaggi [4] that C. oculivitis may represent the bud form of the mite. However,
the empodia could only be observed on four specimens from buds, and six-rayed empodia
were also observed in specimens from erinea. Thus, this finding should be viewed with
care and interpreted in conjunction with other characteristics and the genetic results.

4.3.4. Microtubercles

Craemer and Saccaggi [4] noted variation in the shape of the microtubercles and
recommended the inclusion of this characteristic in studying the grapevine Colomerus
species; however, Halawa et al. [6] subsequently showed that, although variation was
present, the shape of the microtubercles could not be used to distinguish between types
of C. vitis. Our findings agree with the latter study, in that microtubercle shape was not
associated with specimens from either buds or erinea and could not be linked to any other
characteristic in our specimens.

5. Conclusions

We propose that the grapevine mite known as C. vitis is in fact a complex of at least
five species that are genetically distinct and morphologically variable. The morphological
variation, however, is not distinct to specific genetic groups, and the species cannot at this
time be separated on the basis of morphology. We propose that C. vitis instead be referred
to as a species complex, or as “C. vitis sensu lato”, as is the practice for very similar or
identical species within a complex.

Our results additionally raise many questions which would not have been evident
before, and we encourage further study in these areas. In particular, an integrative approach
using genetic (sequencing and phylogenetic reconstruction), morphological (traditional
slide-mounting and SEM), and biological (plant symptomology) analyses on the same
sample from the same plant from the same niche would yield substantial insights into the
associations of genetic, morphological, and biological diversity of these mites. Furthermore,
wider sampling and analysis of genetic sequences from Colomerus mites from wild and
cultivated grapevines around the world will increase the resolution and reveal the extent
of genetic variation globally.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/d14050342/s1: Table S1. Sampling sites and collection details of
Colomerus mites collected from grapevine vineyards and fresh grapes for this study. The nearest town
to the collection site is recorded for South African collections. The number of samples and which
analyses they were used for are included. For use in multiplex PCR and DNA sequencing, a “sample”
consists of collection of pooled mites collected from a single plant niche. For SEM imaging, a “sample”
consists of a single mite.; Table S2. Summary of morphological characters observed using cryo-SEM
on individual Colomerus specimens collected directed from buds and erinea. Only characters which
showed variation between specimens are noted for comparison here.
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47. Skoracka, A.A.; Rector, B.; Kuczyński, L.; Szydło, W.; Hein, G.; French, R. Global Spread of Wheat Curl Mite by Its Most

Polyphagous and Pestiferous Lineages. Ann. Appl. Biol. 2014, 165, 222–235. [CrossRef]
48. Mathez, F. Contribution to the Study of the Morphology and Biology of Eriophyes vitis Pgst., the Causal Agent of Grapevine

Erineum. Mitt. Schweiz. Entomol. Ges. 1965, 37, 233–283.
49. Manson, D.C.M. Eriophyinae (Arachnida: Acari: Eriophyoidea). Fauna N. Z. 1984, 5, 128. [CrossRef]
50. Manson, D.C.M.; Oldfield, G.N. Life forms, deuterogyny, diapause and seasonal development. In Eriophyoid Mites: Their Biology,

Natural Enemies and Control; Lindquist, E.E., Sabelis, M., Bruin, J., Eds.; Elsevier: Amsterdam, The Netherlands, 1996; pp. 173–183.

http://doi.org/10.1371/journal.pbio.0030422
http://doi.org/10.1111/aab.12130
http://doi.org/10.7931/J2/FNZ.5

	Introduction 
	Materials and Methods 
	Grapevine Mite Samples 
	Genetic Analyses 
	DNA Extraction, PCR Amplification, and DNA Sequencing 
	Multiplex PCR 
	Phylogenetic Analysis and Genetic Divergence 

	Morphological Analyses 

	Results 
	Genetic Analyses 
	Phylogenetics and Genetic Clustering 
	Association of Genetic Groups with Plant Symptoms 

	Morphological Analyses 
	Whole Body 
	Prodorsal Shield 
	Coxal Area and Genitalia 
	Legs 
	Empodia 
	Microtubercles 
	Associations of Characteristics 


	Discussion 
	Grapevine Eriophyoid Mites Likely Include Five Distinct Species 
	Phylogeography of Grapevine Colomerus Mites 
	LT-SEM Enhances Observable Morphological Detail 
	Prodorsal Shield 
	Coxal Area and Genitalia 
	Legs and Empodia 
	Microtubercles 


	Conclusions 
	References

