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Abstract: A cyanobacterial strain (ZJJ01), morphologically identified as a Leptolyngbya-like species was
isolated from a freshwater pond in Zhangjiajie National Forest Park, China, and it was characterized
through a polyphasic study based on morphological, ecological, and molecular data. Morphologically,
the strain fits the description of Leptolyngbya well, but under further examination, it formed a
distinctive structure, namely nodules, which confirmed that it belonged to the genus of Nodosilinea.
The 16S rRNA gene threshold value and 16S rRNA phylogenetic analyses clearly confirmed that
the studied strain belongs to the genus Nodosilinea but that it is phylogenetically distinct from the
10 other species of Nodosilinea. Furthermore, The D1–D1’ and Box–B helix of the 16S–23S ITS region
of the strain ZJJ01 were also different from those of previously described Nodosilinea species. On
the basis of this polyphasic approach, here, we provide a description of the new taxon: Nodosilinea
hunanesis sp. nov.

Keywords: 16S rRNA gene; 16S–23S ITS; polyphasic approach; Nodosilinea

1. Introduction

Cyanobacteria are considered the most ancient group of oxygenic photosynthetic
organisms [1]. Traditional classification of cyanobacteria was based on morphological
features, but the phylogenetic relationships of this group have recently been significantly
modified [2–4]. Many morphological characteristics traditionally used as phylogenetic
features have been shown to be plastic, thus requiring the use a of polyphasic approach,
i.e., in addition to morphological features, it requires phylogenetic analyses based on 16S
rRNA sequences and threshold values based on the 16S rRNA gene, the secondary structure
of the 16S–23S ITS regions, and ecological data [5–10]. Researchers have also noted the
presence of cryptic taxa that could not be identified on the basis of morphological features
alone but also required molecular markers, such as 16S rRNA [4,11–14]. Furthermore,
based on phylogenetic reconstructions, most morphologically coherent genera appear to be
polyphyletic, and these genera are known as cryptogenera [3,4], which may be the result of
frequent evolutionary convergence among many lineages of cyanobacteria [13].

The genus Leptolyngbya was described in 1988 by Anagnostidis and Komárek [15]
and was originally placed in the Pseudanabaenaceae before being transferred to the Lep-
tolyngbyaceae [4]. Leptolyngbya has 159 species names in the database at present, as well
as three infraspecific ones, 138 of which have been flagged as accepted taxonomically
on the basis of the literature listed under the species name [16]. The details of the thin
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trichomes (0.5–3.5 µm), facultative to obligate sheaths, and parietal thylakoids are major
traits common to all species in the Leptolyngbya genus. Morphological identification of
Leptolyngbya-like strains is difficult due to the lack of diagnostic features and overlapping
features with many taxa belonging to this genus or to related groups [2]. As Leptolyngbya is
the largest genus in the Leptolyngbyaceae, many previous studies have already indicated
the wide genetic diversity of this genus [2,5,17]. In addition, the genus has repeatedly been
proven to be polyphyletic [2,5,7,18–21]. Therefore, many studies have suggested a revision
of this genus, taking the phylogenetic data into account, and several Leptolyngbya-related
morphotypes have been established as new genera. including Halomicronema, Phormidesmis,
Nodosilinea, Plectolyngbya, Oculatella, Haloleptolyngbya, Alkalinema, Pantanalinema, Scytolyng-
bya, Kovacikia, Thermoleptolyngbya, Timaviella, etc. [7,20–29].

Nodosilinea Perkerson et Casamatta in Perkerson et al. (2011: 1404) [7] revealed a close
morphological resemblance to the genus Leptolyngbya with almost indistinguishable differ-
ences, except for the nodules forming in the filaments under low light conditions. However,
phylogenetic analysis clearly separated the Nodosilinea clade from Leptolyngbya sensu stricto
with high bootstrap support. The species Nodosilinea nodulosa, as the type species, was
isolated from a marine environment in the South China Sea. Other species were observed
in the benthos of freshwater ponds (Nodosilinea bijugata Perkerson et Kovácik in Perker-
son et al. [7] or on subaerial parts on rocks (Nodosilinea epilithica Perkerson et Kovácik in
Perkerson et al. [7]. Nodosilinea conica Perkerson et Johansen in Perkerson et al. [7] and
Nodosilinea signiensis Radzi et Merican in Radzi et al. [30] were found in soils. Nodosilinea
chupicuarensis Gutierrez-Villagomez et Molina-Torres in Vázquez-Martínez et al. (2018) [31]
grew on a stone monument in central Mexico. Nodosilinea radiophila Heidari et Hauer in
Heidari et al. [32] and Nodosilinea ramsarensis Heidari et Hauer in Heidari et al. [32] occurred
in thermal springs. Nodosilinea svalbardensis Davydov et Shalygin in Davydov et al. [33]
was isolated from alluvium in the Mimer River valley. Nodosilinea alaskaensis in Stru-
necky et al. [34] was found on stones in Lake Toolik. Up to now, 10 species have been
reported in this genus.

In the present study, we isolated one Leptolyngbya-like strain from a freshwater pond
in Hunan province, China, and evaluated its taxonomic status via a polyphasic approach
using its morphology, molecular characteristics, and ecological data. Morphologically,
we concluded that it is a Leptolyngbya-related morphotype, and the molecular analyses
confirmed its position in the Nodosilinea clade. The purpose of this study was to clarify the
phylogenetic position of the strain ZJJ01, distinguish it from other Nodosilinea species, and
prove that it belongs to a novel species. Nodosilinea hunanesis sp. nov. is taxonomically
described here.

2. Materials and Methods
2.1. Sampling, Isolation, and Culturing of Strains

The cyanobacterial sample presented in this study was collected from a freshwa-
ter pond in Zhangjiajie National Forest Park, Hunan Province, China (41◦28′00.00′′ N,
124◦08′00.00′′ E) on 3 October 2019. a Under microscope (Olympus IX73, Japan), a single
filament from the cyanobacterial sample was separated by using a lab-made Pasteur pipette
washing method and then cultured in screw-capped glass tubes containing 7 mL of CT
medium [35]. All individual isolates were subsequently cultivated at 25 ◦C, in a 12 h:12 h
light–dark cycle with a photon flux density of 35 µmol/(m−2·s−1) under white fluorescent
light. The living cyanobacterial strain was maintained in the Chinese Harmful Algae Biol-
ogy (CHAB) culture collection of the Institute of Hydrobiology (IHB), Chinese Academy of
Sciences (CAS). The number of the studied strain is ZJJ01. Dry material of the strain ZJJ01
was freeze-dried at −50 ◦C and stored in the Freshwater Algal Herbarium (HBI), IHB, CAS.

2.2. Morphological Characterization

The morphological characteristics of the strain ZJJ01 were examined using a Nikon
Eclipse 80i microscope (Nikon, Tokyo, Japan). The micrographs were taken using Nikon
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NIS-Elements 3.2D software (Nikon, Tokyo, Japan). A Nikon Eclipse 80i microscope
equipped with a Nikon DS-Ri1 digital camera was used to observe and describe the shape
and sizes of vegetative cells, as well as the presence or absence of sheaths. The ultrastructure
of the studied strain was examined by transmission electron microscopy (TEM). The sample
was fixed and dehydrated according to Geng et al. [36]. Images of the processed sample
were finally observed using a transmission electron microscope (Hitachi HT-7700, Tokyo,
Japan) at an accelerating voltage of 80 kV.

2.3. DNA Extraction, PCR Amplification, and Sequencing

Total genomic DNA was extracted from cultured cyanobacterial cells using Clarke’s
method [37]. The 16S rRNA gene and the 16S–23S ITS region were PCR-amplified in a MJ
Mini Personal Thermal Cycler (Bio–Rad, Hercules, CA, USA), using the primer sets pA
and B23S [38,39]. The PCR reaction, with a total volume of 20 µL, contained: 8 µL of sterile
water, 1 µL of genomic DNA (100 ng/µL), 0.5 µL of each primer (10 µmol/L), and 10 µL of
2× PCR mix with Taq polymerase (Cat TSE001, Beijing Tsingke Biotech Co. Ltd., Beijing,
China). The resulting PCR products were purified using a Tsingke DNA Gel Extraction
Kit (Cat GE0101-200, Beijing Tsingke Biotech Co. Ltd., Beijing, China) and subsequently
cloned into the pMDTM18-T vector (TaKaRa, Japan) using the procedure of Sambrook
and Russell [40]. All sequencing was performed by the ABI 3730 Automated Sequencer
(PerkinElmer, Waltham, MA, USA).

2.4. Phylogenetic Analysis

The 16S rRNA gene sequences generated in this study and sequences retrieved from
GenBank (a total of 153 sequences) were aligned using MAFFT v7.312 [41], trimmed
(sequence data matrix with a 1094-bp length), and used to infer phylogenetic trees. The 16S
rRNA gene’s phylogenetic trees were inferred using maximum parsimony (MP), maximum
likelihood (ML), and Bayesian inference (BI) methods. The MP analysis was conducted
using the MEGA program package, version X [42], with 1000 repeated heuristic searches.
ML analysis was performed on the IQ-TREE web server [43] with 10,000 bootstrap replicates
by using ultrafast bootstrapping. The best fitting models, GTR+I+G, were selected for the
MP, ML, and BI analyses via the Akaike Information Criterion (AIC) in ModelFinder [44].
The BI was conducted with MrBayes v3.2.6 [45] in the CIPRES Science Gateway V.3.3 [46].
In the BI analyses, two runs of eight Markov chains were run for 10,000,000 generations,
sampling every 100 generations, with 25% of the sampled trees discarded as burn-in. The
consensus phylogenetic trees thus obtained were visualized in FigTree, v1.4.4 [47], with
Gloeobacter violaceus as the outgroup. Calculation of the p-distance in the 16S rRNA was
carried out by MEGA software v.7.0.14 [48] and used to calculate the sequence identity
(100× (1− p)) for the 16S rRNA data. The 16S rRNA and 16S–23S ITS gene sequences of the
cyanobacterial strain ZJJ01 were deposited in the NCBI (National Center for Biotechnology
Information (https://www.ncbi.nlm.nih.gov/, accessed on 1 May 2022) in the GenBank
database under the accession numbers ON074585 and ON074584.

2.5. Secondary Structure Analysis of 16S–23S

The 16S–23S ITS region of the studied sequence was used for secondary structure
folding. The secondary structures of the D1–D1′, Box–B, and V3 helices were determined
using “RNAstructure”, version 5.6 [49].

3. Results
3.1. Morphological Description

Nodosilinea hunanesis F. Cai et R. Li sp. nov. (Figures 1 and 2).

https://www.ncbi.nlm.nih.gov/
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Figure 1. Light microscopy of Nodosilinea hunanesis strains. (a–c) A single trichome with a sheath.
(d,e) Characteristic nodule (arrow). (f) Filaments forming loose spirals. Scale bars: 10 µm.

Description: The thallus is blue-green, macroscopic, in aggregates. Filaments are
straight or bent, unbranched, solitary, and free-floating. The sheath is soft, layered, colorless,
adherent to the edges of the cells, often becoming wide. Trichomes are isodiametric,
constricted at the cross walls, and forming long, loose spirals under normal light condition;
nodules are present under low light intensity (<4 µmol/(m−2·s−1)). Cells are green to
blue-green, lacking a gas vesicle, slightly cylindrical, more or less longer than they are wide,
1.02–1.75–2.74 µm long, and 1.10–1.10–1.34 µm wide, with a length: width ratio of 1.0–2.42;
the cell content is divided into peripheral chromatoplasma and central nucleoplasma. The
thylakoids are parietally arranged (four or five per cell) (Figure 3). Reproduction is by
hormogonia or trichome breakage.

Reference strains: ZJJ01 (Freshwater Algal Herbarium (HBI), Institute of Hydrobiology,
Chinese Academy of Science).

Type locality: Isolated from a water sample in Hunan Province, China (41◦28′00.00′′ N,
124◦08′00.00′′ E).

Holotype designated here: Dry material of the strain ZJJ01 was stored at the Freshwater
Algal Herbarium (HBI), Institute of Hydrobiology, Chinese Academy of Science, Wuhan,
China, as specimen No. HN201910.

Etymology: hunanesis refers to the Hunan province where the strain was isolated,
transliterated into Latin.

Habitat: Free-living in water.
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Figure 2. Line drawings of Nodosilinea hunanesis. (a) Single trichomes with sheaths. (b) Trichomes
with nodules, and filaments forming loose spirals. Scale bars: 10 µm.
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Figure 3. TEM micrographs of Nodosilinea hunanesis. (a) Cross-section of a cell within its surrounding
sheath. (b) Longitudinal section of a filament. Scale bar: (a) = 1 µm, (b) = 2 µm. s, sheath; t, thylakoids.
Thylakoids are arranged more or less parallel in a parietal position.

3.2. Molecular and Phylogenetic Analysis

The distance matrix based on the 16S rRNA gene showed that the Nodosilinea hunane-
sis strain shared 95.6–97.1% similarity with other Nodosilinea species (Table 1). In total,
153 representative taxa sequences were included in the phylogenetic analysis to assess
the placement of the Nodosilinea clade within the cyanobacteria (Figure 4). MP, ML, and
Bayesian inference analyses produced similar tree topologies in our phylogenies. The 16S
rRNA phylogeny clearly indicated that our strain was nested within the genus Nodosilinea
(100% and 100% MP and ML bootstrapping percentage (BP) and 1.00 posterior probabil-
ity (PP)). Nodosilinea hunanesis is sister to Nodosilinea svalbardensis 3220 and Nodosilinea
nodulosa PCC7104.
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Table 1. Sequence similarity comparison of the 16S rRNA gene between the Nodosilinea hunanesis strain and its close species. Similarity = [1 − (p-distance)] × 100.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1. N. hunanesis ZJJ01
2. N. alaskaensis T21 0.956
3. N. alaskaensis T29 0.956 1
4. N. bijugata KOVACIK1986/5a 0.955 0.956 0.956
5. N. chupicuarensis PC471 0.967 0.979 0.979 0.969
6. N. conica strain SEV4-5-c1 0.957 0.96 0.96 0.964 0.975
7. N. epilithica str. Kovacik 1990/52 0.962 0.963 0.963 0.961 0.971 0.964
8. N. sp. FI2-2HA2 0.957 0.958 0.958 0.977 0.973 0.983 0.966
9. N. nodulosa PCC 7104 0.968 0.976 0.976 0.966 0.984 0.974 0.969 0.972
10. N. nodulosa UTEX 2910 0.966 0.978 0.978 0.968 0.996 0.974 0.974 0.972 0.983
11. N. radiophila TM S2B clone cl3 0.958 0.98 0.98 0.961 0.978 0.966 0.972 0.963 0.975 0.977
12. N. ramsarensis KH-S S2.6 clone cl2 0.964 0.98 0.98 0.966 0.986 0.968 0.974 0.968 0.983 0.989 0.979
13. N. ramsarensis KH-S S2.6 clone cl1 0.965 0.981 0.981 0.967 0.987 0.969 0.975 0.969 0.984 0.99 0.98 0.994
14. N. signiensis USMFM 0.971 0.978 0.978 0.971 0.984 0.973 0.98 0.973 0.984 0.983 0.981 0.987 0.988
15. N. sp. FI2-2HA2 0.957 0.958 0.958 0.977 0.973 0.983 0.966 1 0.972 0.972 0.963 0.968 0.969 0.973
16. N. svalbardensis 3220 0.96 0.961 0.961 0.953 0.966 0.959 0.96 0.959 0.971 0.964 0.962 0.969 0.97 0.978 0.959
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Figure 4. Bayesian inference (BI) phylogenetic tree of Nodosilinea hunanesis ZJJ01 based on 16S rRNA
gene sequences. Bootstrapping values higher than 50% are shown on the BI tree for MP/ML methods
and Bayesian posterior probabilities. * indicates bootstrapping values of 100 in MP, ML, and BI
posterior probabilities of 1.00. The novel filamentous strain of this study is indicated in bold.
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3.3. The 16S–23S ITS Region

In total, 10 existing Nodosilinea species and Nodosilinea hunanesis (ZJJ01) were used
to compare the secondary structures within Nodosilinea. The secondary structures of the
conserved ITS domains in Nodosilinea were highly similar (Figures 5 and 6), particularly
in the V3 helix, which was structurally identical and had the same patterns. Except for N.
conica, N. bijugata, and N. ramsarensis, the other eight existing Nodosilinea species and N.
hunanesis had identical D1–D1’ helices, while N. hunanesis showed different nucleotides in
the D1–D1’ helix in comparison with other Nodosilinea species.
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Figure 5. D1–D1′ helices of 11 representative strains of Nodosilinea. (a) N. hunanesis ZJJ01. (b) N. conica
strain SEV4-5-c1. (c) N. epilithica str. Kovacik 1990/52. (d) N. nodulosa PCC 7104. (e) N. signiensis
USMFM. (f) N. svalbardensis 3220. (g) N. alaskaensis T21. (h) N. bijugata KOVACIK1986/5a. (i) N.
chupicuarensis PC471. (j) N. radiophila TM S2B clone cl3. (k) N. ramsarensis KH-S S2.6.

The Box–B helix is more variable in sequence, length, and structure (Figure 6), which
could be considered as clear evidence for the differentiation of different species. Nodosilinea
hunanesis had its own unique Box–B helix: the base stem of N. hunanesis (Figure 6a) consisted
of a 4 bp helix, followed by a 1:1 base bilateral bulge, further followed by a 1:2 base bilateral
bulge; the terminal loop contained 4 bp bases (GGGA). However, the other nine related
species had nine Box–B helix types.
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SEV4-5-c1. (c) N. epilithica str. Kovacik 1990/52. (d) N. nodulosa PCC 7104. (e) N. signiensis USMFM.
(f) N. svalbardensis 3220. (g) N. bijugata KOVACIK1986/5a. (h) N. chupicuarensis PC471. (i) N. radiophila
TM S2B clone cl3. (j) N. ramsarensis KH-S S2.6. (k) V3 helix for Nodosilinea hunanesis ZJJ01.

4. Discussion

Oscillatorian cyanobacteria with filaments less than 3.5 µm in width and covered by a
sheath, mainly belong to the genus Leptolyngbya Anagnostidis et Komárek [2,15]. Based
on molecular taxonomic studies, Komárek et al. divided the Oscillatoriales sensu auct.
into two orders: Oscillatoriales and Synechococcales, with the latter including the genus
Leptolyngbya [4]. It is difficult to put forward a morphological feature to distinguish the
phylogenetically distinct taxa from the groups characterized by these thin filamentous
cyanobacteria, such as Leptolyngbya. Many genetically distinct species have been classified
as Leptolyngbya based only on morphology, prompting many taxonomists to attempt to
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split this polyphyletic group into new genera to better understand the classification of
Leptolyngbya [7,20,21,24–29,50–52]. Building the genus Nodosilinea [7] by splitting it from
Leptolyngbya was another significant example, representing the effort to narrowly define the
genus. Since the separation of the Nodosilinea genus from Leptolyngbya in 2011, 10 species
have been described.

In this study, we isolated a cyanobacterial strain morphologically resembling Leptolyn-
gbya from a freshwater pond in Zhangjiajie, Hunan province, and consequently identified
it as a new species of Nodosilinea. The morphological features of the strain ZJJ01 were
in accordance with those of family Leptolyngbyaceae. From ecology to cytology, to the
introduction of recent molecular biological data (mainly the 16S rRNA gene and 16S–23S
ITS), it has been shown that morphological characteristics alone do not reflect the evolu-
tionary history of cyanobacteria [4]. Nevertheless, the combination of molecular evidence
and morphological, biogeographical, and ecological data can better distinguish species
with similar morphologies. This is the essence of the polyphasic approach, which has
been followed for species-level identification [50,53,54]. Phylogenetic analysis in this study,
combined with cut-off values of species separation, clearly indicated that the strain under
investigation belonged to the genus Nodosilinea. In the 16S rRNA gene’s phylogenetic
tree, N. hunanesis clustered within the Nodosilinea branch and formed a distinct clade with
moderate to high bootstrapping support. The species N. hunanesis was well defined on the
basis of molecular criteria. Within Nodosilinea, N. hunanesis sp. nov. genetically differed
from other species by at least 97.1% in terms of 16S rRNA similarity. Stackebrandt and
Goebel [55] initially suggested that strains with a 16S rRNA sequence similarity of less than
97.5% should be considered as independent species. Stackebrandt and Ebers (2006) [56]
changed the cutoff point to a higher value, which was supported by the cut-off proposed by
Yarza et al. (98.7% for species) [57]. Therefore, ZJJ01 is below any of the proposed threshold
values for 16S rRNA comparisons. On this basis, N. hunanesis sp. nov. represents a distinct
species from the 10 previously described Nodosilinea species.

Analysis of the 16S–23S ITS secondary structure has been used as an effective tool to
distinguish taxa at the species level [6,19,58–62]. The analyses of the secondary structures
of the ITS further supported the distinctiveness of N. hunanesis. The secondary structures
of the ITS, including the D1–D1′ and Box–B helices, distinguished N. hunanesis from
other ten Nodosilinea species. It is worth mentioning that the Box–B helix of N. hunanesis
(Figure 5a) was significantly different from that of the other Nodosilinea species in its
stem–loop structures.

Morphologically, most Nodosilinea species are very similar (Table 2), and due to the
simple morphological characteristics of this genus, some features overlap between species.
Nevertheless, some morphological features may be helpful for diagnosing N. hunanesis,
such as the formation of long, loose spirally coiled filaments under normal light conditions,
and the layered, widened sheath. Furthermore, the presence of this species in a freshwater
habitat in China further supports its separation from most of the previously described
species, based on its significantly different biome. Most of other species were found in soils,
stones, rocks, thermal springs, and oceans, and Nodosilinea bijugata was observed in the
benthos of a eutrophic lake in the littoral zone in Poland.
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Table 2. Comparison of the characteristics of the 10 previously described species of Nodosilinea and N. hunanesis (“?” indicates that the feature is unknown).

Characters N.
hunanesis N. signiensis N. epilithica N. bijugata N. conica N.

chupicuarensis N. nodulosa N.
radiophila

N.
ramsarensis

N.
alaskaensis

N.
svalbardensis

Cell length
(µm) 1.02–2.74 1.0–2.0 (2.3) 1.0–8.0 1.5–6.2 0.9–2.4 1.1–1.3 1.1–1.5 1.0–2.0 (0.8) 1.0–1.5 2–4.1 1.2–2.1

Cell width
(µm) 1.10–1.34 1.0 (1.5) 1.5–2.5 1.5–1.7 2.5–2.7 1.2 1.2–2.4 2.0–5.0 1.0–2.0 1.4–1.8 1.2–1.7

Cell shape
Cylindrical,
longer than

wide

Isodiametric,
longer than
wide/barrel

shape

Barrel
shaped,

shorter to
longer than

wide

Isodiametric,
longer than

wide

Isodiametric,
shorter than

wide
Isodiametric

Isodiametric,
longer than

wide

Isodiametric,
longer than

wide

Isodiametric,
longer than

wide

More or
lesslonger
than wide

Shorter to
longer than

wide

Cross-wall Strongly
constricted

Slightly
constricted
to strongly
constricted

Distinctly
constricted

Slightly
constricted

Slightly
constricted Constricted

Slightly to
strongly

constricted

Distinctly
constricted

Distinctly
constricted

Not
constricted

Strongly
constricted

Filaments Forming
nodules

Solitary,
immotile,
forming
spirals

Forming
nodules in
low light

Rarely
forming
nodules

Rarely
forming
nodules

Multiseriate,
motile,

forming
nodules

Forming
nodules

No
formation of

nodules

Rrarely
forming
nodules

Forming
nodules

Forming
nodules

Apical cells
Dome-

shapedor
elongated

Rounded Rounded Rounded Rounded Dome-shaped Rounded Rounded or
elongated ? Rounded Rounded

Sheaths

Soft, layered,
colorless,

often
becoming

wide

Very thin,
colorless

Thin,
colorless,

occasionally
becoming
wide and
diffluent

Often absent,
thin,

colourless
Soft, thin,
colorless Thin, clear

Thin,
colourless,

occasionally
becoming
wide and
diffluent

Thin,
colorless

Thin,
colorless

Usually
present; thin,

soft,
colorless

Soft, thin,
colorless,

sometimes
widened,
hyaline

Habitat Freshwater
pond, China

Soil, Signy
Island,

Antarctica

House wall,
Peninsula
Gargano,
town of
Vieste

(Foggia),
Italy

Littoral zone,
eutrophic

Lake
Piaseczno,

Poland

Sevilleta
long- term
ecological
research,

New Mexico;
Soil,

Chihuahuan
Desert, USA

Stone
monument

surface,
Central Mexico

Marine,
South China

Sea

Benthic mat
in a thermal

spring
(<27 ◦C),

Talesh
Mahalleh,

Ramsar Iran

Soil around a
thermal
spring

(<32 ◦C),
Khaksefid,

Ramsar, Iran

Periphyton
in a lake

Biocrust on
sand
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In conclusion, one new species of Nodosilinea was separated on the basis of a combi-
nation of the 16S rRNA gene threshold, the 16S rRNA gene’s phylogeny, the secondary
structures of the ITS, and the morphological features. On the basis of all of this evidence,
we concluded that our strain belongs to a novel species in the genus Nodosilinea, and named
it Nodosilinea hunanesis. In the past few years, polyphasic culture-dependent approaches
aiming to investigate cyanobacterial diversity in previously underexplored habitats have
resulted in the description of several new genera/species in China [27,36,62–71]. The taxo-
nomic investigation of Leptolyngbya-like cyanobacteria is seriously insufficient in China. In
the past 2 years, we have carried out a survey on the diversity of Leptolyngbya-like cyanobac-
teria in different habitats in China, hoping that more novel groups will be discovered in
future studies.
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